
An Optical Character Recognition Post-processing
Method for technical documents

Lucas Viana da Silva∗, Paulo Lilles Jorge Drews Junior† and Sı́lvia Silva da Costa Botelho‡
∗Universidade Federal do Rio Grande (FURG)

Email: lucas.viana.rs@gmail.com
†Universidade Federal do Rio Grande (FURG)

Email: paulodrews@furg.br
‡Universidade Federal do Rio Grande (FURG)

Email: silviacb@furg.br

Abstract—Methods for correcting errors generated by Optical
Character Recognition (OCR) system are being developed for a
long time, with interesting results in their applications. However,
these methods tend to work only on data with words that are part
of an existing language and with a large semantic relationship
between each word in the text. In this work, an error correction
method is proposed that focuses on types of documents without
these large semantic relationships inside their text. Instead, we
focus on sparse text that tends to have little semantic relationship
between the words found within itself. The proposed method uses
machine learning to train classifiers capable of finding errors in
the OCR output and run an isolated execution of the OCR system
to fix the error. The final results indicate a good accuracy of
88.24% for error detection and an improvement of the character
error rate (CER) of 14.2%.

I. INTRODUCTION

OCR is a tool for transforming text documents from an
image to text, which helps with the manipulation and searching
of data inside a document. This technology is becoming more
and more important, mainly due to the improvement of the
results obtained with modern OCR systems. Nowadays, they
reach a high accuracy rate in most circumstances because of
the use of deep learning. However, the OCR usually produces
several errors in the recognized texts depending on the type
of document to be recognized, making it necessary to have
some way of post-processing it to recognize and correct these
errors.

In the context of general OCR post-processing methods,
there are several studies [1], [2] that use word dictionaries
and context to detect and correct the text. The use of dic-
tionaries and context shows a good result for detecting and
correcting errors in texts taken from books and articles, where
the detected words are related depending on the proximity
between each one and most of these words could be found
in a dictionary of the language it was written. The problem
with them is their insufficient performance when used for
documents with little information by context and/or with
difficulty to create a dictionary of words to detect similarity
between the estimated text and the words in the dictionary. An
example of this situation is found when trying to correct errors
in a technical document. Technical documentation usually
describes the application, purpose, creation, or architecture of

Fig. 1. The pipeline of the OCR post-processing method.

a product or service. They are composed of several snippets
such as codes, item prices, and drawings. These items tend to
be unique to the document and cannot be found in a dictionary,
thus there is normally no concrete context to predict them.
Thus, there is a greater chance of error in the found text in
modern OCR systems such as Tesseract [3], because most
of these systems utilize attention-like mechanisms such as
Long short-term memory (LSTM) [4] and Transformers [5]
as a character recognition model, which is influenced by the
context that the words being recognized are in. With that in
mind, this article’s main objective is to be able to classify and
fix OCR errors that occur when trying to utilize it on technical
documents which are sparse and without significant language
context between many of its words. This method will do that
through a simple pipeline seen in Figure 1, common among
all OCR post-processing methods, utilizing techniques such as
feature extraction and classification for error detection and a
special execution of an OCR system for error correction.

II. RELATED WORKS

Several works present techniques for the identification and
correction of errors in OCR systems, where the majority fits
into one or more within three broad categories.

Manual approaches utilize human interaction with a sys-
tem to identify and correct OCR errors [6], normally making
use of crowd-sourcing to facilitate and increase the number of
corrected terms. The obvious drawback of these techniques is
the fact that they have to be manually executed by a human
which contradicts the usage of OCR systems as a way to
automate processes.



Context-dependent approaches use the context of each
word to try and determine if the element being analyzed is
an error and which text should be in its place. The most
common techniques from this category are statistical language
models [7] which estimate the probability distribution of word
sequences; and neural network-based language models [2]
which utilizes a neural network to model what would amount
to the probability distribution of word sequences. Other types
of context-dependent techniques include sequence-to-sequence
models [8], which interpret the problem of correcting OCR
errors as if it were a machine translation problem, i.e. trans-
lating from an incorrect “language” to one that should be
correct. These methods do not tend to fit the problem of OCR
post-processing in technical documents, mostly because it is
difficult to derive context from them.

Feature-based approaches utilize a machine learning
model to try and learn which words in an OCR output are
wrong and which are correct, mostly through classifiers that
use techniques such as k-nearest neighbor (KNN) and support
vector machines (SVMs). Most of them tend to utilize features
such as n-gram frequencies [1] to try and include some context
within the selected features, and OCR word confidence [9]
to include the uncertainty of the OCR model. Particular
word/character feature selections are also adopted such as
the presence of non-alphanumeric characters [10] to detect
anomalies in OCR outputs of documents that normally should
not have them, and the edit distance from the analyzed word to
candidates in a dictionary [10] to include some semblance of
language-based techniques. Some implementations also utilize
multiple OCR outputs, merging them together [11] to take
advantage of the strengths of each specific OCR to detect and
recognize texts in different situations. This category has the
most in common with the proposed method, but they differ
because the method does not include features that have any
correlation with context or a language model. Instead, we
focus purely on the word and character uncertainty features
with the expected result of finding and correcting these errors
even in a document of sparse text and limited context.

III. METHODOLOGY

In Figure 1 we have the main pipeline of an OCR post-
processing method. This paper follows that pipeline by ex-
tracting features from both the OCR output and the image of
each word in the document and classifying it into a correct
or incorrect word, with the classification methods that will be
presented in a later section. After classification, a list of errors
will be generated from the input words, where each word
will be cropped from the original image and then reprocessed
in the OCR system with a specific configuration and some
image preprocessing techniques to reduce the error compared
to the original output. In the next few subsections the topic
of datasets utilized for training the classification models, the
features utilized for said models, and the specific configuration
of both the OCR and image manipulation techniques utilized
during error correction.

Fig. 2. An example of an image from the SROIE dataset [12].

A. Dataset

Two datasets are adopted in this paper. The first is
SROIE [12], a largely adopted public dataset of scanned
receipts that contains text information that is sparse in its
layout when compared to other documents such as books,
while also being hard to derive context from said images
due to the amount of numbers, unique names, and codes that
are contained within them. Figure 2 shows an example of a
scanned receipt in the dataset. Each image in the dataset was
then put through an OCR system to be able to correlate the
ground truth text with the OCR-obtained text. The dataset
contains 1, 000 images of scanned receipts, with the text
inside those images mainly consisting of digits and English
characters, with some symbols in places such as dashes in
codes and dots in prices of items.

The second one is a private dataset [13] called ENAVAL
consisting of scanned technical engineering documents related
to normative, construction, and assembly processes of the
naval and offshore industry. This dataset consists of 5720
pages with two types of documents, one related to a technical
normative of an engineering project and the other type related
to materials used during the execution of these projects.
Figures 3a and 3b demonstrate an example of both types of
documents contained within this dataset.

The OCR system utilized in this paper was the Tesseract
[3], the most adopted open-source OCR system which has
a LSTM model as its recognition backbone. The Tesseract
was customized for the task of extracting text in a sparse
document, changing default parameters to others such as:
tessedit pageseg mode being set to 11, the trained model
of Tesseract varies for the dataset being analyzed, with
English being used for SROIE and Portuguese being used
for ENAVAL, and two parameters to have more infor-
mation about the OCR output. These two parameters are
hocr char boxes equal to 1 that outputs the bounding boxes
and certainty for each character instead of just the words, and



(a) Example of the first type of document in
the ENAVAL dataset.

(b) Example of the second type of document
in the ENAVAL dataset.

Fig. 3. An example of documents present in the ENAVAL dataset.

lstm choice mode set to 2 outputting which other characters
outside of the one chosen were considered for each character in
a word. All visualizations such as histograms shown in Section
III-B are done utilizing the SROIE dataset with 1, 000 correctly
identified words and 1, 000 incorrectly identified words of this
dataset. Datasets were divided into 85% of the data used to
train, and the remaining 15% being used to test.

B. Error Detection

Five different features are utilized within machine learning
classifiers, which are detailed in the next five subsections. We
adopted five machine-learning algorithms to obtain classify
errors:

• k-Nearest Neighbours (KNN) with 3 neighbors;
• Support Vector Machine (SVM);
• Naı̈ve-Bayes (NB);
• Decision Tree (DT);
• Multilayer Perceptron (MLP).

These classifiers were chosen due to the proof of their
effectiveness in other applications within machine learning
and also to guarantee a range of different classifiers for
comprehensive evaluation using various techniques in the field
of machine learning. The use of large deep learning models
is discarded due to the limited amount of annotated data and
the high cost to obtain larger datasets. All classifiers were
made utilizing the library Scikit-Learn [14]. All data were
preprocessed by standardizing every feature before the training
and testing of any classifier. For every feature value ’x’ the
Equation 1 is applied, where ’u’ is the mean of the training
samples for that particular feature and ’s’ standard deviation
of the training samples for that particular feature.

Standard V alue = (x− u)/s (1)

We paired up the ground truth text and the OCR-based
generated text using an Intersection-over-Union (IoU) between
the bounding boxes of the words inside the OCR output and
the words inside the ground truth, pairing up any words with
more than 0.5 IoU.

One experiment made was the training of the classifiers with
all combinations of the five features that will be described in
the later subsections. This was made to be able to ascertain
that the combination of all five features at the same time was
the best in terms of performance for error detection. Another
experiment was made to see the impact of Bagging [15] and
Boosting(AdaBoost) [16] techniques in these classifiers, with
the specific notion that, due to limitations in the library utilized
to make these classifiers, only the Decision Tree classifier and
the SVM classifier where able to be utilized with Boosting.
The experiment utilized boosting in all types of classifiers.

1) OCR Word confidence: The simplest feature is the
confidence that Tesseract has for a given word. This value is a
number from 0 to 100, with the lower bound indicating total
uncertainty and the upper bound indicating no uncertainty by
Tesseract. Figure 4a shows a histogram that makes it possible
to see that, though incorrect words tend to have lower values,
it is still impossible to judge a system completely through this
feature alone.

2) Average confidence of characters: This feature repre-
sents the average confidence that Tesseract has between all
character confidences. This feature is not part of the default
metrics in Tesseract and is constructed after the output of the
OCR is obtained. This value is a number from 0 to 100,
with the lower bound indicating total uncertainty and the



upper bound indicating no uncertainty by Tesseract. Figure 4b
shows a histogram that, much the same as the word confidence
feature, makes it possible to see that, though incorrect words
tend to have lower values, it is still impossible to judge a
system completely through this feature alone.

3) Confusion value of word: Feature generated after pro-
cessing the OCR output, describing the sum of the values of
character confusion in the OCR system, which originate from
a previous analysis, comparing the data obtained through OCR
with the annotated dataset to obtain the number of errors for
each character. To create this value, the Levenshtein distance
is used to find how many times each distinct character was
replaced with another character in the pairs between OCR
words and the annotated text in the database. This information
is used to calculate the confusion value of each character
and the total value of the characteristic, with the sum of all
confusion values of each character in a word being the final
value of this feature. This value has 0 as the lower bound
which characterizes no character confusion and any higher
value characterizes more confusion for that word. Figure 5a
shows a histogram that, different from the last two, does not
show an immediate clear pattern for classification, but has
some subtle differences for correct and incorrect words in a
few ranges that help the classification on an error.

4) Average of choice difference: Feature generated after
processing OCR output, describing the average of all OCR
choice differences in a word for each character between its
chosen character and the second highest character possibility.
A choice difference for a character is the difference between
the highest-confidence candidate minus the second-highest-
confidence candidate for that character. This value is a number
from 0 to 100, with the lower bound indicating total un-
certainty and the upper bound indicating no uncertainty by
Tesseract. Figure 5b shows a histogram that, much the same
as the word confidence feature, makes it possible to see that,
though incorrect words tend to have lower values, it is still
impossible to judge a system completely through this feature
alone.

5) Character Gradient Image Quality Assessment: Fea-
ture generated after processing OCR output, derived from
a technique to assess the quality of an image for an OCR
process [17], being applied to the image of the word found
in the OCR that was paired with the text in the ground
truth. This value is a number that indicates the quality of
an image in relation to its supposed OCR result, with lower
values indicating worse quality. Figure 6 shows a histogram
that shows some differences in words correctly found and
incorrectly found, especially at the lower bound values, which
does make sense as they represent a worse quality image and
they tend to be recognized incorrectly by Tesseract.

C. Error Correction

An isolated execution of the Tesseract OCR system was
applied to correct errors. We cropped the image to a candidate
wrong word and applied the OCR with preprocessing and
internal configurations designed to work better with isolated

text images. The preprocessing involves the resizing of the
image to be 35% larger, with a bilinear interpolation of new
pixels, followed by the application of unsharp masking with
a size 3 kernel of a Gaussian blur to sharpen the image. The
internal configurations of OCR are as follows:

• Page segmentation mode: 8 (Single Word);
• OCR engine: Legacy (utilizing a KNN model as the

recognition model);
• Language model: English;
• Internal thresholding method: Sauvola;
• kFactor (Sauvola parameter): 0.1;
• Window Size (Sauvola parameter): 0.4.
To compare how the OCR behaves before and after post-

processing the Character Error Rate (CER) metric was utilized.
This metric determines how much error is in the OCR output
by comparing its output with the ground truth through an
edit distance technique, which in this case is the Levenshtein
Distance. The formula for the CER is described in Equation
2. A higher CER indicates a worse OCR output.

CER =
(Substitutions+Deletions+ Insertions)

(Number of characters in ground− truth)
(2)

Two experiments with error correction were made, with the
first utilizing the classifier with the best accuracy and then, for
each word classified as an error, an isolated OCR execution
was made. The second experiment involved bypassing the
error detection of the method to check if applying an isolated
OCR execution to all words in the image was better than
checking for errors before. This choice was made because
while a specific OCR execution can help reduce the error in
wrong words, it can also introduce errors to words that were
correct in the first place, so this experiment was conducted to
measure how vital error detection is to the entire process.

IV. RESULTS

A. Error Detection

Table I shows the best classifier, ranked by accuracy, for
each combination of features, with a combination being shown
as the sum of item indexes above for each feature in Section
III-B. For example, the combination ”(2+3+4)” is equal to
training the classifiers only with the average character confi-
dence, confusion value, and the average of choice difference.
This experiment was performed only on the SROIE dataset. In
the table, only the best five out of the thirty-one combinations
are shown. The results in this table indicate that, though by a
small margin, utilizing all five features is the best choice for
the classifier, with all of the next experiments being done with
all five.

Table II show the performance for all the classifiers with
and without the usage of Boosting and Bagging in the SROIE
dataset. It can be seen from the results that Bagging and
Boosting do not seem to have a great effect on most classifiers,
with the exception being the Decision Tree classifier which
ends up being the most accurate with Boosting and second



(a) A histogram that shows the contrast of the word
confidence feature between words that were found cor-
rectly and incorrectly.

(b) A histogram that shows the contrast of the average
character confidence feature between words that were
found correctly and incorrectly.

Fig. 4. Features that come from the confidence value of elements in the OCR-generated text.

(a) A histogram that shows the contrast of the confusion
value feature between words that were found correctly
and incorrectly.

(b) A histogram that shows the contrast of the average
of choice difference feature between words that were
found correctly and incorrectly.

Fig. 5. Features that are generated after processing the OCR output.

Fig. 6. A histogram that shows the contrast of the Character Gradient
Image Quality Assessment feature between words that ere found correctly
and incorrectly.

in all the other metrics. It can also be seen that recall and
precision are a bit low across the board, which could introduce
false positive OCR errors that can impact the step of error
correction, being analyzed in the next subsection.

Table III shows the performance for all the classifiers in

TABLE I
RESULTS OF THE BEST CLASSIFIER FOR EACH OF THE 5 BEST

COMBINATIONS IN THE SROIE DATASET

Combination Accuracy Classifier

(1+2+3+4+5) 86.59% MLP

(1+3) 86.14% Decision-Tree

(2+5) 86.08% MLP

(2+4) 86.07% KNN

(1+2+4) 86.02% SVM

the ENAVAL dataset. It can be seen that the KNN is the clear
winner among all classifiers, with the Decision Tree in second
place. It can be seen here too that recall and precision are a bit
low across the board, even more than the SROIE dataset, which
could introduce false positive OCR errors that can impact the
step of error correction, being analyzed in the next subsection.

B. Error Correction

Table IV shows the end result of error correction, where
”Full Pipeline” means that both error detection, with the best



TABLE II
RESULTS OF EACH CLASSIFIER IN THE SROIE DATASET

Classifier Accuracy Precision Recall F1 Score
Naı̈ve-Bayes (NB) 85.78% 66.79% 54.84% 60.23%

NB - Bagging 85.91% 67.83% 54.73% 60.58%
KNN 86.37% 67.69% 58.50% 62.76%

KNN - Bagging 85.69% 67.23% 55.67% 60.91%
SVM 86.52% 71.42% 44.64% 54.94%

SVM - Bagging 87.14% 74.76% 48.94% 59.16%
SVM - Boosting 84.63% 69.21% 53.19% 60.15%

Decision Tree (DT) 86.21% 64.77% 65.23% 65.00%
DT - Bagging 88.16% 76.82% 58.51% 66.43%
DT - Boosting 88.24% 74.96% 59.88% 66.33%

MLP 86.96% 73.38% 52.72% 61.35%
MLP - Bagging 85.89% 71.25% 49.48% 58.40%

TABLE III
RESULTS OF EACH CLASSIFIER IN THE ENAVAL DATASET.

Classifier Accuracy Precision Recall F1 Score
Decision Tree 81,21% 58,16% 63,58% 60,75%
Naı̈ve-Bayes 75,12% 34,01% 50,35% 40,60%

KNN 82,31% 57,56% 67,03% 61,94%
MLP 77,88% 33,14% 60,51% 42,82%
SVM 78,07% 32,01% 61,88% 42,20%

TABLE IV
RESULTS OF THE ERROR CORRECTION TESTS.

Dataset CER CER CER
Original Full Pipeline Only Error Correction

SROIE 0.4473 0.3838 0.7224
ENAVAL 0.7710 0.7349 0.8612

classifier by accuracy for each dataset, and error correction
were used, and ”Only Error Correction” means that all words
were processed with the error correction method, without the
classification into error or not. It is important to note that,
even through reprocessing of false positives, the error rate after
post-processing is lowered by 14.2% in the SROIE dataset,
a significant increase that could benefit other activities that
depend on the OCR results such as text searching or tasks of
structured information retrieval, with a common example being
layout and forms understanding, a task which is quite common
in technical documents such as the ones discussed on this
paper. It is also possible to see that without the step of error
detection, the CER gets worse, which is not too surprising
considering our hypothesis in Section III-C, which was that
reprocessing words that were correct after the first OCR pass
could introduce errors and, in this case, could become worse
than the original output. The results in the ENAVAL dataset
also present the same pattern, with a 4.7% lowered error rate
for the full processing and an increase of 11.7% in the error
rate if only using the error correction step.

V. CONCLUSION

In this work, we analyzed and presented a method to find
and reduce OCR errors in technical documents using light
classification methods such as KNN, SVM, and Decision
Trees for the identification of incorrect words, and the isolated
execution of OCR for the reduction of errors in said words.

The obtained results improved the performance by 14%. To
conclude this research we still need to evaluate certain aspects
such as the relatively low scores in error classification, possibly
caused by an unbalanced dataset, and compare it to different
post-processing methods to accurately measure this technique.
Furthermore, there is a necessity to see the behavior of this
technique while utilizing other OCR systems, to be able to
conclude if this can be generalized or if it is a technique that
only works in specific situations.
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