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Abstract—Our thesis addressed digital video stabilization, a
process that removes unwanted shakes from videos via software.
We performed a thorough review, which resulted in two survey
papers. We also studied and proposed a new stability measure
aligned with human perception and a novel method for evaluating
2D camera motion to assess video quality better. Next, we
introduced NAFT, a semi-online DWS with a new neighborhood-
aware mechanism. This method stabilizes videos without relying
on an explicit definition of stability. To train NAFT effectively,
we created SynthStab, a paired synthetic dataset. NAFT achieves
stabilization quality comparable to non-DWS methods, with a
significantly smaller model (a 14× reduction).

I. INTRODUCTION

Digital video stabilization is a cost-effective and convenient

software-based approach to deal with shaky footage, elimi-

nating the need for specialized hardware. It also allows the

enhance of existing videos, resulting in a smoother and more

enjoyable viewing experience.

There are three main categories of digital video stabilization

depending on how information is used: online, offline, and

semi-online. Online methods analyze only the current and

preceding frames for stabilization, making them ideal for

streaming. On the other hand, offline methods can access the

entire video beforehand, allowing for better stabilization by

considering future motion. Finally, semi-online methods lever-

age data from a frame’s neighborhood, achieving a balance

between used data and quality. It is important to note that real-

time stabilization can be implemented in an offline, online, and

semi-online manner.

Traditional video stabilization follows a three-step process:

camera motion estimation, unwanted motion determination,

and stabilized view rendering. The first step tracks the cam-

era path during recording. The second step identifies shaky

motions for removal. Finally, we generate new stabilized

frames according to the removed motion. Recently, researchers

introduced approaches based on deep learning, such as Di-

rect Warping Stabilization (DWS). DWS directly predicts

the transformation needed to warp an unstable frame into a

stable one. This approach is usually trained on datasets of

paired stable and unstable videos. Authors claim it delivers

superior results for low-quality videos while requiring less

computational power [1], [2].

∗ This work relates to a PhD thesis.

Our research focused on reducing key limitations in digital

video stabilization literature. We investigated traditional and

DWS methods. To improve understanding of non-DWS ap-

proaches, we proposed a new evaluation strategy specifically

for motion estimation. For DWS methods, we introduced a

novel video stabilization technique. We prioritized the three

following limitations: (i) the lack of a well-structured literature

review; (ii) insufficient evaluation methods leading to a limited

understanding of metric effectiveness, and (iii) our perceived

gap in stability achieved by DWS methods compared to

classical approaches. To address these limitations, our work

aimed to: (i) provide a comprehensive overview of video

stabilization research, (ii) expand knowledge on stabilization

assessment, and (iii) enhance the effectiveness and efficiency

of DWS approaches.

The thesis produced several key outcomes: (i) a critical and

comprehensive review of digital video stabilization methods

(first survey) [3]; (ii) a critical and detailed review of video

stabilization assessments and datasets (second survey) [4];

(iii) a metric for evaluating two-dimensional camera motion

estimation [5]; (iv) new evaluation measures for final stabi-

lization quality based on pixel profile kinematics (Section II);

(v) a new synthetic dataset containing paired stable and un-

stable videos [6]; and (vi) a novel direct warping stabilization

method [6]. Due to the textual nature and length of the first

two products, they are referenced within the thesis but not

included in this summary.

II. VIDEO STABILIZATION ASSESSMENT

Our research examines the evaluation process for classical

video stabilization methods, typically assessed only at the final

stage (Figure 1). We argue for evaluating each step (1-3)

independently using dedicated datasets with ground truth in-

formation. This would allow for more targeted improvements.

Ideally, assessments in steps 2 and 3 would leverage insights

from the final human-centric evaluation (step 4) to guide

the development of appropriate physical property measures

for automated evaluation. We proposed an evaluation metric

specifically for the motion estimation step (step 1).

A. Rethinking 2D Camera Motion Assessment

While advancements have been made in camera motion

estimation, the evaluation of 2D methods is often neglected.
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Fig. 1: Diagram of our ideal process proposed for the video

stabilization assessment. Source: Author’s Thesis.

We proposed a novel evaluation approach for 2D methods that

leverages camera motion fields for pixel-wise comparisons.

Our experiments validate the reliability of our metrics across

various scenarios, illustrating their advantage over conven-

tional image similarity metrics. As illustrated in Figure 2, our

evaluation process involves several key steps. First, we estab-

lish a ground-truth camera motion field using the relative 3D

camera motion, depth map, and camera intrinsics (Figure 2a).

This necessitates datasets containing this information. The

motion estimation method under evaluation only receives RGB

frames as input (Figure 2b). After running the method, we

derive the camera optical flow from its prediction. Finally, we

perform a pixel-wise comparison between both representations

using established metrics from the optical flow literature. We

specifically chose metrics with the finer granularity to facilitate

comparisons across different representations and degrees of

freedom.
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Fig. 2: Main steps of the two-dimensional motion estimation

assessment method. Source: Author’s Thesis.

1) Experimental Results: Our proposed evaluation strategy,

detailed in Chapters 2 and 5 of the thesis, is computed as

Average Error per Pixel (AEPE) and Flow Loss (Fl). Table I

explores the correlation between these metrics and traditional

image similarity metrics (PSNR and SSIM). Since we are

comparing similarity metrics with error losses, we expected

a correlation of -1 to indicate equivalence. This analysis is

motivated by the existing literature’s reliance on similarity

measures for 2D camera motion assessment.

TABLE I: Correlation between image similarity and EPE-

based metrics for test splits.

Dataset
Image

Similarity
AEPE Average Fl

PLCC SROCC PLCC SROCC

TartanAir
PSNR -0.278±0.29 -0.635±0.19 -0.553±0.16 -0.543±0.17
SSIM -0.291±0.29 -0.703±0.13 -0.699±0.18 -0.693±0.18
PSNR -0.239±0.01 -0.428±0.01 -0.352±0.01 -0.406±0.01

MVS-Synth SSIM -0.360±0.06 -0.588±0.03 -0.657±0.03 -0.631±0.02

KITTI
PSNR -0.259±0.19 -0.660±0.23 -0.574±0.26 -0.562±0.28
SSIM -0.284±0.19 -0.727±0.26 -0.623±0.28 -0.569±0.30

Our proposed metrics (AEPE and Fl) showed a low correla-

tion with traditional similarity metrics (PSNR and SSIM). To

understand this divergence, we analyzed specific cases where

the two approaches disagreed (detailed in Table II). In these

scenarios, our metrics consistently delivered accurate results,

whereas similarity metrics struggled. This is because similarity

metrics are susceptible to factors beyond motion, while our

approach isolates motion more effectively.

TABLE II: Description of main cases where similarity metrics

do not seem to be adequate to assess the quality of camera

motion estimation.

Case Description Expected Behavior

Low-textured

Frames

Frames where
neighboring pixels
are very similar.

Similarity metrics do not show
much difference when we change
the camera motion.

High-textured

Frames

Frames where
neighboring pixels
are very different.

Similarity metrics can be very dis-
tinct, even with low changes in the
camera motion.

Abrupt Camera

Motion

Relative camera
motion for two
frames is very
large.

Borders generated on warped im-
ages significantly reduce the simi-
larity value of images.

Large Moving

Objects

Many pixels are
covered by moving
objects.

Compensating for camera motion
results in low similarity in pixels
of moving objects.

Lighting Varia-

tion

Pixels are affected
by a change in light-
ing.

Low values in similarity metrics in
regions affected by lighting varia-
tion.

While our evaluation method performs very well in con-

trolled settings with high-quality, ground-truth data, its ap-

plicability is limited to such scenarios. Additionally, the

method struggles with reflective surfaces where camera motion

manifests differently compared to non-reflective areas. These

limitations are trade-offs for the method’s effectiveness in

rigorous quality assessments.

B. An Analysis on Final Stability Assessment

Inspired by the kinematic principles used by Grundmann

et al. [7], we investigated novel kinematic measures computed

from the first, second, and third derivatives of pixel profiles [8].

We observed that these measures seemed to better capture

video stability compared to methods focused on frequency

analysis [9]. We also leveraged these kinematic measures along

with other statistical metrics to create a feature vector. This

vector served as input to train a regressor to predict human-

perceived stability scores.

Our kinematic measures analyze the motion of camera

pixels: Velocity of Camera Pixel Profiles (VCP2), Acceleration



of Camera Pixel Profiles (ACP2), and Jerk of Camera Pixel

Profiles (JCP2). To isolate camera motion, we employ a

segmentation mask that excludes pixels belonging to moving

objects. We opted for pixel profiles over feature trajectories

for two reasons: first, profiles offer a dense representation,

capturing all pixels within a frame. Second, they are simpler

to implement as they avoid tracking features across the video,

which can introduce complexities like temporal discontinuity

or features leaving the frame entirely.

Our machine learning approach to video stability assessment

considers multiple aspects. Inspired by existing methods, we

categorized these aspects into four dimensions: (i) image

similarity, (ii) frequency analysis, (iii) geometry, and (iv) our

proposed kinematic measures. Each dimension is evaluated

using specific metrics, typically providing a value per pixel or

frame. To create a single representative score, we employed

six statistical measures: average, standard deviation, median,

interquartile range, kurtosis, and skewness.

1) Experimental Results: Our analysis (Table III) explores

correlations between human-rated stability scores (from LIVE-

Qualcomm and MIND-VQ datasets), existing video stabiliza-

tion metrics, our proposed kinematic measures, and various

regression models using different inputs. To account for un-

trainable measures, we averaged correlation values across 10

test sets. We evaluated five regression models, including a

simple linear fit, using a 3-fold cross-validation process with

hyperparameter tuning.

TABLE III: Correlation between human perception of stability

scores and different strategies for assessing stability.

Measure
LIVE-Qualcomm MIND-VQ

PLCC SROCC PLCC SROCC

LHR 0.388 0.404 0.538 0.489

ITF (PSNR) 0.015 0.024 0.317 0.308

ITF (SSIM) 0.081 0.072 0.200 0.196

IGC 0.626 0.614 - -

VCP2 0.204 0.405 0.546 0.555

ACP2 0.710 0.720 0.781 0.769

JCP2 0.636 0.755 0.753 0.747

Linear Fit 0.142 0.181 0.706 0.767

SVR - - 0.853 0.815

RF - - 0.880 0.839

GBM - - 0.884 0.843

XGBoost - - 0.884 0.842

Acceleration of Camera Pixel Profiles (ACP2) consistently

achieved the strongest correlations with human-rated stability

scores (except for SROCC in the LIVE-Qualcomm dataset),

while existing metrics, such as LHR and ITF, showed weak

correlations. This suggests that commonly reported quanti-

tative measures may not reflect the human perception of

stability. Additionally, we explored trained regression models

for predicting stability scores based on various features. It was

not trained on the LIVE-Qualcomm dataset due to its small

size, which leads to overfitting. In the MIND-VQ dataset, our

model achieved a 10.3% correlation improvement compared

to the best non-machine learning metric. Despite this success,

our model did not succeed in a cross-dataset scenario.

III. SYNTHSTAB

SynthStab, our novel synthetic dataset, offers a new ap-

proach to training video stabilization models. Unlike existing

methods that rely on pixel similarity, with SynthStab we can

use camera motion for supervision. SynthStab also ensures

that unstable motions realistically represent scene constraints,

including depth variations. We leveraged Unreal Engine and

AirSim environments (Figure 3) to generate diverse, realistic

videos with precisely controlled camera movements (Figure 4).

The dataset is divided into two parts: (i) SynthStab-SL, with

424 short videos (100 frames each) featuring low-intensity

instabilities; and (ii) SynthStab-LH, which comprises 60 long

videos (1000 frames each) with high-intensity instabilities.

Both subsets provide RGB frames at 512×256 resolution,

dense depth maps for stable and unstable versions, and motion

fields for each frame pair. SynthStab offers more than 100,000

frames for deep model training. We randomly partitioned each

part of the dataset into training and validation sets.

Fig. 3: Environments present in our dataset. We have simple,

complex, indoor and outdoor environments. Source: Author’s

Thesis.

SynthStab’s construction process involves four key steps

(Figure 4). First, we generate realistic camera motion paths.

We consider all six degrees of freedom (6-DoF) and inde-

pendently create stable trajectories for each using principles

from Grundmann et al. [7]. These trajectories consist of

three segment types: constant position, constant velocity, and

constant acceleration. Next, we define unstable trajectories. To

ensure consistency with the stable path, we randomly scatter

key points along the path and connect them with a random

path. We generate a set number of these unstable trajectories

and create a corresponding video pair for each trajectory

within each environment (using Unreal Engine and AirSim).

Finally, using the depth map, the relative 3D camera motion

between frames, and intrinsic camera parameters, we calculate

dense camera motion fields.
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Source: Author’s Source.

IV. NAFT

This section presents Neighborhood-Aware Recurrent All-

Pairs Field Transforms (NAFT), a novel semi-online DWS

method. NAFT is based on RAFT, an optical flow method, and

incorporates a new update mechanism called Iterative Update

aware of the Neighborhood Outputs (IUNO). This mechanism

allows NAFT to learn stability characteristics directly from

data patterns within the SynthStab dataset, without the need for

an explicit definition of stability in loss function. Additionally,

we demonstrate how to integrate an existing video inpainting

method to achieve full-frame stabilization. Our experiments

show that NAFT effectively stabilizes videos with intense cam-

era motion, surpassing other DWS methods and approaching

the performance of state-of-the-art techniques. Our smallest

network variant, NAFT-S, requires only around 7% of the

model size and trainable parameters compared to the most

lightweight existing methods.

A. Proposed Method

Figure 5 summarizes our training process. Let Vi =
{Fi−dΩ

,Fi−dΩ−1
, · · · ,Fi, · · · ,Fi+dΩ−1

,Fi+dΩ
} represent a

sequence of RGB unstable frames, where each frame Fω ∈
[0, 1]H×W×3. The set d = {d1, · · · , dΩ−1, dΩ}, with size

Ω, defines the displacements of the input sequences. Let

M
ngb
i

= {Mi−dΩ
,Mi−dΩ−1

, · · · ,Mi+dΩ−1
,Mi+dΩ

} denote a

sequence of motion fields for neighboring frames, where

each motion field Mω ∈ R
H

8
×

W

8
×2 warps its corresponding

unstable frame Fω into its stable version F̄ω . Our goal is to

predict the optical flow Bi, of size H×W×2, which warps Fi

into its stabilized version F̃i using the information from Vi

and M
ngb
i

.

We divide the training stage into four substeps (Figure 5):

(i) computation of feature maps for each frame in Vi and the

contextual feature for Fi; (ii) computation of the Fi-oriented

correlation maps; (ii) initial iterative decoding of Bi; and (4)
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Fig. 5: Training Stage. Our training input is a set of unstable

frames and a set of neighboring motion fields. The output is

the optical flow to stabilize the middle frame. Source: Author’s

Source.

final iterative decoding of Bi, which incorporates the neigh-

boring motion fields Mngb. Our model is supervised using two

terms: a pixel-wise loss between the predicted optical flows

and the motion field, and a smoothness loss. Interestingly, even

though the two decoders have slightly different tasks, they

are trained with the same loss function. This strategy allows

our network to learn how to stabilize videos from data. The

network is trained to predict an optical flow based on a pattern

composed of: (i) the frame that will be warped by the predicted

optical flow; (ii) the neighboring frames; (iii) an initial optical

flow; and (iv) the neighboring motion fields. Consequently, the

network learns to predict a video with stabilized 3D motion

from the 2D information of the frames, without relying on

explicit assumptions or simplifications.

Figure 6 summarizes our inference stage. Let V =
{F0,F1, · · · ,FN} be an input unstable video, where each

frame Fi ∈ [0, 1]H×W×3. Our goal is to compute a se-

quence of optical flows B = {B0,B1, · · · ,BN}, with each

Bi ∈ R
H×W×2. These optical flows are then applied to their

respective unstable frames in V to produce the initial stabilized

video Ṽ
0
= {F̃

0

0, F̃
0

1, · · · , F̃
0

N}. Optionally, we also compute

the frame boundaries masks M = {M0,M1, · · · ,MN}.

These masks, along with the warped frames, are input to the

video inpainting method, resulting in the final stabilized video

Ṽ = {F̃0, F̃1, · · · , F̃N}.

During inference, NAFT differs slightly from the training

process. We compute a contextual map and correlation maps

for each frame, rearranging them into sequential batches

for processing. In each iteration, the second decoder uses

the neighboring optical flows predicted in the previous step,

replacing the fixed motion fields used during training. NAFT is

a semi-online method: instead of handling the entire sequence

simultaneously or a frame at a time, we use a subset of frames
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Fig. 6: Inference Stage. The input to the inference is a subset

of unstable frames. The output is the optical flow (and the

stabilized frames) for the subset. Source: Author.

within a sliding window. This window includes a specified

number of anchor frames before the valid frames, the valid

frames, and lookahead frames. We deal with each type of

frame in a specific way, but we use only the optical flow of

the valid ones to stabilize the video.

B. Experimental Results

To evaluate NAFT, we compared it to five existing video

stabilization methods on the NUS Dataset [9]. This dataset

contains 144 natural, unstable videos categorized based on

camera motion and scene features. We classified the methods

into two groups: DWS and non-DWS methods. Table IV

summarizes the results in terms of frames per second (FPS),

model size (MB), and the number of learnable parameters (M).

The best overall results are highlighted in bold, while the best

results among DWS methods are underlined.

TABLE IV: Statistics of Computational Resources.

Methods FPS Size Params

Deep3D 0.8 36.0 37.2
DIFRINT 10.6 38.0 9.9

O
th

er
s

DUT 4.9 54.4 10.0
PWStab. 30.0 186.0 48.5
StabNet 13.0 116.0 32.4
NAFT 4.9 23.0 5.9D

W
S

NAFT-S 8.7 2.7 0.7

NAFT achieves an FPS comparable to the DUT method and

even surpasses it when using the smaller variant (NAFT-S).

NAFT excels in terms of model size and number of parame-

ters. It requires roughly 80% less model size and 82% fewer

parameters than the smallest existing DWS network, StabNet.

Compared to state-of-the-art methods, such as Deep3D and

DIFRINT, NAFT is about 37% smaller and requires 41% fewer

parameters. NAFT-S pushes these advantages even further,

demanding only around 2% of the model sizes and parameters

needed by StabNet, Deep3D, and DIFRINT. This demonstrates

that NAFT, a DWS method, achieves performance on par with

non-DWS approaches while significantly reducing computa-

tional requirements in terms of both model size and learnable

parameters.

We also evaluated NAFT by changing its neighborhood

sizes (Figure 7) and compared it to state-of-the-art methods.

This included StabNet (online, 30-frame past neighborhood),

PWStableNet (semi-online, 15-frame past, and future neigh-

borhood), and the offline methods DIFRINT, Deep3D, and

DUT. NAFT consistently outperformed StabNet and PW-

StableNet even at similar neighborhood ranges. While PW-

StableNet achieves plateaus after a 15-frame neighborhood (as

shown by Zhao et al. [1]), NAFT continues to improve stability

with a larger neighborhood. This allows NAFT to achieve

stability levels similar to those of the top offline methods,

Deep3D and DUT.

Online/15 26 45 96 Offline
Neighborhood Range

0.81

0.82

0.83

0.84

0.85

0.86

0.87

LH
R 
- H

StabNet
PWStableNet
Ours
DIFRINT
Deep3D
DUT

Fig. 7: Results with different neighborhood sizes. Markers

show the neighborhood used by each experiment. Source:

Author.

In more detailed experiments, shown in the thesis, NAFT

consistently outperformed other DWS methods in terms of

numerical video stability across various NUS Dataset cate-

gories. For non-DWS concurrents, the leading method varied

depending on the metric used. For instance, using the LHR-H

metric, NAFT achieved the best overall scores in the Quick-

Rotation and Regular categories. Similarly, with the LHR-OF

metric, NAFT showed the best results in the Regular and

Running categories. NAFT’s image distortion metrics were

highly competitive with DUT and Deep3D, even without video

inpainting. When inpainting was applied, NAFT achieved the



best results in most categories. Additionally, NAFT’s cropping

rate remained comparable to DUT and Deep3D. For a detailed

breakdown of results, please refer to the full thesis document.

A supplementary video illustrating our results is available at

github.com/marcoosrs/NAFT.

Figure 8 shows a comparison of NAFT, DIFRINT, and

FuSta. DIFRINT introduces noticeable artifacts throughout the

video sequence. While FuSta exhibits fewer artifacts, they

remain visible. In contrast, our method effectively minimizes

artifacts, resulting in a more realistic and visually appealing

output.

(a) DIFRINT

(b) FuSta

(c) Ours

Fig. 8: Subjective comparison of the sequence of frames filled

by FuSta, DIFRINT, and E2FGVI (with fine-tuning). Source:

Author.

NAFT exhibits three main quality limitations: (i) it may

introduce spatial distortions in some frames, particularly dur-

ing intense stabilization (Running category videos); (ii) in

certain cases, NAFT may not refine instabilities as effectively

as traditional methods; (iii) large holes or rapid motions

can hinder inpainting performance, a known issue shared

by E2FGVI and similar methods. Additionally, NAFT is not

the fastest DWS method and has relatively high memory

usage, potentially affecting high-resolution inference. These

limitations are likely tied to our correlation strategy. Exploring

alternative DWS correlation approaches could mitigate these

issues. Furthermore, our current implementation requires two

network passes, which is inefficient for the iterative refinement

process. Optimizing this process could significantly improve

runtime performance.

V. CONCLUSIONS

This study aimed to bridge key gaps in video stabilization

research. We established a structured framework and tax-

onomy, examining existing methods and evaluation metrics.

Then, we proposed a new framework for assessing stabilization

quality, featuring a novel method for motion estimation assess-

ment and kinematic-based stability measures. Furthermore, we

introduced NAFT, a stabilization network based on RAFT,

which surpasses existing DWS methods in performance, with

a significantly reduced model size requiring up to 93% fewer

parameters. NAFT was trained with SynthStab, our novel

synthetic dataset containing over 100,000 video frames.

VI. THESIS PRODUCTS

This doctoral research resulted in several scientific pub-

lications across computer science, computer vision, video

processing, machine learning, image processing, and image

analysis. These publications can be classified as core, related,

and non-related to the dissertation topic. Table V provides the

number of articles published in each category. We also present

some details for the core publications, such as impact factor,

CAPES Qualis ranking (based on the 2017-2020 Quadrennial

Evaluation), and the highest percentile (as of July 2023 accord-

ing to Scopus). A full list of publications from this doctoral

studies can be found in the following references.

TABLE V: Number of publications during the doctoral re-

search period by publication vehicle and level of proximity to

the thesis.

Core Related Non-Related Total

Journal 4 6 2 12
Conference 0 3 6 9
Book Chapter 0 0 2 2

Total 4 9 10 23

1) Survey on Digital Video Stabilization: Concepts, Meth-

ods, and Challenges [3]. This paper was published in

the peer-reviewed Journal called ACM Computing

Surveys, with an impact factor of 14.324 (2021),

Qualis A1 and highest percentile of 99%.

2) Survey on Digital Video Stabilization: Datasets and

Evaluation [4]. This paper is submitted and under

review in the peer-reviewed Journal called ACM Com-

puting Surveys, with an impact factor of 14.324

(2021), Qualis A1 and highest percentile of 99%.

3) Rethinking Two-Dimensional Camera Motion Estima-

tion Assessment for Digital Video Stabilization: A Cam-

era Motion Field-based Metric [5]. This article was

published in the peer-reviewed Journal called Neu-

rocomputing, with an impact factor of 5.779 (2022),

Qualis A1 and highest percentile of 93%.

4) NAFT and SynthStab: A RAFT-based Network and a

Synthetic Dataset for Digital Video Stabilization [6].

This paper is submitted and under review in the peer-

reviewed Journal called International Journal of

Computer Vision, with an impact factor of 19.500

(2022), Qualis A1 and highest percentile of 97%.

https://github.com/marcoosrs/NAFT
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