
Sorting of Smartphone Components for Recycling
Through Convolutional Neural Networks
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Abstract—The recycling of waste electrical and electronic
equipment is an essential tool in allowing for a circular economy,
presenting the potential for significant environmental and eco-
nomic gain. However, traditional material separation techniques,
based on physical and chemical processes, require substantial
investment and do not apply to all cases. In this work, we
investigate using an image classification neural network as a
potential means to control an automated material separation
process in treating smartphone waste, acting as a more efficient,
less costly, and more widely applicable alternative to existing
tools. We produced a dataset with 1,127 images of pyrolyzed
smartphone components, which was then used to train and
assess a VGG-16 image classification model. The model achieved
83.33% accuracy, lending credence to the viability of using such
a neural network in material separation.

I. INTRODUCTION

In a report released by the United Nations University (UNU)
in 2020, the global generation of waste electrical and electronic
equipment (WEEE) was estimated at 53.6 million tons annu-
ally, or 7.3 kg per capita, with WEEE being the fastest-growing
solid waste stream in recent years (from 9.2 million tons in
2014 to a projected 74.7 million tons annually by 2030) [1].
The context of WEEE generation also includes a high degree
of informality in end-of-life management, with only 17.4%
being properly documented and disposed of through formal
means, primarily due to technological challenges in collection
and recycling faced by the actors involved in this process [1].
From this scenario, the report emphasizes that recycling is a
fundamental strategy for minimizing the environmental and
societal impacts of the WEEE generation, as it is an essential
component of the 2030 Agenda for Sustainable Development
under the following United Nations Sustainable Development
Goals: Goal 3 (Good Health and Well-being), Goal 6 (Clean
Water and Sanitation), Goal 8 (Decent Work and Economic
Growth), Goal 11 (Sustainable Cities and Communities), Goal
12 (Responsible Consumption and Production), and Goal 14
(Life Below Water).

Over the past decade, there has been a concentration of
scientific efforts to find recycling solutions for WEEE. Typ-
ically, methods established in the metallurgical industry are
adapted for WEEE processing. It is the case of the company
Umicore, considered a global benchmark in the field, which
has its processes based on copper and lead metallurgy, adding
only 15% of WEEE to the primary ores and recovering only
the most precious metals, such as gold and silver [2], [3]. At

Fig. 1. Pyrolyzed smartphones for battery separation.

the base of the recycling chain, the collection and handling
of WEEE are still carried out using inefficient methods, with
a predominance of manual labor and massive wastage of
valuable components [4], [5].

The ongoing work presented here stems from research
efforts to increase the efficiency of processes and valorization
of WEEE (in this case, applied to smartphones) in the early
stages of recycling, where waste is managed by small and
medium-sized recyclers lacking appropriate technology for
these tasks. One of the main objectives is to minimize the
need for manual handling of WEEE by automating the pro-
cesses. By improving the efficiency of the early beneficiation
stages (collection, sorting, and pretreatments), the downstream
metallurgy processes are expected to be positively impacted in
terms of material recovery.

The project begins with processing whole smartphones in
pyrolysis furnaces (degradation of polymers in the absence
of oxygen, generating byproducts with high energy value)
to open the devices and release the components that will
be subsequently separated. This approach considers all the
components in the recycling chain, and no material is wasted.
In Fig. 1, degraded smartphones resulting from pyrolysis are
shown. Following the pyrolysis process, a critical step is
separating batteries from other electronic components (screens,
printed circuit boards (PCBs), and metal parts) because the



methods for recovering materials from batteries differ from
those used for other components. Batteries of smartphones
contain high concentrations of lithium, which is considered a
critical and strategic material for many nations and companies
due to the limited availability of primary ores and limited
international supply [6]. The recycling of batteries emerged
as a strategy to mitigate this problem, but specific methods of
recycling are needed. If the batteries are not separated from
the other WEEE, the lithium is lost in the slag of the typical
pyrometallurgical processes, or diluted among other elements,
hindering hydrometallurgical approaches [7] [8].

At this point, the challenge of separating batteries was
addressed through a machine learning strategy for image-based
component separation, which has the potential to achieve
efficient separation without hindering the subsequent recy-
cling processes through metallurgical separation processes.
The general idea is to allow the industry to perform these
activities automatically, in which a detector and a mechanical
sorting device could be coupled to a conveyor belt to separate
components.

The rest of this paper is organized as follows. Section II
reviews the few related works that aim to sort waste using
automated learning-based solutions. The proposed methodol-
ogy is described in Section III. The results are presented and
discussed in Section IV. Section V concludes this paper and
indicates future works.

II. RELATED WORKS

Image-based waste separation has gained traction re-
cently [9]–[13], with predominant applications in separating
urban waste such as paper, plastic, glass, and metals.

Lu and Chen [9], in a literature review from 2022, found
eight studies applying artificial neural networks for waste
separation. Traditional backbones are trained and applied to
the waste separation task in most works found. Bobulski
and Kubanek [10] developed a convolutional neural network
(CNN) to segregate different types of plastics for recycling,
achieving an accuracy of over 99%. Zhang et al. [11] used
a DenseNet169 [14] to segregate different kinds of household
waste (glass, paper, textiles, metals, and plastics) and achieved
82% accuracy in their tests.

For WEEE applications, some studies specific to the field
were published between 2022 and 2023. Yang et al. [12]
applied the YOLOv4 network [15] to classify WEEE that
potentially have internal batteries from those that do not, such
as laptops and printers, achieving an accuracy of 90.1%. Lu et
al. [13] used the YOLOv3 network [16] to detect and separate
previously disconnected electronic components from PCBs,
such as capacitors and transistors, with accuracies exceeding
90%.

To the best of our knowledge, the present work is the first to
use CNNs to classify WEEE dismantled components focusing
on recycling. We note that sorting pyrolyzed components turns
out to be a challenging task since the individual components
lack characteristic texture and shape. Separating these compo-
nents (screens, PCBs, metals, and batteries) is a critical step

Fig. 2. Work steps. The pipeline includes material preparation, dataset
construction, and classification model training and evaluation.

in the recycling routes for most WEEE, and automating this
step, besides being an operational and academic innovation,
can generate significant increases in profitability and material
recovery efficiency.

Specifically, we aim to achieve high accuracy in battery
separation, creating a material stream concentrated in batteries.
In other words, to prevent other components from being
misclassified as batteries and to prevent batteries from being
misclassified as other components.

III. METHODOLOGY

To carry out the project associated with this paper, 123
smartphones were gathered through collecting campaigns and
the support of partner companies and research projects. In
addition, 27 detached smartphone batteries were also gathered
with support of partners. No restrictions were imposed on any
characteristics of the devices, except for the requirement that
they adhere to the smartphone-style. The following sections
provide a detailed overview of the methodological steps ap-
plied here, which can be observed in Fig. 2.

A. Smartphone pyrolysis

The smartphones were processed in a batch electric re-
sistance furnace. The process conditions were as follows:
nitrogen atmosphere, temperature of 600°C, ambient pressure,
heating rate of 300°C/h, and residence time of 1 hour. Fig. 1
provides examples of the materials that result from the process.
The material was also submitted to a screening with a 2cm
opening to remove small particles. These small particles, after
the battery separation, can be sent back to the flow of other
components (PCBs, glass, and screens).



The technique of pyrolysis, applied to WEEE, generates
various benefits to the downstream recycling chain. By the
degradation of polymers, encapsulated metals are liberated,
and the mass concentration of valuable materials increases,
facilitating the posterior chemical attacks. In addition, magnets
are demagnetized, the total mass to be processed decreases,
metals are kept in their reduced form (preventing oxidation),
and energy valuable liquids and gases are generated. The
technique of pyrolysis is a hotspot in recent research, being
applied to many WEEE as the first step of recycling routes.
Pyrolysis furnaces are commonly used in the treatment of
wastes, especially for organic wastes, and are expected to
conquer more space in the WEEE recycling industry in the
middle term.

B. Image capture

The image capture took place with the material randomly
selected. The decision was made to position various compo-
nents in a single image to facilitate future study of the image-
based detection task. The present article, however, tackles the
multiclass classification problem.

In total, 300 3072 × 3072 colored images were captured.
Each image contains at least one battery, one piece of metal
or PCB, and another random piece. The pieces were randomly
placed on a background prepared in gray, black, or white (in
equal proportions) under variable ambient lighting (no artificial
illumination is used). The images are captured perpendicularly,
roughly 50 cm from the background. Fig. 3 shows an example
image captured on a white background with one battery, one
PCB, a small piece of glass, and another small metal piece.

After capturing the images, the components were flipped
to display the reverse side, their positions were swapped, and
another shot was captured. Thus, for each component, two
images are captured, one for each face, without duplication.
After capturing both images, the components were stored
separately to prevent repetition.

C. Image annotation and pre-processing

The images were annotated using the Roboflow plat-
form [17]. All components in each image were manually
outlined with a polygonal drawing tool. The components
were then assigned one of four classes: Metal Piece, Battery,
Glass, or Printed Circuit Board (PCB). These four classes are
omnipresent in every smartphone. Indeed, after pyrolysis, they
are visually the only ones to remain in gross granulometry
along with the batteries.

Very small components in some pictures were not annotated,
as they were considered to have little or negative contribution
to learning. They were instead left as part of the background,
acting as visual noise elements that will also be present in
real-life applications.

The annotated images were exported in an oriented bound-
ing box (OBB) format [18]. Then, for each component, a
square, horizontal bounding box was circumscribed about the
component’s original OBB. The contents of these square BBs
were then exported and resized to 500 × 500 pixels, thus

Fig. 3. Sample image of components on a white background. The components
are samples of glass, PCB, battery, and metal piece, from the top right on,
clockwise.

TABLE I
DATASET IMAGE DISTRIBUTION

Set Metal Piece Battery PCB Glass Total

Training 154 210 174 256 794
Validation 42 60 48 72 222

Test 21 30 24 36 111

Total 217 300 246 364 1127

composing a dataset of individual component images. Fig. 4
illustrates this process for the components shown in Fig. 3.

In total, the dataset contained 1,127 images. The images
were split in a 70:20:10 ratio between training, validation,
and test sets, respectively, with the split happening after the
cropping process, given the uneven distribution of different
components within the original images. The distribution of
these images among the different classes and subsets is shown
in Table I. Note that, due to the small size of the dataset, we
avoided discarding any component images, despite the uneven
quantities of different materials present in the images. Because
of this, the entire dataset is slightly unbalanced, presenting
19.25%, 21.83%, 26.62%, and 32.30% of metal piece, PCB,
battery, and glass instances, respectively.

D. Neural network training

For the desired image classification model, the VGG-16 [19]
architecture was used as a backbone, being chosen due to
its shallow depth being appropriate for the small dataset
used [20]. We only adjust the last VGG-16 layer to the desired
number of classes.

The network we used was pre-trained on the ImageNet
dataset [21]. Our ablation study conducted the impact of pre-
training, which significantly improves results, as discussed
later. To account for the small dataset, data augmentation was



(a) Metal Piece (b) Battery (c) PCB (d) Glass

Fig. 4. Individual component images extracted from Fig. 3.

used. A random combination of transformations was applied
to each image for each training epoch. More precisely, we
considered:

(i) Rotation, within ±45◦;
(ii) Shear, within ±5◦;

(iii) Zoom, up to 20%;
(iv) Channel shifts, within ±10;
(v) Horizontal flips;

(vi) Vertical flips.
The shear, zoom, and channel shift transformations were

constrained within narrow value ranges so as to not deform
the images to the point of impairing learning.

The training was conducted on an NVIDIA 4070 Ti GPU.
The training was set to run for a maximum of 100 epochs, with
early stopping enabled with a patience value of 10 epochs. This
condition monitored the validation accuracy so as to export the
model from the epoch where it achieved its highest value in
that time frame. Batch size 32 was used, with categorical cross
entropy as the loss function and the Adam optimizer with a
learning rate 10−3.

IV. RESULTS AND DISSCUSSION

A. Training results

In this paper, we consider the overall accuracy, and per-class
precision and recall as figures of merit. The training accuracy
is calculated as

A =
NTrue

NTotal
, (1)

where NTrue is the number of correct predictions by the model
and NTotal is the total number of predictions made by the
model.

The precision of a given class is calculated as

P =
NTP

NTP +NFP
(2)

and recall as
R =

NTP

NTP +NFN
, (3)

where NTP is the number of true positives guessed by
the model (that is, elements of the class in question which
were correctly labeled as such), NFP is the number of false
positives (elements incorrectly labeled as belonging to that

class), and NFN is the number of false negatives (elements
belonging to that class which were labeled as something else).

The resulting model was trained for 20 epochs (due to the
early stopping), with epoch 10 yielding the best results. It
achieved a training accuracy of 82.49% and a loss of 1.3541.
Meanwhile, the validation accuracy reached 79.28%, with a
validation loss of 1.9309. Fig. 5 shows the graphs for Accuracy
and Loss over time for training and accuracy metrics.

Running an inference test with the model on the test dataset
resulted in a mean precision of 77.29% and a mean recall of
77.35%. The confusion matrix of this test is given in Table II,
while the precision and recall metrics for each class are shown
in Table III.

These results show that the network did gain the ability to
generalize what it learned, and show promise for even more
robust results from this classification network if trained on a
larger dataset, given the small size of the one used. It should
also be noted that the high contrast in precision and recall
values between classes is likely attributable to the unbalanced
nature of the dataset, seeing as the lowest values are associated
with the two least represented classes (Metal Piece and PCB).
Expanding the dataset in subsequent works would allow for
eventual discarding of images so as to test training the model
with a balanced dataset.

Regarding the materials flow for recycling, the model’s
performance was surprisingly successful, even more so consid-
ering that many opportunities for improvements and alternative
tests are still to be considered. It is essential to highlight that
the study’s primary goal is to separate batteries. Thus, the
results of precision (90.32%) and recall (93.33%) for the class
of batteries determine the study’s success.

Of the thirty tested batteries, twenty-eight were correctly
identified as batteries, and two were considered PCBs (93.33%
of recall). As stated, batteries must be separated to recover
lithium through specific metallurgical processes [8]. Batteries
falling into the flow of PCBs preclude the recovery of this
element. In the flow of the class of batteries, there were
28 batteries, two metal pieces, and one PCB (precision of
90.32%). The two metal pieces in the flow of batteries do not
hinder the recyclability of any of the two materials. Indeed,
batteries contain a metal casing [22], easily treated in the
typical recycling route of batteries. The one PCB in the flow



Fig. 5. Accuracy graphs (upper) and losses (bottom) of training and validation
along the training.

TABLE II
CONFUSION MATRIX OF THE MODEL’S TEST PREDICTIONS

Prediction
Metal Piece Battery PCB Glass

A
ct

ua
l Metal Piece 13 2 6 0

Battery 0 28 2 0
PCB 5 1 17 1
Glass 4 0 2 30

of batteries means that the valuables materials present at the
PCBs (gold, silver, and others) would not be recovered in their
typical recycling route. Finally, the model efficiently removed
the glass from other flows of materials (83.33% of recall).
This is an important outcome, considering that glass is not a
valuable material and only increases the mass of the materials
needing treatment [23].

B. Ablation studies

1) Pre-training: Because the background of the images in
our dataset is quite simple (nearly smooth white, gray, or
black surface) and the pyrolyzed materials do not present
color variation, we questioned the necessity of pre-training.
It is reasonably assumed that pre-training the model on large
datasets such as ImageNet [21] might be excessive for this
setup problem.

As such, to verify the validity of using a pre-trained
network, a version of the model was trained with randomly
initialized weights to compare its performance with the pre-
trained model. All the training conditions were identical be-
tween models other than the initial weights.

The randomly initialized model trained for 32 epochs,
achieving its best results at epoch 22, with a training accuracy
of 46.98% and loss of 1.2000, and a validation accuracy of
45.95% and loss of 1.2115. The training graphs are shown in
Fig. 6, with the accuracy graph showing its learning process
was inconsistent.

In the inference evaluation with the test dataset, the model
had a mean precision of 38.71% and recall of 40.49%. In fact,

TABLE III
PRECISION AND RECALL FOR INFERENCE IN EACH CLASS

Class Precision Recall

Metal Piece 59.09% 61.90%
Battery 90.32% 93.33%

PCB 62.96% 70.83%
Glass 96.77% 83.33%

Fig. 6. Accuracy graphs (upper) and losses (bottom) of training and validation
along the training.

it did not label a single metal piece component correctly, as
can be seen in Table IV. The precision and recall for each
class is shown in Table V.

Thus, the results with the randomly initialized network are
drastically worse than the pre-trained network, justifying the
choice to use a pre-trained model.

2) Binary classification: Because the work mainly em-
phasizes separating batteries from other materials, we also
questioned if we could not optimize learning for only detecting
what is and isn’t a battery, especially considering that the
battery class has the most visually consistent appearance. For
that reason, we trained a version of the model with only two
classes: Battery and Other (including PCBs, glasses, and metal
pieces). This model was also pre-trained on ImageNet, and all
training conditions except for the classes were equal to those
of the first model. The resulting model trained for a total 20
epochs, with the best one being epoch 10. It had a training
accuracy of 94.71% and loss of 0.2481, with a validation
accuracy of 91.89% and loss of 0.2816. The confusion matrix
is shown in Table VI, and the class-wise precision and recall
are shown in Table VII. The training graphs are shown in
Fig. 7.

The drawback of the binary approach is that it is not possible
to understand which component is contaminating the flow of
batteries and therefore improve the performance of the model
based on this information. As discussed in Section IV-A, if the
only class being incorrectly sorted alongside batteries is metal



TABLE IV
CONFUSION MATRIX OF THE RANDOMLY INITIALIZED MODEL’S TEST

PREDICTIONS

Prediction
Metal Piece Battery PCB Glass

A
ct

ua
l Metal Piece 0 7 3 11

Battery 1 14 6 9
PCB 3 3 7 11
Glass 1 1 3 31

TABLE V
PRECISION AND RECALL FOR INFERENCE IN EACH CLASS FOR THE

RANDOMLY INITIALIZED MODEL

Class Precision Recall

Metal Piece 0.00% 0.00%
Battery 56.00% 46.67%

PCB 36.84% 29.17%
Glass 50% 86.11%

Fig. 7. Accuracy graphs (upper) and losses (bottom) of training and validation
along the training.

pieces, then there is no impairment to the recycling process.
However, pieces of glass would have potential to hinder the
recyclability of the batteries, and PCBs would mean the loss
of valuable elements.

V. CONCLUSION

In this work, we present the possibility of using an image
classification neural network as a cheaper and more efficient
alternative in separating materials for recycling WEEE. We
created an image dataset with 300 pictures of assorted com-
ponents from pyrolyzed smartphones and an adapted version
of this dataset for image classification with 1,127 individ-
ual images of these components. We then trained an image
classification model on this dataset to differentiate between
metal pieces, battery, PCB, and glass components, achieving
an overall accuracy of 82.49%.

The experiment results show promise for using a neural
network to separate WEEEs, especially considering the small

TABLE VI
CONFUSION MATRIX OF THE BINARY MODEL’S TEST PREDICTIONS

Prediction
Battery Other

A
ct

ua
l Battery 26 4

Other 0 81

TABLE VII
PRECISION AND RECALL FOR INFERENCE IN EACH CLASS FOR THE

BINARY MODEL

Class Precision Recall

Battery 100.00% 86.67%
Other 95.29% 100.00%

dataset used. Future works could expand the goal of this
study to a detection problem, creating a model capable of
both classifying and locating multiple components at once
in real-time, which could even further allow for a compact
and efficient automated separation system. The relatively high
accuracies obtained with a lightweight network could also
feasibly allow for low-cost yet accurate embedded systems
to be developed for this purpose. Future works could look
into testing other models—both alternative architectures and
possibly detection models—as well as investigating the impact
of the unbalanced dataset and ways to mitigate it, such as
with class-specific augmentations or by using weighted loss
functions.

Even considering the study’s limitations, the model used
achieved its purpose (separation of batteries) with high accura-
cies, with significant potential to be implemented on recycling
routes and increase their effectiveness in the valorization
of the residues. This approach can be implemented in a
recycling line coupled with a mechanical sorting system. A
camera pointing perpendicularly on a conveyor belt could feed
a detection system that informs the mechanical devices to
separate the target components. It is important to highlight
that most electronics usually contain the same components as
smartphones (metal pieces, glass, PCBs, and batteries). Thus,
this approach has the potential to be applied to other types
of devices, such as laptops and tablets. In addition to the
simple separation of batteries, more studies can be carried out
to refine the separation of the other classes of materials with
high accuracy.

Finally, the study created a dataset that could serve as
a basis for the future development of models for similar
cases. The fact that the dataset was annotated with polygonal
masks also allows the annotations to be exported in different
formats for different purposes, such as fine-grained semantic
segmentation. We also intend to add more images to the dataset
and, ultimately, make it public.
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