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Abstract—Sexual abuse affects many children globally, with
over 36 million reports in the past year. The vast amount of
multimedia content exceeds law enforcement’s analysis capac-
ity, necessitating reliable automated classification tools. While
effective, deep learning methods require extensive data and
costly annotations that are restricted to law enforcement. This
Master’s thesis addresses these challenges using Transformer-
based models for classifying indoor scenes, where such content
is often found. Utilizing few-shot learning, the study reduces
the need for extensive annotations, comparing classic few-shot
models with Transformer-based models and exploring different
methods for feature vector aggregation. The findings show that
aggregating vectors using the mean is most effective, achieving
73.50 ± 0.09% accuracy with just five annotated samples per
class. Evaluated with the Brazilian Federal Police, the model
achieved 63.38 ± 0.09% balanced accuracy on annotated child
sexual abuse indoor scenes, indicating the technique’s potential
to aid preliminary screening efforts.

I. INTRODUCTION

Child sexual abuse is a crime that affects about 9–19.7% of
girls and 3–7.9% of boys [1]–[3], including indecent exposure,
forced sex, and sex trafficking. According to the USA’s Na-
tional Center for Missing & Exploited Children (NCMEC)1,
in 2023, the number of reports of suspected child sexual
exploitation was more than 36 million, making it a record year.

Due to legal and ethical restrictions, access to sensitive
data related to child sexual abuse is limited to the police.
Consequently, most popular child sexual abuse detection tools
rely on hash comparison [4], [5]. Microsoft’s PhotoDNA [6]
is the most well-known tool used by major companies like
Meta, X (formerly Twitter), and Google. However, hash-based
methods struggle with minor alterations in the visual content,
such as scaling or color changes [7], making them ineffective
for new content. As a result, more robust methods, such as
Deep Neural Networks, have been adopted to classify Child
Sexual Abuse Imagery (CSAI) [8]–[10].

To deal with the inability to access the data, some methods
use related problem-solving, such as nudity detection and age
estimation, to help classify CSAI [9]. Scene classification,
mainly indoor scenes where most abuse occurs [11]–[13], is
another promising yet underexplored approach.

*M.Sc. Dissertation
1https://www.missingkids.org/cybertiplinedata

Deep Learning methods are state-of-the-art to solve many
problems, particularly image and video classification prob-
lems [14]–[18]. However, the best methods demand mas-
sive amounts of annotated data for good results. Even if
the methods to classify such sensitive data run inside the
police-restricted environments, annotating this kind of data is
challenging, and being exposed to it for an extended period
can compromise mental well-being [19].

In this work, we use few-shot learning (FSL) for indoor
scene classification since most visual material for child sexual
abuse is recorded in those environments. Although there are
several datasets for scene recognition, and this kind of data is
easy to annotate, as far as we know, no FSL work is proposed
for this task. In this scenario, only a few samples are annotated,
especially using scene labels. This way, police agents will
rapidly adjust the model using only a few annotated samples,
considering their data.

In most works, classifications of outdoor and indoor scenes
are considered together, despite their significantly different
characteristics. Indoor scenes are more complex, as the type of
room is usually determined by the objects present, such as a
bed and desk indicating a bedroom, while the absence of a bed
might suggest an office [20]. Conversely, global information
is more crucial in outdoor scenes, while local and global
information matters indoors. These substantial differences can
cause models with good performance on outdoor scenes to
perform poorly on indoor scenes [21].

With that in mind, the models must focus on the objects
in the scene to classify them correctly. Transformers-based
models [22] can give attention to the most essential parts of
the data to solve some tasks. Fig. 1 shows some examples of
attention maps focusing on objects or people in an image.

Fig. 1: Attention maps from our final model. The patches of
the image with higher attention are represented in red, while
the lower attention is represented in blue.

Contributions. This work is the first to use FSL methods to



classify indoor scenes. We compared few-shot Transformer-
based and purely convolutional approaches and showed that
Transformers-based approaches lead to better results for the
target task. We also compared different aggregation methods
to understand the best way to aggregate feature vectors of
samples from the same class. The average — the most used
method in FSL — is the best way to aggregate features for
our target task. As far as we know, this is the first work to
compare aggregation methods in FSL. Furthermore, we present
the results of our final model on a CSAI dataset. For the
classification of indoor scenes on the CSAI task, the model
achieved a balanced accuracy of 63.38 ± 0.09% for the few-
shot evaluation pipeline, using only five samples per class
to classify the samples. Our results show that indoor scene
features are relevant in the CSAI classification.

II. FEW-SHOT LEARNING CLASSIFICATION

Few-shot learning (FSL) aims to solve a task using a
minimal number of labeled examples by leveraging prior
knowledge. FSL typically involves three sets [23], [24]. The
first set is called base set, a large dataset containing multiple
classes to pre-train the model. The second set is the support
set (or novel set), which contains samples from the FSL task;
the classes in this set and the base set are disjointed. The
last set is the query set, which contains the samples to be
predicted. The support set comprises K samples per class and
N different classes. Based on that, an FSL task can also be
called N -way K-shot learning.

Most FSL methods follow the meta-learning paradigm,
where the model learns to learn. The model gradually learns
generic information from the base set during training. Then,
at test time, the meta-learner for the FSL task is generalized
using the support set. To learn gradually, the training process
is made by episodes. Each episode is similar to the few-shot
task, which contains K samples of N classes randomly chosen
from the base set and the same number of the query set in the
validation set [25], [26].

General machine learning methods in the testing stage
classify unseen samples from the same classes seen during
training based on what was learned from the training set. In
contrast, in meta-testing, the objective is to classify classes
never seen during meta-training. So, during meta-training, the
model is trained using the base set, and then, on meta-testing,
it uses the support set to classify the samples in the query set.

Besides the training approaches, FSL can be classified
into three categories [27]: optimization-based, data-based, or
metric-based. Metric-based represents data using a lower
dimension (embedding), then uses simple models or distance
functions to compare and classify the samples using their em-
bedding [28]. In this work, we developed a metric-based few-
shot learning method trained inductively using Transformers
techniques, such as self-attention.

III. RELATED WORK

A. Scene Classification

Scene classification, particularly for indoor environments,
remains a challenge [29]. For Places365 dataset [30], In-
ternImage [31] model reached 61.2% top-1 accuracy results
(state-of-the-art). Seong et al. [32] reached 90.3% accuracy
on MIT Indoor [33] and 77.3% on SUN-397 dataset, while
Lopez et al. [34] achieved 74.0% on SUN-397 [35], all
using supervised methods. Valois et al. [12] proposed a self-
supervised approach, attaining 71.6% balanced accuracy on a
derived dataset of indoor scenes from Places [30].

In this work, we evaluate our method in the same dataset
proposed by Valois et al. [12]. This study is the closest we
have from the perspective of the final task.

B. CSAI Classification

Vitorino et al. [8] proposed the first deep neural network,
where they used a pre-trained network and performed a
two-tiered transfer learning: initially for detecting pornogra-
phy, then fine-tuning for CSAI detection.

Other works proposed combining adult detection with age
estimation. Macedo et al. [9] combined Yahoo’s open source
pornography detector [36] with a network trained for age
group and gender identification. Similar works also used neural
networks to estimate age with adult content detection [37]–
[40]. Dalins et al. [41] implemented an additional method
to determine CSAI levels into ten categories, from no sexual
activity to different levels of child abuse.

To bring insights on what could be done to help CSAI
detection, Laranjeira et al. [13] proposed an analysis tem-
plate to understand CSAI images without seeing them, us-
ing the Region-based annotated Child Pornography Dataset
(RCPD) [9], highlighting the correlation between context
information from objects and scenes and CSAI.

Unlike most of those works, we do not aim to classify CSAI
directly in this work. We aim to help the CSAI investigation
triage possible material candidates to be analyzed.

C. Embedding Learning

Embedding learning approaches aim to learn an embedding
function so that the embedding for each sample is closer if
the samples are similar. In Table I, we summarize the most
popular embedding learning methods, highlighting with (*) the
methods reproduced in this work.

All the metric-based works are relevant for indoor classifi-
cation, but we select only a few to reproduce. One of our ob-
jectives is to compare purely convolutional with Transformers-
based networks; for that reason, graph neural networks [43]
are not the focus of this work. Finally, we reproduce Pro-
toNet [26], Relation Network [25], and Baseline++ [23] as
CNNs-based few-shot learning. Those works are important
for understanding how purely CNNs perform for indoor scene
tasks. Even though optimization-based are parametric, which
is not desirable for CSAI, we also reproduce them for indoor
scene classification, as they are relevant to the FSL literature.



TABLE I: Embedding learning methods. Methods with (*) are the ones we could reproduce.
Method Dataset Network Type Backbone Similarity Measure

C
N

N
s-

ba
se

d ProtoNet [26]* Omniglot, miniImageNet, CUB CNN Conv-4 Euclidean distance
Relation Network [25]* Omniglot, miniImageNet, CUB, AWA CNN Conv-4 Learned distance
TADAM [42] miniImageNet, FC100 Adaptative CNN ResNet-12 Euclidean distance
GNN [43] Omniglot, miniImageNet CNN, GNN Conv-4 Learned distance
SNAIL [44] Omniglot, miniImageNet CNN with Attention – Learned distance
Baseline++ [23]* miniImageNet, CUB CNN ResNet18 Cosine similarity

Tr
an

sf
or

m
er

s-
ba

se
d

FEAT [45]* miniImageNet, tieredImageNet, OfficeHome CNN and Self-Attention ResNet-18 Cosine similarity
CrossTransformers [46]* Meta-Dataset CNN and Self-Attention ResNet-34 Euclidean distance
SSFormers [47]* miniImageNet, tieredImageNet, CIFAR-FS, FC100 CNN and Self-Attention ResNet-12 Custom
P>M>F (ProtoNet) [48]* miniImageNet, CIFAR-FS, Meta-Dataset Transformers ViT small Cosine similarity
FewTURE [49] miniImageNet, tieredImageNet, CIFAR-FS, FC100 Transformers ViT small Cosine similarity
HCTransformers [50] miniImageNet, tieredImageNet, CIFAR-FS, FC100 Transformers ViT small Linear classifier
SUN [24] miniImageNet, tieredImageNet, CIFAR-FS Transformers Visformer Cosine similarity
SP [51] miniImageNet, tieredImageNet, CIFAR-FS, FC100 Transformers Visformer Cosine similarity
SMKD [52] miniImageNet, tieredImageNet, CIFAR-FS, FC100 Transformers ViT small Linear classifier

Transformers in Few-Shot Learning

Transformers [22], [53] in FSL started being used to adapt
the features that were extracted using a CNN [45]–[47], [54].
More recently, Transformers started being explored as a feature
extractor [24], [48]–[52], a challenge since Transformers tend
to overfit when trained on a small dataset. The former approach
relies on CNNs for the inductive bias and on self-attention
to improve feature extraction; the latter makes use of only
Transformers to extract features, and as these lack inductive
bias, the training process needs to be adapted, or the pre-
training stage needs to be done using a large dataset.

Except for SSFormers [47], which calculates similarity from
all sparse attention patches, the other works [24], [48]–[52]
generate a prototype to perform classification. That makes
the model less computationally costly, allowing it to run in
constrained environments like the ones available for CSAI.
However, resource-intensive networks such as FewTURE [49],
HCTransformers [50], SUN [25], and SMDK [52] remain
impractical for such environments.

IV. METHODOLOGY

To solve indoor scene classification with FSL, we first
compared existing embedding-learning few-shot methods ap-
plied to our task. Then, with the best model in hands, we
thoroughly studied the method’s hyperparameters and tested
different backbone options aligned with our research questions
and final indoor scene classification task.

A. Experimental Design

Fig. 2 illustrates the pipeline followed in our experiments.
One of our objectives is to compare two FSL approaches
for indoor scene classification; these approaches are purely
convolutional networks and models based on Transformers.
Our selection of methods to reproduce all follow the proposed
pipeline with differences in specific training protocol, network
backbone, and the chosen definition for vector similarity. For
each method, we followed the original proposed parametriza-
tion and training protocols.

The studies reproduced also have a pre-training stage in
common (referred to as episodic meta-learning on a base
set). Most were pre-trained on miniImageNet except for

Fig. 2: Experimental pipeline followed in this work. The dotted
line arrows represent the possibilities for the experiments, and
the solid line arrows represent fixed steps in the experiments.

P>M>F [48], where the authors’ goal was to present a simple
pre-training > meta-training > fine-tuning pipeline that could
reap the benefits of episodic meta-training using a large-scale
dataset. Then, they used ImageNet-1K [55] for this stage. For
each method, we also consider an extra meta-training stage
where training is resumed with the Places600 dataset, yielding
models fine-tuned for scenes.

This first experiment across the methods gave us answers
for research question Q1 (Do Transformers-based methods
outperform convolutional neural network methods for in-
door classification?), comparing convolutional methods with
Transformer-based ones. Then, within the Transformer-based
models, we observe that the new architecture is used in two
ways: as the backbone of the model to extract the features [48],
or to adapt feature extracted from a purely convolutional net-
work to a new task [45]–[47]. So, comparing those methods,
we can answer the research question Q2 (What is the more
accurate way to use Transformers for indoor classification?
As a feature adapter or a feature extractor?).

With the answers to these questions and a selected model
at hand, we consider one specific aspect of designing with
Transformers; these models output a multi-vector representa-
tion that needs to be aggregated to be used for classification.
This procedure raises the specific question Q3 (What are the
impacts of feature vector aggregators on few-shot models
for indoor classification?).

Finally, given a selected model for the indoor scene classifi-
cation method and an aggregation approach attached, our next



step is to evaluate our model in a real CSAI dataset. This is
done through our partnership with law-enforcement agents and
yields an answer to our final question Q4 (How to develop an
indoor classification model that generalizes for the CSAI
environment?).

B. Evaluation

We defined two pipelines for evaluation. In both, we evalu-
ate the methods through episodes composed of a support and
a query set. For the Few-Shot Evaluation, as the name implies,
we consider the pipeline used in the FSL literature. Episodes
are randomly sampled from the test split of a dataset. This
is adequate for comparing FSL methods as it considers the
test set a collection of small tasks, each with a small (K-
shots) “training set” (the support). However, it is easy to see
that this approach is inadequate compared to the traditional
classification literature, as using test set samples for training
would be considered a leak in that setup.

To allow for such comparisons, we then consider the Gen-
eral Evaluation pipeline; each episode’s support set is sampled
from the validation set, which shares classes but not samples
with the test set. Queries are then composed of the entire test
set, making for metrics comparable to a general classification
task. This pipeline remains true to the FSL protocol, as few
samples are used for the support set.

V. IMPLEMENTATION DETAILS

The target task is classifying indoor scene images from the
classes in Places8 [12]. To cover all classes in each episode, we
considered an 8-way 5-shot protocol. Nine FSL methods were
compared, and the original hyperparameters were employed
for each. Most studies use miniImageNet for pre-training
except for P>M>F [48], pre-trained on ImageNet-1K [55].
For fine-tuning, Places600 was used, a dataset sampled from
Places395 that excludes classes considered in Places8, and
randomly sampled 600 samples per class; the procedure for
fine-tuning followed the original study protocol for 100 epochs
with 2000 episodes for each epoch.

Each model was evaluated following the Few-Shot Evalu-
ation pipeline; 10,000 8-way 5-shot episodes were randomly
sampled for testing, with 15 queries per class per episode. The
mean of top-1 accuracy is reported.

VI. RESULTS AND DISCUSSION

We conducted a series of experiments using pre-trained
backbones to extract feature vectors, and we also fine-tuned
those networks on the Places600 dataset. We compared those
models and chose the best one for the research testing aggrega-
tor methods. After that, we tested the model on the evaluation
datasets. First, we evaluate the model on the Places8 test
set. Then, to understand the model’s generalization ability,
we evaluate it on the OOD Scenes dataset. Lastly, through
agents from the Federal Police, we evaluated our model on
CSAI datasets.

A. Comparison of Few-Shot Methods

First, we apply existing models to our dataset, evaluating
the pre-trained model and fine-tuning the model for indoor
scenes using Places600. We classified the methods into purely
convolutional and Transformers-based. Table II reports the
results of FSL methods pre-trained and fine-tuned.

TABLE II: Results of few-shot methods on Places8 validation
set. We report the results of the model without fine-tuning and
fine-tuning. We report top-1 accuracy and a 95% confidence
interval.

Model Pre-training
Dataset

Pre-trained
Accuracy (%)

Fine-tuning
Accuracy (%)

Pu
re

C
N

N

Baseline++ [23] – – 38.36 ± 0.09

ProtoNet [26] miniImageNet 37.48 ± 0.09 43.13 ± 0.10

RelationNet [25] miniImageNet 30.49 ± 0.09 38.69 ± 0.09

MAML [56] miniImageNet 34.42 ± 0.09 36.42 ± 0.09

LEO [57] miniImageNet 31.09 ± 0.09 32.66 ± 0.91

Tr
an

sf
or

m
er

s FEAT [45] miniImageNet 45.43 ± 0.09 45.34 ± 0.10

SSFormers [47] miniImageNet 41.20 ± 0.11 46.27 ± 0.12

CrossTransformers [46] miniImageNet 46.67 ± 0.09 45.07 ± 0.22

ProtoNet (P>M) [48] ImageNet-1K 68.76 ± 0.09 71.86 ± 0.10
miniImageNet 45.49 ± 0.10 52.86 ± 0.09

Comparing convolutional methods with those based on
Transformers, the CNNs underperformed. The best CNN
model was ProtoNet, fine-tuned using ResNet as the backbone,
with an accuracy of 43.13 ± 0.10%, while the worst pre-
trained Transformers-based model showed an accuracy of
45.07 ± 0.22%. Comparing the best results, the CNN model
performed 9 percentage points worse than the Transformer-
based one. We believe this result is because of the self-
attention property that gives weights to the patches that are
more important to the classification. This experiment answers
our first research question Q1, showing that Transformer-based
methods outperform purely convolutional ones.

Now, comparing Transformer-based methods, we can an-
swer our Q2 by comparing Transformers as adapters or
full backbones. We consider only versions pre-trained on
miniImageNet for a fair comparison. We can see that P>M
— full backbone — reaches an accuracy of 52.86 ± 0.09%,
6 percentage points superior to second best CrossTransformers
— a feature adapter. Q2 is answered then: Transformers are
better employed as substitutes for CNNs instead of as adapters.

One extra exciting observation can be made: our comparison
between P>M pre-trained on ImageNet-1K and miniImageNet
corroborates the findings of Hu et al. that using large-scale
training data even from a distinct domain (objects vs. scenes) is
too advantageous to be ignored. We will consider this method
for our following experiments.

B. Comparison of Aggregation Methods

Most FSL works that follow the ProtoNet approach — that
is, generating a prototype for each class in the support set
— use the average to aggregate the feature vectors of the
classes’ samples. To our knowledge, this design choice is yet
unexplored in the literature.



To amend this gap, we investigated five aggregators com-
monly used in pooling operations: Average pooling, Max pool-
ing, LogSumExp, Lp pooling, and Self-attention. Experiments
are performed using a ProtoNet with ViT Small and ResNet-18
backbone, both pre-trained with ImageNet-1K. Results are in
Table III.

TABLE III: Results for the aggregation methods on Places8
validation set. We report top-1 accuracy and 95% confidence.

Backbone
Aggregation Method (%)

Average Max LogSumExp Lp Pooling Self Attn.

ViT Small 72.50 ± 0.09 65.80 ± 0.09 64.05 ± 0.10 55.21 ± 0.10 52.90 ± 0.13

ResNet-18 59.05 ± 0.10 52.61 ± 0.10 51.63 ± 0.10 50.50 ± 0.10 36.24 ± 0.12

Using average as the aggregator method led to our task’s
best result; it beat the second-best result by 6 percentage
points. We observed the same behavior for both backbones;
The best was average, followed by max, LogSumExp, Lp
pooling, and self-attention. This answers our Q3: using the
average is the best way to aggregate feature vectors for FSL.

With all the decisions made, we have the best model in our
hands. Our final model is a P>M, pre-trained in ImageNet-1K,
with average aggregation. Its final accuracy on the validation
set was 72.50 ± 0.09%.

C. Final Results on Places8

For the Places8 test set, the model was tested under both
protocols presented in Sec. IV-B: Few-shot Evaluation and
General Evaluation. Fig. 3 shows the confusion matrix for
the Few-shot Evaluation protocol. We observe that the con-
fusion matrix pattern matches the results on the validation
set, showing that the model is consistent in classifying indoor
scenes. It is possible to see the model presents uncertainty
when comparing bedroom, living room and child’s room; there
is also misclassification between child’s room, bedroom and
classroom. The average accuracy with 96% confidence was
73.50 ± 0.09%.
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Fig. 3: Confusion matrix with the results of the model on
the Places8 test set. The confusion matrix presents the ac-
curacy (%) of the predicted classes following the few-shot
evaluation protocol.

When following the General Evaluation protocol, the av-
erage balanced accuracy was 69.25 ± 0.05%. Because this
protocol is comparable with traditional classification methods,
we look at the work of Valois et al. [12] — that proposes
and evaluates on Places8. Their reported result is 71.6% of
balanced accuracy. This is promising for our model as we
achieved our result using only 5 samples per class.

D. OOD Scenes

Due to the small dataset size, we only followed the General
Evaluation pipeline, using the Places600 validation set to
sample the support set. Our model achieved 65.42 ± 0.09%
in accuracy. The work of Valois et al. reported 77.5% for this
dataset, likely showing that more than 5 samples per class are
necessary to achieve good out-of-distribution generalization.

Fig. 4 contains the predictions through all the episodes.
It shows the number of episodes in which each image was
correctly or incorrectly classified. We can observe that most
episodes result in 8/10 images in the child’s room subset being
misclassified. In the two images classified correctly, one has a
child in a bedroom, and the other has toys on the floor. This
is well aligned with the observable distribution of images in
the Places8 validation set, where images from this class often
have either or both elements.

Fig. 4: Prediction on OOD Scenes [12] dataset through 10,000
episodes. The frame color emphasizes whether most predic-
tions were correct (green) or wrong (red).

E. CSAI Final Tests

For the final tests on CSAI datasets, we collaborated with a
Brazilian Federal Police agent. We only performed evaluation
in this step, and the training stage was performed only with
non-CSAI-related datasets. Three datasets were considered:



CSAI, RCPD [9], and CSAI indoor. The first two are labeled
for CSAI classification, while CSAI indoor is a subset of the
CSAI dataset and is also labeled for indoor scene recognition.

CSAI Indoor: For the CSAI Indoor dataset, both protocols
presented in Sec. IV-B were considered. Fig. 5 shows the
confusion matrix for both experiments.
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(b) General protocol.

Fig. 5: Confusion matrix with the model’s accuracy (%) on
the CSAI indoor dataset.

For the Few-shot Evaluation, we have only six classes in
the confusion matrix (Fig. 5a) because only those classes were
found on the dataset. The average accuracy is 63.38 ± 0.09%.
We can observe that the confused predictions align with what
was observed on the public sets. While this is not a perfect
result, mistakes are aligned, and one can say in answer to Q4
that it is indeed possible to generalize this kind of classification
model to CSAI with only a few samples.

For the General Evaluation, we present the confusion matrix
in Fig. 5b. Here, similar behavior for bedroom and child’s
room can be observed, but more interestingly, this model
has mistaken more living room samples for bedroom and
child’s room. The study of Valois et al. reported similar
misclassifications from their model, leading us to hypothesize
that this is due to domain differences between CSAI and public
images when regarding these classes. Our model presents
better robustness to the domain shift in CSAI, achieving
43.43 ± 0.09% in balanced accuracy against their 36.7%.

CSAI: The CSAI dataset consists of six classes: CSAI,
Suspected CSAI, Porn, People, Drawing, and Other; none
of those classes are present in Places8. Therefore, we only
performed the Few-shot Evaluation protocol on CSAI dataset.
Fig. 6 shows the confusion matrix of the experiment.

From the confusion matrix, we can observe misclassification
between CSAI, Suspected CSAI, and Porn. This is expected,
given the visual similarities across these classes. The method
similarly wrongly classified samples from People into these
three categories; we hypothesize this is due to the People
class containing photographs of people not completely dressed
yet without sexual connotations. The average accuracy for the
CSAI dataset was 50.82 ± 0.11%.

RCPD: For RCPD, we also performed only the Few-
shot Evaluation protocol since the dataset only has a binary
annotation for CSAI. For this experiment, the model achieved
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Fig. 6: Confusion matrix with the model’s results on the CSAI
dataset. Values reported are the accuracy (%) for prediction
per class.

an average accuracy of 65.40 ± 0.16%. Individual precision
for each class was 91% for CSAI and 41% for not-CSAI;
We hypothesize the low rate for not-CSAI is due to the
set containing porn images and images containing nudity or
seminudity.

The results obtained from the experiments in CSAI and
RCPD datasets showed that even with little data in the support
set, the model could classify the samples quite well, given
that it was trained on samples of scenes. That indicates the
usefulness of indoor scene classification features for CSAI
investigation. Combined with other complementary features,
it could compose a robust CSAI classifier.
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• Human Rights Academic Recognition Award: “Prêmio
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