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Abstract—Current methods for three-dimensional (3D) model
simplification often involve intricate algorithms that may compro-
mise visual fidelity or incur high computational costs. Traditional
approaches using decimation algorithms may still fall short in
terms of achieving storage efficiency comparable to basic 3D
geometric primitives. This paper proposes an approach centered
on the utilization of elementary geometric structures, such as
spheres and cylinders, for efficient 3D model simplification. Our
approach capitalizes on the inherent simplicity of such shapes,
enabling representation with fewer parameters and minimal
storage requirements. The proposed method replaces intricate
geometric details with these fundamental shapes, identifying
regions suited to substitution using a Hough Transform-based
method. Preliminary findings replace a region of the mesh with
a single sphere. We present these primary results visually with the
use of spheres for three 3D meshes along with their corresponding
percentage gain regarding fundamental characteristics such as
vertices, edges, faces, and size. For future work, we intend on
expanding our technique to map other parts of the model and
exploring further elementary geometries with Hough Transform.

I. INTRODUCTION

In the area of computer graphics and computational geom-
etry, the efficient representation and manipulation of three-
dimensional (3D) models play a crucial role in various
applications, ranging from virtual reality to computer-aided
design. As the complexity of 3D models continues to increase,
the need for techniques that simplify these models becomes
necessary. These techniques of 3D model simplification aim to
reduce the computational overheads associated with rendering,
transmission, and storage, while upholding a level of detail that
remains perceptually convincing. Traditional methods, often
grounded in decimation algorithms [1]–[3], usually focus on
specific regions or levels of detail, which undoubtedly helps
in decreasing the meshes’ size.

Even though decimation algorithms have been widely em-
ployed for 3D model simplification [4], they often fall short
in achieving storage efficiency comparable to that of single
basic 3D geometric primitives. While decimation methods aim
to reduce complexity by removing unnecessary details, the re-
sulting models can still exhibit significant storage requirements
due to the persistence of intricate mesh structures, where the
complex mesh topology remains a significant contributor to
storage overhead.

In contrast, the utilization of elementary geometric prim-
itives such as spheres and cylinders offers the advantage of
inherently embodying simplicity, allowing them to be repre-

sented using fewer parameters and requiring minimal storage
space [5]. By embracing the elegance of single basic geometric
primitives, this approach not only streamlines storage but also
retains the core characteristics of the original models, making
it a compelling alternative in the pursuit of efficient 3D model
representation. These structures can be seamlessly combined,
stacked, and arranged to mimic the intricate contours and vol-
umes present in complex 3D models. Moreover, the uniformity
of these basic structures ensures a streamlined approach to
simplification, leading to optimized rendering, reduced storage
requirements, and efficient transmission, all while maintaining
the essence of the original object.

Our approach seeks to replace intricate geometric details
with these fundamental shapes by identifying regions within
the 3D model amenable to such substitution using a Hough
Transform-based approach. This strategy allows to detection
of potential detailed mesh areas and substitutes them for a
few equation parameters for performance enhancing purposes.
By substituting detailed mesh areas with equation parameters
that define fundamental shapes, the method optimizes storage
space and computational demands, contributing to enhanced
performance and responsiveness.

The remaining of this work contains four sections. Section
II presents the most relevant work associated with 3D mesh
simplification. Section III presents our approach to converting
the models to elementary geometric structures. Next, in Sec-
tion IV we discuss the partial results we obtained for some
three-dimensional objects, along with a short discussion on
our next planned steps. Finally, Section V presents our final
remarks, limitations, and future work.

II. RELATED WORK

Mesh simplification technology converts a given 3D model,
which usually has high resolution and precision, into a less
detailed and approximated mesh model [6]. In the present
landscape, significant advancements have been made by nu-
merous researchers in this domain in the last decades. The
objective of shape approximation algorithms, particularly, is to
derive uncomplicated geometric representations from intricate
surface meshes. Numerous algorithms in this domain rely
on mesh decimation methods that yield coarse triangulations
while optimizing a specific metric designed to capture the
proximity to the original shape [5]. Furthermore, due to the
democratization of consumer depth cameras, captured 3D data



is also continuously increasing, becoming a serious challenge
at the frontier between computer graphics and computer vision
[7]. One of the most classic works regarding mesh decimation
can be seen in the book of Luebke [1].

In this field, some authors classify the algorithms into
two categories [8], [9]: geometry-driven simplification al-
gorithms and appearance attribute-driven simplification al-
gorithms. Among the prevalent geometry-driven simplifica-
tion techniques we may cite vertex clustering-based algo-
rithms [10], vertex extraction-based algorithms [11], and edge
folding-based algorithms [12]. Another important classic tech-
nique proposed by Cohen and colleagues is the one called
Simplification Envelopes [13], used for simplifying complex
3D models while preserving their essential features and overall
appearance.

The Hough Transform [14], [15] is a powerful technique
widely employed in image processing, pattern analysis, and
computer vision. Initially developed for detecting straight
lines in images, it has since evolved into a versatile tool
for identifying complex shapes, curves, and patterns. This
transformative method functions by converting the data space
into a parameter space, facilitating the identification of patterns
through peak detection in the parameter domain. Some works
have worked with Hough Transform in Computer Graphics 3D
meshes [16], [17].

The work proposed by Abuzaina et al. [16] introduces an
algorithm founded on the Hough Transform methodology,
aimed at efficiently and accurately detecting spherical struc-
tures within 3D point clouds. Khoshelham’s work [17], works
with automated object detection and 3D modeling within laser
range data, detecting 3D objects characterized by arbitrary
shapes within point cloud data. Further approaches have also
been investigating mesh reconstruction from point clouds,
which commonly uses Hough Transform [18]–[21].

In the context of our study, we leverage the Hough Trans-
form as a foundation for detecting and characterizing potential
substitution regions within 3D models, enabling an innova-
tive approach to simplification. By harnessing the inherent
strengths of the Hough Transform, our methodology seeks to
enhance the efficiency and accuracy of our proposed technique
for model simplification. Similar state-of-the-art methods, such
as [5] involve producing several spheres inside the mesh and
connecting them according to the importance parameter σ, oth-
ers such as [22] use Lloyd clustering as a mean of minimizing
the sphere sizes. We believe our technique can greatly enhance
the performance of the meshes by automatically substituting
the entire mesh regions for these structures, which can be
represented by simple equation parameters without further
information representing them.

III. METHODOLOGY

In this section, we present the methodology we used to
replace 3D meshes with elementary geometric structures.
Given a three-dimensional mesh, our method consists of using
the Hough Transform approach to find the best mesh’s area for

C

Fig. 1. Illustration of our technique, representing the normals of an octahedron
figure (in blue) and of a sphere (in green) meeting at a center C.

Fig. 2. Mesh example of the Cow (blue) along with some of its computed
normals (red).

Fig. 3. Mesh example of the Cow (blue) and its corresponding accumulating
cubes (red).

further substituting it to the corresponding geometry. Figure 1
presents a schema illustrating our method for a sphere.

A known way of detecting geometry in 2D is the Hough



Transform, which uses mathematical equations that define
shapes to detect said shapes. Circles, for instance, can be found
using the Circle Hough Transform. We can use these tools in
three dimensions to detect and simplify data in a 3D object.

Say we were to try and find and simplify spheres in a mesh
M, composed of triangular polygons. We start by extracting
all faces F and all vertices V corresponding to each face in M.
Then we set some vertex as our origin O and map out vectors
v that go from O to the other two V that belong to F .

By cross-multiplying both v, we will get the normal n
relative to O. By repeating this process replacing O for each
V in F , we can find the normal N of said F by taking the
average of the coordinates of each found n. Figure 2 shows
the result of this normal extraction process in the Cow mesh.

We then create a 3D grid of small accumulator cubes of
edge size s (picking up more and more precise sphere centers
as s gets smaller). Each cube starts at 0 and adds 1 to its
accumulator for each normal line that goes through it and
keeps a reference of what face’s normal hit it. This use of
accumulator cubes can be seen in Figure 3 with the use of a
Cow model and the 3D arrays surrounding it.

After that, for a small enough s, if there are sphere-like
shapes in our mesh, we will find that the cubes with the highest
accumulated value will be the center of said spheres. To find
the radius of a sphere with the center in a cube C, we create
a sphere S of radius starting at s and grow it until it covers
all of M, keeping note of which faces are inside of it.

The point when S covers the highest amount of faces FA
with normal that hit C and the lowest amount of faces FB
with normal that did not hit C will be the sphere with the
approximate radius. This can also be thought of as the radius
r, where |FA −FB| is the smallest. The FA faces could then be
removed and replaced by the equation of a sphere of center
in C and radius r, leaving us with the simplified mesh.

The same breakdown of the equations used in the usual
Hough Transform can be applied to other shapes. We intend
to continue investigating this issue in the following months,
producing a subset of geometric elementary forms which can
produce viable and memory-less alternatives to simplify the
input mesh.

IV. PRELIMINARY RESULTS AND DISCUSSION

This section presents our preliminary results, followed by
a discussion. Table I presents the initial simplification results
presented in this paper for three 3D objects using a sphere
approximation centered at the accumulator with the highest
normal counter. Figure 4 shows these results visually, with
the sphere represented in green and the models in blue.

We can see that the number of vectors, edges, and faces
decreases since they can be removed from the original file and
substituted with the sphere equation. The Cow, Chueburashka,
and Homer models presented 4.32%, 15.25%, and 6.08%
decrease in size, respectively, with an average of 8.55%.
Although marginal, these decreases are the result of a single
sphere substitution, and would be significantly improved with
multiple geometric shape replacements of the model. We

(a)

(b)

(c)

Fig. 4. Results of our technique presenting a sphere (green) for the three
models (blue): (a) Cow, (b) Chueburashka, and (c) Homer.

highlight that Chueburashka had the most significant decrease
among the figures since the sphere replaced the biggest per-
centage of the model compared to the others.

The results present the potential of such simplifications,
showing that a simplification with more spheres or other
shapes like cones and cylinders could further reduce the sizes
while better representing several mesh subsets.

V. CONCLUSIONS

Our approach involves substituting intricate geometric com-
plexities with fundamental shapes such as spheres and cylin-
ders, achieved through a Hough Transform-based methodol-
ogy, suiting approaches that rely on low-resolution meshes. We
use elementary geometric structures to simplify 3D models by
identifying model regions available for such substitution. Our
results present, on average, a decrease of 8.5% in size. Despite



TABLE I
ORIGINAL AND NEW MESHES’ SIZE INFORMATION BEFORE AND AFTER OUR APPROACH.

Model Orig. #V Orig. #E Orig. #F Orig. size (OBJ) New #V New #E New #F New size (OBJ)

Cow 2,903 8,706 5,804 185kB 2,762 8,177 5,415 177kB
Chueburashka 6,669 20,001 13,334 413kB 5,746 16,857 11,114 350kB
Homer 6,002 18,000 12,000 362kB 5,899 17,587 11,690 340kB

Average 5.191 15.569 10.379 320kB 4.802 14.207 9.406 289kB
Std. Dev. 2,009.62 6,027.15 4,018.10 119.66 1,768.64 5,234.87 3,468.57 97.12

Fig. 5. An example of the potential of our approach is to be further explored
for the Cow model, which can be roughly approximated by using eight
cylinders. The same images can also be seen as low-sized in the red contoured
images.

still being preliminary at this stage, our approach provides an
attractive method that can be further expanded by capturing
and adjusting the most important set of triangles to elementary
geometric structures in a space-efficient way.

We intend to expand our technique to map elementary
geometric structures to other parts of the model. For instance,
by only using cylinders, we may produce a sketch-based
similar Cow as the one presented in Figure 5. As we present
in the short red images, a model in such low resolution could
simplify the rendering of far objects in a scene without losing
much semantic information and occupying much less space
than decimate approaches. Furthermore, we also intend to
keep exploring other limitations, such as dealing with textured
models and improving our results by presenting a geometric-
based error calculus on the input and output meshes, such as
quadratic error metric [6], [23].
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