
Combining YOLO and Visual Rhythm for Vehicle
Counting

Victor Nascimento Ribeiro
University of São Paulo - USP

Institute of Mathematics and Statistics
SP - São Paulo, Brazil

Nina S. T. Hirata
University of São Paulo - USP

Institute of Mathematics and Statistics
SP - São Paulo, Brazil

Abstract—Video-based vehicle detection and counting play a
critical role in managing transport infrastructure. Traditional
image-based counting methods usually involve two main steps:
initial detection and subsequent tracking, which are applied to
all video frames, leading to a significant increase in compu-
tational complexity. To address this issue, this work presents
an alternative and more efficient method for vehicle detection
and counting. The proposed approach eliminates the need for
a tracking step and focuses solely on detecting vehicles in key
video frames, thereby increasing its efficiency. To achieve this, we
developed a system that combines YOLO, for vehicle detection,
with Visual Rhythm, a way to create time-spatial images that
allows us to focus on frames that contain useful information.
Additionally, this method can be used for counting in any
application involving unidirectional moving targets to be detected
and identified.Experimental analysis using real videos shows that
the proposed method achieves mean counting accuracy around
99.15% over a set of videos, with a processing speed three times
faster than tracking based approaches.

I. INTRODUCTION

Due to continuous urban growth and population increase,
there has been a significant rise in the number of vehicles
circulating worldwide. This, in turn, has led to the expansion of
roads and highways to accommodate this growing traffic flow.
However, the increase in the vehicle fleet makes it essential to
implement an efficient and well-planned traffic control system
to ensure the proper maintenance of an effective transportation
infrastructure [1].

Systems based on computer vision and deep learning have
become increasingly popular in the management of transporta-
tion infrastructure. This growing interest can be attributed to
various factors, with emphasis on the wide availability of
low-cost surveillance cameras, the ease of access to portable
cameras and big data processing technologies [2]. Characteris-
tics such as high precision and reduced costs make computer
vision and deep learning an attractive and effective solution
for addressing the challenges of traffic management in cities
[3]. In recent years, numerous studies have been conducted
regarding efficient and accurate vehicle detection and counting.

In this paper, we present a more efficient approach for ve-
hicle detection and counting in video captures. To accomplish
this, we combine YOLO, a well known model for object
detection, with Visual Rhythm, a technique that generates
time-spatial images from videos. Unlike conventional method-
ologies that require vehicle detection and processing on a

frame-by-frame approach, this integration enables us to selec-
tively process frames containing relevant information, thereby
enhancing both its efficiency and computational complexity at
the cost of sacrificing real-time processing.

II. BACKGROUND

In this section, we provide essential background information
for our proposed vehicle counting approach in video captures.
We also contextualize our work within the relevant research
landscape by reviewing prior studies in vehicle counting and
Visual Rhythm.

A. YOLO

YOLO (You Only Look Once) is a real-time object detection
deep learning model that has gained significant attention in
computer vision. Starting with its 2015 release, YOLO has
evolved to improve accuracy and performance, resulting in
YOLOv8, launched in early 2023 [4], [5]. Regarded as the
current state-of-the-art for object detection, YOLO can be used
to predict bounding boxes and class probabilities for multiple
objects in an image. It also supports other tasks like object
segmentation, pose estimation, tracking, and classification [6].

This latest version has improved upon its predecessors by
incorporating better feature extraction capabilities, allowing
more accurate object detection in different environments [7].
Additionally, it is an anchor-free model, so it can better predict
bounding boxes for various object sizes and shapes, and also
has a decoupled head to independently process classification
and regression tasks.

B. Visual Rhythm

Let’s consider a scenario where a static camera captures a
video from a top-view perspective of vehicles. In this context,
we can define the vehicle counting problem as the task of
quantifying the number of vehicles that traverse a designated
line (counting line) in the camera’s field of view within
a specific time interval. However, employing a frame-by-
frame approach to solve this problem is not computationally
efficient. In this approach, each frame in a video is processed
independently, which leads to redundant computations and
high memory usage.

Visual Rhythm (VR) generates time-spatial images from
videos, a visual representation that merge spatial and temporal



information from a video [8]. Designed for visual analysis, it
can efficiently capture temporal information and summarize
the video contents in a single image [9]. This method enables
to select frames featuring crucial visual content for counting
and detection, thereby reducing the computational complexity
tied to frame-by-frame processing of videos [10].

Consider a video denoted as f with T frames of size M×N .
The VR method is applied to each frame f1, . . . , fT , capturing
exclusively the pixels along a predefined counting line. The
collection of pixels from frame t, t = 1, . . . , T , along this line
is represented as vrt. The VR image is formed by stacking all
of them along the time axis to form an image of size T ×N ,
a time-spatial representation of the video, as show in Figure
1. The top part shows five frames of a video sequence, where
the ”counting line” is superimposed in green (best viewed in
electronic format), and the bottom part shows the time-spatial
VR image (time dimension in the vertical axis) of the whole
video sequence. Whenever a vehicle crosses the counting line,
a mark is observed in the VR image, at the row corresponding
to the frame index.

Fig. 1. Visual Rhythm Generation.

Applications using VR assume unidirectionally moving ob-
jects that cross the counting line in a top-view video and at a
velocity within the camera’s frame rate [11].

C. Related Works

Currently, the majority of proposed methods for vehicle
detection and counting using videos captured by static cameras
are based on two steps: frame-by-frame detection and tracking.
After detecting an object, tracking is initiated until it crosses
the counting line, and then the count is updated in real-time.
However, this algorithm incurs high computational costs as it
detects and tracks each object individually within the frame.

The work of Asha et al. [2] proposes a method for vehicle
counting in a traffic video captured using portable cameras.
YOLO is utilized for detection, while tracking employs a
correlation filter with scale estimation. However, their method
is restricted to counting vehicles within a single lane. Results
indicate counting accuracy ranging from 92% to 100% across
various videos.

In the work of Muhammad Azhad bin Zuraimi et al. [12],
the proposed system utilizes YOLO for vehicle detection and

DeepSORT for vehicle tracking. The main difference of this
work compared to the previously mentioned one is that it
doesn’t use a counting line, instead, vehicle counting occurs
as they exit the frame or become no longer visible. The frame-
by-frame approach leads this system to achieve more than 40
FPS when utilizing tiny versions of YOLO.

Researchers have used VR’s capabilities to enhance visual
analysis tasks by capturing temporal and spatial patterns in
a single image. For instance, Matuszewski [11] utilized the
VR approach for continuous plankton monitoring, showcasing
its effectiveness in efficiently summarizing dynamic aquatic
environments. Allan da Silva Pinto et al. [9] applied the
method for video-based face spoofing detection. Torres et al.
[13] describe detectors derived from VR across three distinct
computer vision tasks: abnormal event detection, human action
classification, and gesture recognition.

III. PROPOSED METHOD

The proposed method combines YOLO and Visual Rhythm,
allowing us to intelligently choose video frames with vital
information for vehicle counting. Figure 2 illustrates the main
steps of the proposed method.

First, in step (a), we create a Visual Rhythm image for seg-
ments of T consecutive frames. Assuming a vehicle i intersects
the counting line in Ti frames when crossing the counting line,
the resultant VR image will contain a mark corresponding
to vehicle i with height equal to Ti and width equal to the
width of the vehicle. It is important to note, however, that
certain marks in the VR image may not correspond to vehicles;
for instance, any object crossing the counting line would also
produce a corresponding mark.

In the second step, we employ YOLO to detect each of the
marks within the VR image (step (b)). Detecting these marks
could be also achieved through background subtraction tech-
niques. However, these methods could fail in handling varying
weather conditions, sunlight intensity, and other sources of
noise.

Next, for each mark in the VR image, we extract the
corresponding frame from the video segment (step (c)). To
that end, we know that the y coordinate of the mark’s center
correspond to the temporal index of the frame when the
vehicle’s center crossed the counting line. In the diagram
of Figure 2 the extracted frame corresponds to the vehicle
highlighted in yellow in the VR image.

After the relevant frame is obtained, we must certify that
the mark in question indeed corresponds to a vehicle. Thus, in
step (d) we use YOLO to detect all vehicles in the extracted
frame and then, for each detected vehicle, we compute the
distance between the x coordinates of the vehicle’s bounding
box and the x coordinates of the mark in the VR image. The
vehicle that best matches the size and position of the mark
is selected as the one corresponding to the mark. If there are
more than one, the one with closest y coordinate is selected
as the vehicle corresponding to the mark, and the counting of
the vehicle class is updated (step (e)).



Fig. 2. Data flow in the VR–based video counting vehicles.

It is important to note that the above method is applied
on sequences of length T in order to keep the VR image size
manageable by YOLO. Thus, to process long video sequences,
they are partitioned into contiguous and non-overlapping seg-
ments of length T . This approach can sometimes lead to
situations where the same vehicle appears in the VR images
of two consecutive segments. To avoid double counting, we
implement a verification process. Specifically, we check if the
coordinates of a mark fall along the lower edge of a VR
image; if they do, we store these coordinates. As we proceed
to create and analyze the subsequent VR, we examine whether
any mark appear along the upper edge of the image. If so, and
if its x coordinate match the ones stored previously, then we
disregard this mark, as it corresponds to the same vehicle in
the preceding VR image. This verification process is carried
out for each generated VR image. Figure 3 shows a visual
representation of this situation, where we see that the center
coordinates of an mark is within the other mark coordinates.

Fig. 3. Vehicle represented by distinct marks in two consecutive VR images.

IV. RESULTS AND DISCUSSION

To implement the proposed vehicle detection and count-
ing method, we used a computer equipped with a GeForce
GTX 1080 Ti running on an Ubuntu operating system. The
implementation was carried out using Python, utilizing the
Ultralytics and OpenCV libraries.

In this study, we ultilized YOLOv8-small. To enhance its
vehicle detection performance, we employed transfer learning
by fine-tuning its pre-trained model in a task-specific dataset.
This technique was applied to detecting marks and vehicles.

A. Datasets and training

We use 4 publicly available videos captured from a top-
view perspective by a static camera, in diverse locations and
scenarios. This highlights the variation in camera angles, the
number of lanes for vehicles, and their directions. To fine-tune
YOLO for vehicle detection, we built a dataset consisting of
960 frames randomly selected from these videos, as outlined

in Table I. We defined 6 vehicle classes: Bus, Car, Motorbike,
Pickup, Truck, and Van, and annotated all occurrences of
instances of these classes in these selected frames using the
Roboflow’s framework [14].

TABLE I
DESCRIPTION OF THE DATASET’S IMAGE DISTRIBUTION

Video Video Length (frames) # of Selected Frames

1 720 60

2 9180 300

3 20340 300

4 62880 300

All frame images were resized to a uniform 1280×720 res-
olution, without any additional preprocessing or augmentation.
Refer to Figure 4 for frame samples of the dataset.

Fig. 4. Images samples from the dataset

The dataset was partitioned into training, validation, and
testing subsets. To that end, from each video, the first 70%
of the selected frames were included in the training set, the
next 20% in the validation set, and the last 10% to the testing
set. We also took care to ensure that a same vehicle is not
included in more than one of the sets.

To train the model for mark detection, we generated 33 VR
images corresponding to segments of T = 900 frames (30
seconds) around the frames in the training and validation sets
for vehicle detection described above. The marks have been
manually annotated in these VR images. We further augmented
our dataset by applying horizontal and vertical flips, along with
cropping, resulting in a total of 79 images.

For training, we set up 60 epochs with a batch size of 8 for
mark detection, and 100 epochs with a batch size of 64 for
vehicle detection, using YOLOv8’s standard configuration for
other hyperparameters. The mark detection model achieved a
final Mean Average Precision (mAP) of 0.99136 at IoU 0.5



and 0.60865 at IoU 0.5:0.95 on the validation set. For vehicle
detection, the results were mAP of 0.84274 at IoU 0.5 and
0.69166 at IoU 0.5:0.95, also on the validation set.

B. Results

In our experiments, we used segments with length T = 900
frames (30 seconds) to build the VR images, an optimal
size for YOLO processing. The counting line was positioned
at a height of 120 pixels on the original videos, ensuring
coverage of the entire vehicle path. We compare our approach
efficiency to Roboflow’s frame-by-frame vehicle counting and
detection system [14]. This system employs ByteTrack for
tracking and supervision for real-time object counting. For
both systems, identical environments and model weights were
utilized. Table II shows a comparison of the two methods on
the test segment across various videos, with counting accuracy
computed regardless of vehicle class. We did not include the
first video due to its short duration.

TABLE II
COUNTING ACCURACY IN EACH VIDEO

System Frame rate Video 2 Video 3 Video 4

Visual Rhythm 186 FPS 100% 98.90% 98.56%

ByteTrack 56 FPS 100% 99.04% 98.48%

The results demonstrate that our Visual Rhythm-based
method presented an efficiency improvement of approximately
three times when compared to the traditional detection and
tracking method. This efficiency gain is largely attributed to
the elimination of the need for frame-by-frame processing,
which significantly contributes to enhancing overall system
performance. Moreover, it’s worth noting that the generation
of VR images, a crucial aspect of our approach, is not overly
computationally demanding. More importantly, the gain in
efficiency did not impact counting accuracy. We also analyze
the results of these approaches when determining the vehicle
classes while performing counting. Table III shows our ap-
proach’s classification accuracy over the test set (four videos).

TABLE III
CLASSIFICATION ACCURACY IN EACH VIDEO ON VR APPROACH

Car Bus Motorbike Pickup Truck Van

99.1% 86.0% 81.6% 77.0% 96.2% 92.9%

Remarkably, the ”Car” category exhibits the highest ac-
curacy, with an impressive 99.1% accuracy rate. However,
classifying ”Pickup” and ”Motorbike” proves comparatively
more challenging, with accuracies of 77.0% and 81.6%, re-
spectively, which are low. We note that the accuracies were
computed taking into consideration only the detected and
counted vehicles. Classes that exhibit lower accuracies are
those less frequent in the dataset.

V. CONCLUSION

The initial hypothesis pointing that the fusion of YOLO
with Visual Rhythm for vehicle counting and detection would

enhance system performance has been confirmed. Our ap-
proach outperforms traditional methods, with a speed-up of
approximately 3 times. This show the efficacy of discarding the
frame-by-frame processing. Moreover, our approach maintains
approximately the same accuracy levels as tracking methods,
effectively capturing vehicles through Visual Rhythm but has
the disadvantage of not being a real-time application.

Applying transfer learning to fine-tune YOLO’s pre-trained
model for task of vehicle detection show satisfactory results
in terms of mAP . However, as this metric is calculated across
all possible classes, the model’s limitations become apparent
when analyzing the details presented in Table III. Therefore,
there is room for further improvement in the model’s perfor-
mance, particularly by including more examples from classes
with low classification accuracy.

ACKNOWLEDGMENT

The authors thank support from MCTI (Ministério da
Ciência, Tecnologia e Inovações, Brazil), law 8.248, PPI-
Softex - TIC 13 - 01245.010222/2022-44, Fundação de Apoio
à Universidade de São Paulo (FUSP), and FAPESP (grant
2015/22308-2).

REFERENCES

[1] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,”
Economics of Transportation, vol. 4, no. 3, pp. 135–146, 2015.

[2] C. S. Asha and A. V. Narasimhadhan, “Vehicle counting for traffic
management system using yolo and correlation filter,” in IEEE Inter-
national Conference on Electronics, Computing and Communication
Technologies (CONECCT), 2018, pp. 1–6.

[3] P. Patil, “Applications of deep learning in traffic management: A review,”
International Journal of Business Intelligence and Big Data Analytics,
vol. 5, no. 1, p. 16–23, Jan. 2022.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016.

[5] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm
developments,” Procedia Computer Science, vol. 199, pp. 1066–1073,
2022, the 8th International Conference on Information Technology and
Quantitative Management (ITQM 2020 and 2021): Developing Global
Digital Economy after COVID-19.

[6] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,” Jan. 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[7] J. Terven and D. Cordova-Esparza, “A comprehensive review of yolo:
From yolov1 and beyond,” 2023.

[8] S. Guimar, M. Couprie, N. Leite, and D. A. Araujo, “A method for
cut detection based on visual rhythm,” in Proceedings XIV Brazilian
Symposium on Computer Graphics and Image Processing, 2001, pp.
297–304.

[9] A. d. S. Pinto, H. Pedrini, W. Schwartz, and A. Rocha, “Video-based face
spoofing detection through visual rhythm analysis,” in 25th SIBGRAPI
Conference on Graphics, Patterns and Images, 2012, pp. 221–228.

[10] K.-d. Seo, S. J. Park, and S.-h. Jung, “Wipe scene-change detector
based on visual rhythm spectrum,” IEEE Transactions on Consumer
Electronics, vol. 55, no. 2, pp. 831–838, 2009.

[11] D. J. Matuszewski, “Computer vision for continuous plankton monitor-
ing,” Master’s thesis, Instituto de Matemática e Estatı́stica, University
of São Paulo, São Paulo, 2014, retrieved 2023-08-06.

[12] M. A. Bin Zuraimi and F. H. Kamaru Zaman, “Vehicle detection and
tracking using yolo and deepsort,” in IEEE 11th IEEE Symposium on
Computer Applications and Industrial Electronics (ISCAIE), 2021, pp.
23–29.

[13] B. S. Torres and H. Pedrini, “Detection of complex video events through
visual rhythm,” The Visual Computer, vol. 34, no. 2, pp. 145–165, 02
2018. [Online]. Available: https://doi.org/10.1007/s00371-016-1321-1

[14] B. Dwyer, J. Nelson, J. Solawetz et al., “Roboflow (version 1.0)
[software],” https://roboflow.com, 2022, computer vision.


