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Abstract—This work introduces a novel video object segmen-
tation (VOS) method, called SHLS, which combines superpixels
and deep learning features to construct image representations
in a highly compressed latent space. The proposed approach is
entirely self-supervised and is trained solely on a small dataset
of unlabeled still images. The result of embedding convolutional
features into the corresponding superpixel areas is ultra-compact
vectors named superfeatures. The superfeatures form the basis
of a memory mechanism to support the video segmentation.
Through it we are able to efficiently store and retrieve past
information, enhancing the segmentation of current frames. We
evaluated SHLS on the DAVIS dataset, the primary benchmark
for VOS, and achieved superior performance in single-object seg-
mentation as well as competitive results in multi-object segmenta-
tion, outperforming state-of-the-art self-supervised methods that
require much larger video-based datasets. Our code and trained
model are publicly available at: github.com/IvisionLab/SHLS.

I. INTRODUCTION

VOS aims to classify pixels along a frame sequence into
foreground and background regions. The simplest case is
single-object segmentation, where no differentiation among
distinct foreground objects is required. The task becomes
tougher in the multi-object scenario, where each foreground
object must be assigned a different label. The common ap-
proach to solving this problem relies on supervision. However,
providing pixel-wise annotations for thousands of frames
is complex, time-consuming, and costly. Alternatively, self-
supervised methods can learn inter-frame correspondences
from supervisory signals extracted directly from raw videos,
eliminating the need for human annotations. However, most
self-supervised methods trades off the benefit of avoiding man-
ual labeling by requiring unprecedented volumes of training
data. In extreme cases [1]–[6], the training demands hundreds
of hours of videos from enormous datasets, including Kinetics
[7], VLOG [8], and TrackingNet [9], or millions of images
from ImageNet [10], as in [11].

We introduce here a different approach by pursuing to learn
VOS not only from unlabeled images but using as little training
data as possible, as highlighted in the comparison in Fig.
1, top part. The proposed method, called superfeatures in a
highly compressed latent space (SHLS), combines superpixels
and deep convolutional features to produce ultra-compact
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Fig. 1. The high-compressed latent space (bottom plot) generated from the
superfeatures and a dataset containing at least 102 orders of magnitude less
training images than other approaches evaluated over DAVIS-2017 (top plot).

representations in the superpixel domain. These representa-
tions, referred to here as superfeatures, are generated via a
metric learning approach, in which our model learns to join
superfeatures that come from parts of the same object (Fig.
1, bottom part). This process gives rise to a feature (latent)
space where correlated superfeatures compound clusters. At
the inference, such clusters are properly retrieved, identified,
and used to classify the superpixels in order to reassemble
the objects in the image domain. Relying on superpixels for
self-supervised VOS benefits from three main aspects: (i) the
lack of annotations to guide self-supervised methods makes
these methods more error-prone regarding the object contours,
which can be solved by relying on the superpixels contours;
(ii) the high data compression provided by the superfeatures
enables a memory mechanism that can efficiently retrieve
information from virtually all past frames in a video sequence;
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Fig. 2. Top-down view of ISEC. Gradient extraction: An input image (a) is used to compute gradient magnitudes (b) and orientations (c) in the x and y axes.
Cumulative contour extraction: For each iteration, an edge set (d) is selected from the gradient; the edges are stretched (e) by edge density filtering, being
binarized to form clusters (f); a thinning operation is performed on the clusters to readjust their shapes (g); the borders of the clusters are extracted (h) and
stored. Superpixel refinement: The accumulated segments (i) are refined to produce the final result (j). The generated superpixels are showed over the input
image (k); some parts are zoomed to highlight segmentation details.

and (iii) objects from either foreground or background can be
assigned to specific superfeature clusters, ultimately resulting
in more robust representations able to encompass the dynamics
of both image regions.

The proposed model is trained using only the RGB images
(not the annotated masks) of MSRA10K [12], a relatively
small dataset comprised of 10k still images. From these
images, we generate synthetic videos, pseudo-masks and
superpixels to drive our embedding model toward learning
the superfeatures. The result are ultra-compact vectors with
dimension 1 × S (in practice, we use S = 32), each repre-
senting the whole set of pixels contained in the corresponding
superpixel area. Since a typical 480p resolution frame can be
segmented with less than a thousand superpixels, we end up
with ∼ 1k × 32 vectors to represent each frame’s content – a
very manageable volume that permits our memory mechanism
to maintain information from every frame in a sequence.
This approach makes SHLS able to learn the VOS task from
a bunch of static images, showing competitive performance
compared to state-of-the-art self-supervised methods trained
with much larger video datasets.

A. Contributions

The main contributions of this work are twofold. First, a
superpixel method called Iterative Over-segmentation via Edge
Clustering (ISEC) [13], which is especially useful for video

segmentation. ISEC has the convenient ability to adapt the
number of generated superpixels in response to changes in the
frame content along the video sequence.

Based on ISEC, we developed SHLS [14]. This one is a new
VOS method that comprises several innovative characteristics,
including a model based on compressed features using super-
pixels and metric learning, a memory mechanism based on
clustering, and synthetic videos and pseudo-labels generation
based on still images.

II. ISEC SUPERPIXELS

ISEC superpixels are obtained from image edges, which are
iteratively selected and grouped to form clusters. Clustered
pixels represent image locations where the spatial neighbor-
hood is densely filled by edges. Since the edges are strongly
related to the objects contours and texture, the clusters re-
semble the object shapes. Superpixels are ultimately obtained
by extracting the borders that separate these clusters from
image regions where there are no edges. By adjusting the edge
selection procedure so that a group of edges are selected at the
beginning of the process, and edges are progressively removed
at each new iteration, the input image is over-segmented from
the outer contours of the objects to their small internal parts.
Figure 2 depicts the top-down view of ISEC.

Given an input image (Fig. 2.a), the first step is to compute
the gradient magnitude (Fig. 2.b) and orientation along the



Fig. 3. Overview of SHLS at the training stage. Offline phase: Given some input still images, the pseudo-sequence generation module yields a sequence of
frames and masks; following, a superpixel method extracts superpixels from the frames. Online phase: Feature maps in different scales are extracted by a
CNN backbone and shared into two main branches. The uppermost branch encompasses the superpixel embedding module, which generates the superfeatures
based on a contrastive NT-Xent loss. The lowermost branch accomplishes the segmentation refinement, in which the pixel-wise multi-object prediction is
learned through a cross-entropy loss. This prediction is supported by the memory clustering module, which transfers information between branches by means
of attention maps. At each iteration, both losses are summed and back-propagated in an end-to-end training process.

x and y axes (Fig. 2.c). Next, a set of edges (Fig. 2.d) is
initially selected from the gradient map. We fix discontinuities
in the edges by applying a spatial linear filtering to blur the
edges over the filtered area (Fig. 2.e). Image areas massively
occupied by edges form clusters that contrast with the empty
surroundings after binarization (Fig. 2.f). We apply a mor-
phological thinning operation to recover the contour’s original
position (Fig. 2.g). The superpixels are compound by the outer
boundaries of the edge clusters (Fig. 2.h). The accumulated
segments (Fig. 2.i) are then refined (Fig. 2.j), yielding the
final result showed in Fig. 2.k.

ISEC stands out from most counterparts in that it generates
superpixels in an adaptive fashion. While for modern methods
the number of generated superpixels usually consists in a fixed
hyper-parameter, our formulation leads ISEC to concentrate
the superpixels in the image regions containing objects, while
avoiding to over-segment empty areas unnecessarily. Such
characteristic allows for a proper trade-off between the number
of generated segments and the segmentation accuracy, espe-
cially in the context of video segmentation, as demonstrated
in [13].

III. SHLS VIDEO OBJECT SEGMENTATION

Our SHLS framework is turned to the one-shot VOS modal-
ity. During inference, it receives the ground truth mask of
the first frame and propagates it to the subsequent frames. To
emulate this scenario in the training, an initial offline stage

is firstly accomplished, where the necessary training inputs
are generated based on a bunch of still images randomly
selected from the dataset [12]. Fig. 3 shows an overview of
our framework. Offline-generated training inputs consist of
a pseudo-sequence containing the frames and object masks
and each frame’s superpixel segmentation. Once generated,
these inputs are processed sequentially at the online stage.
The initial step is feature extraction, where convolutional
feature maps of different scales are produced and shared into
two main branches. The uppermost branch is dedicated to
the superfeature generation. In this branch, the superpixel
embedding network receives the features and superpixels of
the current frame and generates the superfeatures according to
a contrastive NT-Xent objective [15].

Along the frames, the generated superfeatures are stored by
memory clustering. This module provides short- and long-term
memory mechanisms that retrieve past frame’s information to
support the current frame segmentation. The memory cluster-
ing yields a set of object-focused attention maps, which are
passed to the segmentation refinement branch (lowermost, in
Fig. 3). Segmentation refinement is run at the pixel-level, for
each foreground object individually. For this, the object region
of interest (ROI) is selected from the attention maps and passed
to the feature modulator and feature decoder modules. Both
are network-based modules, where the former modulates the
features of the current frame. This is accomplished according
to the object ROI selected in the attention maps and the



features, attention maps and mask prediction of the previous
frames. The modulated features and the ROI-selected attention
maps are then passed to the feature decoder module. There,
they are fed into the decoder network along with previous
information from the first and the last iterations. The feature
decoder predicts individual masks for each object in the frame.
Ultimately, these masks are joined via soft-aggregation [16]
to generate the final multi-object prediction. A cross-entropy
function computes the error between this prediction and the
corresponding pseudo-mask. At each iteration, the NT-Xent
and cross-entropy losses are summed and back-propagated in
an end-to-end training process.

A. Synthetic videos and masks for training

We combine saliency detection and data augmentation to
create synthetic videos with object masks for self-supervised
training. This strategy is completely free of manual annotations
and involves three steps: (i) a random image from the dataset is
selected as a template; (ii) the selected image and its estimated
mask (saliency map) are replicated N times, where N is the
sequence length, and each replica is an augmented version
of the template; (iii) a random number of other images and
corresponding saliency maps are obtained from the dataset,
their foreground pixels are extracted based on the saliency,
augmented, and randomly pasted into each template instance.

With these augmentation techniques, we can create an un-
limited number of pseudo-sequences to train our VOS method
in a self-supervised fashion.

B. Convolutional Features

We extract convolutional features by using a ResNet-18
[17] modified to enlarge the spatial size of the output feature
map. The first layer of the backbone is just a convolution; the
remaining are residual blocks, each one comprised of convo-
lution, batch normalization, ReLU non-linearity, convolution,
and batch normalization again. To form the superfeatures, we
upsample the output of the layer with 1/2 of the original spatial
dimensions to match the input size, and pass these maps (L1)
to the superfeature model along with the (L4) feature maps
with 1/4 of the input size.

C. Superfeature Model

The superfeature embedding process (Fig. 4) starts by
averaging the convolutional features that overlap with each
superpixel area. This produces feature vectors that are no
longer related to the spatial dimensions of the input image but
rather to the number of superpixels in the image, i.e., N ×C,
where N is the number of superpixels and C is the number
of channels of the corresponding maps. Next, each row of
the generated vectors are passed through fully connected (FC)
layers. There are two FC heads, one for the N × C1 vector
and the other for the N × C4 vector. Each head outputs a
superfeature prototype of size 1× S, which are concatenated
and passed through a 1x1 convolution to generate the final
superfeature.

Fig. 4. To generate the superfeature, the features inside a superpixel are
averaged, for each channel, yielding N ×CL1 and N ×CL4 vectors. These
vectors are fed into fully connected layers, resulting in a 2×S vector, which
is passed through a 1× 1 convolution.

D. Metric Learning

The superfeature model is trained via Metric Learning by
using the NT-Xent loss [15], a contrastive and multi-class
objective. Once generated a synthetic sequence of frames and
masks, as well as the superpixels provided by ISEC, they are
passed to the model, which outputs the superfeatures. Mean-
while, the superpixels are combined with the corresponding
masks to form the ground-truth labels. Each superfeature-
label pair is then confronted by the NT-Xent function, and
the resulting loss is summed throughout the sequence.

E. Memory Clustering

Most state-of-the-art VOS methods rely on memory mech-
anisms to improve segmentation stability [20], [22], [27]–
[29]. Usually, this solution implies a trade-off between com-
putational cost and segmentation performance. We overcome
such dilemma with a new mechanism that treats memory
management as a clustering problem. The idea combines
two approaches to provide short- and long-term information
through similarity measures among the superfeatures.

a) Short-term memory: it aims to provide a quick-
response memory by incorporating information from more
immediate changes in objects during short time intervals. This
mechanism is based on k-nearest neighbor (k-NN) searches
performed on the superfeature latent space. We compute the k-
NN distances between each query superfeature and its nearest
labeled superfeatures. This mechanism is recurrently updated
by incorporating into the search pool those samples for which
the class is assigned with high confidence.

b) Long-term memory: it is designed to capture the
general tendency that each object presents throughout the
entire video sequence. Instead of measuring the similarity
between the query and the neighbors, the long-term mech-
anism performs per-class clustering of the superfeatures. We
measure query similarity with respect to the centroids of the
clusters at the prediction. Unlike it occurs with the short-term



Method Year Training datasets DAVIS-2016 DAVIS-2017
Images Videos (hrs) J F J&F J F J&F

VidColor [1] 2018 - K (833) 38.9 30.8 34.9 34.6 32.7 33.7
CorrFlow [18] 2019 - O (14.0) 48.9 39.1 44.0 47.7 51.3 49.5
CycleTime [2] 2019 - V (344) 55.8 51.1 53.5 41.9 39.4 40.7
UVC [5] 2019 - K (833) - - - 57.7 61.3 59.5
RPM-Net [19] 2020 - D17+Y (5.75) - - - 41.0 42.2 41.6
MAST [20] 2020 - Y (5.67) - - - 63.3 67.6 65.5
MUG [21] 2020 - O (14.0) 63.1 61.8 62.5 52.6 56.1 54.3
CRW [3] 2020 - K (833) - - - 64.8 70.2 67.6
DUL [4] 2021 - T (140) - - - 67.1 71.7 69.4
TWIAA [6] 2021 - V+K (1,177) - - - 58.2 56.7 57.5
STT [11] 2022 I Y (5.67) - - - 71.1 77.1 74.1
MAMP [22] 2022 - Y (5.67) - - - 68.3 71.2 69.7
SHLS (ours) 2023 M - 76.6 70.4 73.5 68.3 68.7 68.5

TABLE I
COMPARISON OF SHLS WITH OTHER SELF-SUPERVISED METHODS USING STANDARD VOS METRICS: REGION JACCARD SIMILARITY (J ), BOUNDARY

F-MEASURE (F ), AND THE MEAN OF BOTH (J&F ). “-” INDICATES NOT REPORTED RESULTS. THE TESTS WERE PERFORMED ON THE VALIDATION SETS
OF DAVIS-2016 [23] AND DAVIS-2017 [24] FOR SINGLE AND MULTI-OBJECT VOS TASKS, RESPECTIVELY. TRAINING DATASETS: I: IMAGENET [10];

M: MSRA10K [12]; D17: DAVIS-2017 [24]; Y: YOUTUBE-VOS [25]; K: KINETICS [7]; O: OXUVA [26]; V: VLOG [8]; T: TRACKINGNET [9].

mechanism, changes in the centroids are gradual as the clusters
incorporate new members when they are updated.

The similarity measures from the memory clustering are
used to create a set of attention maps (Fig. 5.b). We select
a region of interest (ROI) by propagating labels from the
attention maps to each pixel inside a superpixel. The label
of the ith pixel p belonging to the jth superpixel P , with
pi ⊂ Pj ∀ i ∈ 1..Ij and j ∈ 1..N , is estimated as

f(pi,k) = Skj + Lkj − (Slj + Llj) ∀ k, l ∈ 1..C and k ̸= l ,

pi = argmax
k

(f(pi,k)) ,

(1)
where N is the number of superpixels in the frame, C is
the number of classes present in the video, S and L are
the attention maps from the short- and long-term memories,
respectively.

F. Refinement Module

Fig. 5.c shows an example of segmentation produced in
the superpixel level (blue) and its refined version (green) in
the pixel level. The proposed refinement module is a CNN
architecture with two stages: feature modulator and feature
decoder.

a) Feature modulator: it receives the convolutional fea-
tures and attention maps regarding the current frame and the
last segmented frame in the sequence. The network learns to
segment the current frame as a smooth transformation of the
previous one.

b) Feature decoder: it is responsible for bringing the
features back to the spatial dimensions of the input frame
while reducing their channels towards the final prediction. This
module is composed by refinement blocks with the function
of merging features from branches at different scales.

a

b

c

Fig. 5. The effect of the attention maps and segmentation refinement. From
left to right: (a) the input frame and the ground-truth mask; (b) the attention
maps from the short-term and long-term memory mechanisms; and (c) the
superpixel-level segmentation and the pixel-wisely refined segmentation.

The final result is obtained by blending the refined seg-
mentations of each object into a unified multi-object mask
via soft-aggregation [16]. During the trainning, we compute
a pixel-wise cross-entropy loss to adjust the weights of the
refinement module.

IV. EXPERIMENTS AND ANALYSIS

Table I shows the results of the comparison between SHLS
and several state-of-the-art self-supervised methods. The com-
parison is based on the standard VOS metrics, region Jaccard
similarity (J ), boundary F-measure (F), as well as the mean
of both (J&F). The experiments were conducted on the
validation sets of the DAVIS-2016 [23] and DAVIS-2017 [24]
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Fig. 6. Examples of object segmentations generated by SHLS on videos of the DAVIS-2017 [24] validation set. From left to right: first frame annotation,
followed by generated segmentations at 33%, 66%, and 99% of the video progress time. Last column shows the J&F score achieved for each video.

datasets, regarding the single and multi-object VOS tasks,
respectively.

a) Single-object VOS: Among the self-supervised meth-
ods that have reported results on the DAVIS-2016, SHLS ranks
first in all metrics, outperforming the second-best method,
MUG [21], by a large margin.

b) Multi-object VOS: As for self-supervised methods,
STT [11] achieved an impressive 74.1% of J&F . Following,
there are a group of methods with J&F values greater
than 65%, which includes MAMP [22], DUL [4], CRW [3],
MAST [20], and the proposed SHLS, the only method in this
comparison trained exclusively with still images.

The contrast between SHLS and the other methods is further
highlighted in the graph presented at the beginning of this
paper (Fig. 1), where the overall performance on the DAVIS-
2017 was plotted in terms of the number of images and/or
frames used for training. The plot makes clear that our method
is competitive even being trained with at least 102 orders of
magnitude less data than top-performance competitors.

We show some qualitative results illustrating the perfor-
mance of our method in Fig. 6. The top rows bring examples
of single-object segmentation and the bottom rows include
frames with multiple objects from the DAVIS dataset. In both
scenarios SHLS is able to accomplish the segmentation with
reasonably correctness.

V. CONCLUSION

We presented SHLS, a self-supervised VOS method leverag-
ing highly compressed superpixel-based representations called

superfeatures. This novel approach organizes superfeatures
into per-object clusters using a memory clustering mecha-
nism to retrieve information from past frames. Our fully
self-supervised training methodology, utilizing only 10k still
images, demonstrates SHLS’s efficacy. Experiments on the
DAVIS dataset reveal that SHLS significantly outperforms
other self-supervised methods in the single-object test and re-
mains competitive in the multi-object test, despite the smaller
training data volume. Future work will focus on incorporating
automatic foreground detection during inference, extending
SHLS to the zero-shot VOS modality.

VI. ACHIEVEMENTS

The following achievements were obtained as a result of
our Ph.D. thesis:

• Registered Patent: Device and Method for Intelligent
Traffic Light Control [30]

• Articles:

– ISEC: Iterative over-Segmentation via Edge Cluster-
ing [13]

– SHLS: Superfeatures Learned from Still Images for
Self-Supervised VOS [14]

– Faster α-Expansion via Dynamic Programming and
Image Partitioning [31]

• Award: Best Ph.D. Thesis at the XVI Brazilian Congress
on Computational Intelligence (CBIC 2023) [32]
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