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Abstract—Machine learning (ML) works with data consisting
of tens up to tens of thousands of measurements (dimensions)
per sample. As the number of dimensions and/or samples grow,
so does the difficulty of understanding such data and its ML
pipelines. Visualization, and in particular Visual Analytics (VA)
has emerged as one of the key approaches that helps practitioners
with the understanding of high-dimensional data and with ML
engineering tasks. In this paper, we investigate several novel
approaches by which VA can help ML (and conversely). Our
work focuses on a visualization technique called dimensionality
reduction, or projection, and the task of training a classifier
when only a small amount of ground-truth labels is available.
As result, experiments show that projections can capture very
well the data structure present in high dimensions to support
the design of high-performance feature and classifier learning
models. Also, experiments relate projection quality to data
separation and classifier performance. Finally, we combine these
two observations to assist users in manual labeling samples to
show that both algorithms and humans can exploit projections
to build better classifiers. We argue that the ability of pseudo
labels in retain information from 2D projected spaces is the key
idea that links all these contributions.

I. INTRODUCTION

Machine learning (ML) works, in most cases, with high
dimensional data. By this, we mean datasets consisting of
samples (data points) which have, each, tens up to thousands
of different measurements (dimensions). As the size – either in
number of rows (samples) or columns (dimensions) – of these
data tables grows, so does the difficulty of understanding them
and, even more importantly, understanding how ML pipelines
process them.

For the last several decades, data visualization (VIS) has
grown aside and along machine learning (ML). In its early
phases, visualization has been introduced to science and
engineering fields by the need of understanding increasingly
large (and complex) datasets generated either by measurements
or by numerical simulations produced by scientific comput-
ing applications. However, even more importantly, all data
visualization applications share the same ultimate goal – to
enable their users to gain so-called actionable insights into the
phenomena which have generated the explored data, and, next,
to use such insights to improve other aspects of the processes
involved with the respective data [1], [2]. Recognizing this
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commonality between all visualization applications, a new
field called visual analytics (VA) has emerged.

As such, it is not surprising that visualization (VIS) and
visual analytics (VA), with their stated aims of helping users
extract actionable insights from large and complex datasets,
has emerged as a key tool in assisting ML engineering. Among
the family of visualizations techniques that handle such high-
dimensional data, dimensionality reduction (DR) techniques,
also called projections, have emerged as one of the most
successful and most frequently used to assist ML engineer-
ing. As mentioned above, datasets in ML pipelines are, by
their very nature, high dimensional. From such datasets, DR
techniques create typically 2D scatterplots, one plot point per
data sample. In this process, DR techniques aim to preserve
the so-called data structure. That is, characteristics of the input
dataset which are deemed important for the problem at hand
should be encoded by similar characteristics measured by the
corresponding scatterplot points, which may be used to reason
about the input data.

Apart from the above-mentioned added value of high-
dimensional visualizations (in particular, projections) for ML
engineering, the opposite interaction exists too. That is, ML
can be used to create better visualizations for high-dimensional
data. From these, our general research question can be stated
quite succinctly as follows:

• RQ) How can we exploit the synergy between ML and
DR techniques to improve each other?

It is, however, evident that the scope and generality of the
above-stated research question are too high to be able to fully
answer it. As such, we further refine this general research
question as follows:

• RQ1) How to use multidimensional projections to build
better models for machine learning?

• RQ2) How does projection quality relate to data separa-
tion and classification performance?

RQ1 relates to the observation that DR projections of
high quality capture well many aspects of the so-called data
structure, i.e., the relative organization of data samples in a
high-dimensional dataset. If and when this is the case, it means
that the information that a projection captures can be used as a
‘proxy’, or substitute, to the original information that the high-
dimensional samples themselves captures. In turn, this means
that one can use the projection instead of, and in places where,



one would use the high-dimensional information, and obtain,
ideally, very similar – if not better – results.

RQ2 relates to the same observation of RQ1. Let us assume
that a projection captures well data structure by means of the
visual separation (VS) it exhibits in its scatterplot. Separately,
it is well known that the performance of a trained ML
classification model (classifier performance, or CP) relates to
the data separation (DS) present in the dataset it works on.
Simply put, it is easier to classify a dataset with high DS to
reach a high CP than a dataset with a low DS. This means
that all three above-mentioned factors – DS, VS, and CP –
are inter-related. If such a relation is true, we can exploit such
observations to measure and/or optimize one of these factors
as function of the other two.

The paper is organized as follows. Section II addresses RQ1
by using DR techniques to extract useful features from a high-
dimensional dataset for creating an end-to-end ML pipeline
for a challenging classification problem. Section III focuses
on RQ2 by extending earlier observed relations between DS
and VS, respectively between DS and CP, and showing how
one can pre-process high-dimensional data to achieve a high
DS, which in turn leads to a high VS in projections of that
data; and finally, using such projections to achieve a high
CP. Section IV exploits the results presented in Sec. III to
further answer RQ2. Specifically, if high-VS projections can
be used to construct high-CP models, we can use existing ML
quality metrics to measure the visual separation (VS) present
in a given projection. Section V revisits RQ1 by studying
an added-value of projections for helping the construction of
high-performance ML models. Specifically, we now consider
the user-in-the-loop scenario by asking subjects to use an
interactive projection-based tool to create pseudo labels so as
to train a classification model. Finally, Section VI revisits our
contributions to solving RQ1 and RQ2 and also outlining open
avenues for future research.

II. FEATURE AND CLASSIFIER LEARNING

The success of deep neural networks (DNNs) is evident
in many applications. A critical problem appears when the
training set is too small [3] – e.g. only dozens of super-
vised samples per class. We propose a meta-pseudo-labeling
methodology, called Deep Feature Annotation (DeepFA) [4]–
[6], to train DNNs from very few supervised samples (e.g., 1%
of a dataset) without a validation set. In DeepFA, the teacher –
a connectivity-based semi-supervised classifier, Optimum Path
Forest (OPFSemi) [7]– exploits modifications of a given latent
feature space of the student (a DNN) along with iterations of
non-linear 2D projection (t-SNE [8]) for pseudo-labeling. At
each iteration, the most confidently labeled samples are used to
retrain the DNN, modifying its latent feature space. The semi-
supervised classifier does not require parameter optimization,
dismissing a validation set (extra labeled samples). The num-
ber of labeled samples is next increased to improve the DNN
with pseudo-labeled training set.

Isolated aspects of DeepFA using OPFSemi on a 2D em-
bedded space have been evaluated. In [4], a few iterations

of the training loop with truly-and-artificially-labeled samples
was enough to improve the generalization performance of a
supervised DNN. We call this version as orig-DeepFA, while
we use DeepFA to refer to the entire methodology. OPFSemi’s
confidence was also considered when selecting unsupervised
samples to train the supervised DNN [5], reducing label
propagation errors – called as conf-DeepFA.

However, conf-DeepFA’s performance on test sets can os-
cillate along with the pseudo-labeling iterations such that
the model obtained at the last iteration is not guaranteed to
be the best model. To circumvent this problem, we propose
ext-DeepFA, which extends conf-DeepFA by computing a
clustering-based metric from the pseudo-labeled samples to
select the optimal model for generalization among the ones
generated along with the pseudo-labeling iterations. While
earlier orig-DeepFA and conf-DeepFA variants have shown
promising results, the methods may differ in the deep archi-
tecture used for feature learning and classification, the semi-
supervised classifier for label propagation, the projection tech-
nique, and the criterion to select the model for generalization.
The present work is then a comprehensive study on DeepFA.

A. Experimental evaluation

We next outline how we organized our study.

1) Datasets: We choose eight diverse datasets to perform
our investigations, as follows.
MNIST: We first chose the public MNIST [9] dataset, to
explore a known and easy classification task. MNIST has 0
to 9 handwritten digits grayscale images (28× 28 pixels). We
use 5000 random samples from the original training dataset.
Parasites: The next five datasets come from a Parasite medical
image collection [10]. This collection has three main dataset
types: (i) Helminth larvae, (ii) Helminth eggs, and (iii) Pro-
tozoan cysts. The datasets contain color microscopy images
(200 × 200 pixels) of the most common species of human
intestinal parasites in Brazil, responsible for public health
problems in most tropical countries [10]. The datasets are
challenging since they are unbalanced and contain a majority
impurity class, with samples very similar to parasites, making
classification hard (see Fig. 1). To these datasets, we add
the (iv) Helminth eggs and (v) Protozoan cysts without the
impurity class datasets, yielding a total of 5 datasets.
Coconut: We use a random subset of the Coconut trees
dataset [11] with 7, 827 regions (90 × 90 pixels) of aerial
colored images from the Kingdom of Tonga, acquired by
satellite imagery in October 2017, labeled by Humanitarian
OpenStreetMap. The dataset has two classes: images with
(6, 139) or without coconut trees (1, 688).
COVID: A team of researchers from the Universities of Qatar
and Dhaka have created a database [12], [13] of chest X-ray
images (299× 299 pixels). We obtained the second update of
the dataset with 21165 images split in four classes: COVID-
19 positive (3616), lung opacity (non-COVID lung infections,
6012), viral pneumonia (1345), and normal (10192) cases. We
use a randomly subset of this dataset with 10583 images.



Fig. 1. Examples of H.Eggs species (left) and similar images of impurities
(right).

B. Experimental setup

To reproduce the scenario of few supervised samples, we
define a supervised training set S with only 1% of supervised
samples from a given dataset D. The unsupervised U and test
T sets have 69% and 30% of samples, respectively (D =
S ∪ U ∪ T ). The small S simulates the real-world scenario
when one has a large D but manual effort is needed to label
samples to create S. We randomly divide each dataset D into
S, U , and T in a stratified manner and also generate three
distinct splits for each experiment for statistical analysis. We
evaluate our method by the probability of the chosen deep
architecture’s last fully-connected layer, i.e., just before the
classification layer. From this, we compute accuracy and κ. We
evaluate label propagation accuracy by computing the number
of correctly assigned labels in U .

C. Experimental results

1) Different pseudo labeling strategies: Using different
pseudo-labeling methods within the orig-DeepFA looping
means that the label propagation and the learned feature space
can be mutually affected. To evaluate how, Fig. 2 shows
the resulting feature space and label estimation of the two
best methods found in evaluated experiments – which can be
found in the thesis –, i.e., OPFSemi and L.Spreadrbf . In this
figure, we use a dataset with and distinct classification values
(H.larvae, κ ∈ {0.80, 0.06}).

For H.larvae, OPFSemi was able to propagate labels only
for regions with supervised samples of class 1 (red) and also
provide a feature space (2D projection) in which class 1 is
separated from other samples in the projection. In contrast,
L.Spreadrbf was more conservative in propagating labels for
class 2 (green) vs class 1 (red) so that only the closest samples
of class 2 were labeled with that class. At a higher level, Fig. 2
illustrates how distinct ways of propagating labels intervene
in the learned feature space produced by the proposed orig-
DeepFA looping.

2) Feature space improvement over iterations: Figure 3
shows the plot for train and validation loss and accuracy
considering 20% (from S) as validation set during one split
of MNIST training. The initial learning curve and the learning
curves for each iteration are also shown. The learning curves
show that the labeled samples can improve the network
convergence along iterations. As future work, a different deep
network can be tested at the final stage. Also, an unsupervised
quality measure can be proposed to define the best feature
space found at certain iterations and, hence, the best iteration
of the method.

Fig. 2. Comparison of DeepFA using LSpreadrbf and OPFSemi pseudo
labeling for H.Larvae datasets, with 1% supervised samples and last iteration
out of five. 2D feature-space projections of training samples (S ∪ U ) in
columns per dataset (from left to right): supervised samples colored by true
labels (red=1, green=2), unsupervised ones are black; samples colored by
assigned pseudo labels; and samples colored by their true labels. Classification
results (per class and total) are shown on the right.
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Fig. 3. Results of κ (top) and propagation accuracies (bottom) for the MNIST
dataset in one split over 5 iterations, considering self-VGG-16fe (best result),
orig-DeepFA, and conf-DeepFA experiments.

D. Discussion

Our findings confirm that the t-SNE projection technique
– well known in information visualization for its high ability
to capture data structure present in high dimensions – can
generate 2D feature spaces which are also effective for feature
learning and classifier engineering. In other words, we have
shown that 2D projections can be used instead of the original
feature space, which typically has hundreds of dimensions or
even more, for designing feature and classifier learning models
through pseudo-labeling.



III. LINKING DATA SEPARATION, VISUAL SEPARATION,
AND CLASSIFIER PERFORMANCE

Both pseudo-labeling, and broader, the success of training a
classifier, depend on a key aspect – how easy is the data sep-
arable into different groups of similar points. Projections, or
dimensionality reduction methods, are well known techniques
that aim to achieve precisely this [14], [15]. The success
of such tasks involving projections depends on the visual
separation (VS) of the projection used to depict it. If a dataset
exhibits clear data separation (DS) into samples of different
classes, then analysts should be able to gauge this by seeing
a corresponding visual separation in the projection, in terms
of densely-packed, ideally non-overlapping, groups of points
with the same label (within a given group). Conversely, if
a dataset exhibits poor data separation, its projection should
also show poor visual separation. Although projections have
been used to explain and relate many machine learning (ML)
concepts, to our knowledge, no work so far has explored the
relationship between data DS, VS, and classifier performance
(CP) in the context of using pseudo-labeling.

We address the above by studying how to generate a high
DS using contrastive learning. We evaluate DS by measuring
CP for a classifier trained with only 1% supervised samples.
Then, we evaluate VS fed with the encoder’s output of our
trained contrastive models. Lastly, we investigate CP by using
our above pseudo-labeling to train a deep neural network. We
perform all our experiments in the context of a challenging
medical application (classifying human intestinal parasites in
microscopy images). Our main contributions are as follows:
C1: We use contrastive learning to reach high DS;
C2: We show that projections constructed from contrastive

learning methods (with good DS) lead to a good VS
between different classes;

C3: We train classifiers with pseudo-labels generated via
good-VS projections to achieve a high CP;

C4 We identify projection techniques for which DS strongly
correlates with VS and also techniques for which this
does not happen;

C5 We show that good-VS projections are essential for
training classifiers that reach a high CP.

Jointly taken, our work brings more evidence that VS, DS,
and CP are strongly correlated and that this correlation, and
2D projections of high-dimensional data, can be effectively
used to build higher-CP classifiers for the challenging case of
training-sets having very few supervised (labeled) points.

IV. MEASURING VISUAL SEPARATION IN PROJECTIONS

Many projection methods have been proposed, using dif-
ferent underlying techniques as graphs, linear algebra, opti-
mization, and neural networks [14]. Such techniques generate
a wide variety of scatterplots for the same give dataset,
especially when one changes their various hyperparameters.
Several metrics have been proposed to quantify a projection’s

quality. However, the most used metrics in the DR literature
– Trustworthiness (T ) [16], Continuity (C) [16], Normalized
stress (S) [17], and Neighborhood hit (N ) [18] do not directly
measure visual separation at a global projection level but rather
more local properties.

We proposed a new VS quality assessment approach based
on ML techniques. We exploit earlier findings that studied VS
in t-SNE projections to propagate labels, also called pseudo
labeling. Projections with high VS (as assessed qualitatively
by users) led to good label propagation results [19]. Our
hypothesis is that the converse is also true: If we measure
a good label propagation score, then the projection will have
a high VS. For label propagation, we use the semi-supervised
optimum path forest algorithm (OPFSemi) [7] in the 2D
projection space provided by DR methods. OPFSemi was
shown to lead to very good label propagation accuracies in
both high-dimensional and low-dimensional spaces [6], [7]
and as such is a good candidate for this task. We evaluate the
label propagation by computing the coefficient of agreement
of Cohen’s Kappa (κ) [20] between true and pseudo labels, a
simple but fast and effective way to perform this task which
works well also for unbalanced labeled datasets.

Fig. 4 shows our VS measurement pipeline which is detailed
next.
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Fig. 4. Pipeline of our approach to assess VS in projections.

We assess our proposal on 39 projection algorithms for 18
labeled datasets and show that our method correlates with
perceived VS (measured by a user study) better than well-
known metrics for projection quality used in the DR literature.
As such, we argue that our metric is an additional useful way
to characterize the quality of a projection, atop of existing
projection quality metrics.

V. ACTIVE LEARNING USING DECISION BOUNDARY MAPS

Our work so far has shown the added value of pro-
jection techniques for the generation of pseudo labels for
constructing high-performance classification models. All in
all, the above show that projections, and label propagation
algorithms in projection spaces, are useful instruments for
automating both ML and VA tasks. However, this potentially
conveys the incorrect message that the user has no actual
place in such pipelines. We argue that this is by far not the
case. The quality of the pseudo labels produced in [21] was
constrained by the initial feature space. If the feature learning
step produces a feature space with poor visual separation,
then an automatic and/or manual label propagation techniques



would fail. We circumvented this problem in Section II by
proposing to improve the feature learning over iterations of
pseudo labeling using 2D projections. However, this approach
left the user (manual annotation) out of the loop. Figure 5
clarifies the above by comparing the pipeline we have used in
our previous DeepFA workflows with the interactive pipeline
that uses Decision Boundary Maps (DBMs) [22] and error
maps (further described in this chapter).

Fig. 5. (a) Generic pipeling using DeepFA. (b) Interactive pipeline in an
active learning scenario using DeepFA and VA tools.

We next aim to complete our quest for assessing the added-
value of manual labeling by incorporating more advanced
VA techniques in support of this user task. Specifically, we
consider using DBMs and direct-and-inverse projection errors
as visual aids to help users decide where, in a projection,
they should concentrate their manual labeling efforts. If the
user is able to get insights about the classifier’s decision, then
the user can (arguably) successfully intervene in its training
by manually propagating labels as a way to leverage both
propagation and classifier performance. We achieve this by
adding an active learning looping in the classifier step of our
proposed DeepFA pipeline (Section II). We next describe in
detail our proposed pipeline that combines VA techniques
and manual labeling in an active learning looping (see also
Figure 6).

Fig. 6. Pipeline of the proposed interactive approach.

1) Visualization plot: Figure 7 shows a visualization of
the combined projection error ϵ computed using the inverse
projection technique described above. Error values are encoded
into brightness (high ϵ are bright; low ϵ are dark, pixels,
respectively). As visible, the projection errors are low close to

most of the actual scatterplot points, which is expected, since
the projection technique used here (t-SNE) is known to have
low errors everywhere on the considered dataset (MNIST). As
we go further from the projected points, we see how errors
increase.

Fig. 7. Scatterplot image with 2D projected points for the MNIST dataset with
points colored by class. Projection errors ϵ are computed using the inverse
projection technique at every image pixel. Light regions refer to a high error
values; dark regions represent low error values.

2) User interaction: Figure 8 shows scatterplots (a) before
and (b) after a manual labeling iteration, including the sub-
sequent classifier re-training and DBM recalculation. In this
example, for illustration purposes, the user manually selected
a large set of points in the blue decision zone (marked by
the black circle) and assigned them the label 3 (red). Image
(b) shows how the re-trained classifier now has a large red
decision zone that includes largely all the points the user has
manually labeled as red. However, due to this massive re-
labeling, the classifier’s performance decreases significantly –
accuracy drops from 0.8793 to 0.7927; κ drops from 0.8685
to 0.7689. This is, of course, expected, given that the user has
basically forced the disappearance of roughly the entire blue
decision zone. In practical use, manual labeling will select
significantly fewer samples to label during an iteration.

(a) (b)
Fig. 8. Example of classifier re-training and DBM re-calculation. (a) Initial
state (classifier accuracy: 0.8793, κ: 0.8685). User selects a large set of points
in the blue decision zone (marked by the black circle) and decides to manually
assign them the label 3 (red). (b) Situation after classifier re-training with the
new manually added labels (classifier accuracy: 0.7927; κ: 0.7689).

If the classifier performance decreased (as shown in the
tool’s interface) as compared to the previous iteration, the user
can decide to undo the last-performed labeling. The labeling
window then changes to show the values (DBM, classifier
performance, κ) before this past iteration. The process con-
tinues until the user decides to stop it, either because of time



constraints or because the desired classifier performance has
been reached.

VI. CONCLUSION

We close this paper by revisiting our proposed contributions.
We addressed RQ1 in Section II by proposing a pseudo-
labeling approach, called DeepFA, that explores the ability
of a multidimensional projection to generate a reduced (two-
dimensional) feature space with enough information to im-
prove feature learning and classifier performance over itera-
tions. We have shown that 2D projections can be used instead
of the original feature space for designing feature and classifier
learning models through pseudo-labeling.

RQ2 is explored in Section III by exploring pseudo-labeling
and projection techniques to link DS, VS, and CP. We demon-
strated the correlation between DS, VS, and CP, and indicated
which specific projection techniques preserve a strong DS-VS-
CP correlation (or not). Knowing which techniques exhibit this
property is valuable for supporting classifier engineering and,
arguably, for other infovis applications where VS is important.

We further address RQ2 in Section IV by proposing to
assess the VS of 2D projections by a metric that evaluates
the CP of a graph-based semi-supervised classifier used to
propagate labels in the 2D projection. We claim that, when a
classifier achieves high CP in the labeling task, then the 2D
projection has a good VS. Our findings show that our proposed
metric can better gauge VS in projections than projection-
quality metrics commonly used in the DR literature.

Finally, in Section V, we turn back to RQ1. We considered
assisting the human user to improve the construction of
classification models (by means of automatic pseudo labeling).
At a higher level, the work in this chapter answers RQ1 by
showing that both humans and machines can use multidimen-
sional projections to build better classifiers; and that, when
cooperating (by using such projections), humans and machines
obtain results which surpass what can be obtained when using
only manual, or only automatic, methods.

Dimensionality reduction techniques and pseudo-labeling
play an essential role in all our contributions. Dimensional-
ity reduction successfully captures data structure from high
dimensions in a way that machines and humans can distill
relevant information to design and improve machine learning
models. Pseudo labeling can retain, and next create, substantial
knowledge in the produced labels during the entire data flow
from the learned space, to the reduced 2D projection space,
and next to the way users abstract this information during
their iterative manual exploration and labeling of data via 2D
projection spaces.
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