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Abstract—Image representation as graphs can enhance the
understanding of image semantics and facilitate multi-scale image
representation. However, existing methods often overlook the sig-
nificance of the relationship between elements at each scale or fail
to encode the hierarchical relationship between graph elements.
To cope with that, we introduce four novel approaches for graph
construction from images. These approaches utilize hierarchical
image segmentation techniques to generate segmentations at
multiple scales, and one of them incorporates edges to encode the
relationships at each scale. Leveraging these representations, we
present two new models: the Hierarchical Graph Convolutional
Network for Image Classification (HGCIC) and the Hierarchical
Image Graph with Scale Importance (HIGSI). HGCIC uses an
adaptive depth to capture significant features and patterns at
different scales, while HIGSI employs a novel readout function
that weighs the importance of each scale when generating a fixed-
size graph representation. Experimental results with CIFAR-10
and STL-10 datasets show that the HIGSI model outperforms (or
closely matches) state-of-the-art models. The model also utilizes
smaller graphs, reaching the point of using graphs with 50% of
the number of nodes compared to other approaches. Additionally,
HIGSI outperforms models trained with only the base graph
used to create the hierarchy, achieving up to 11.54% better
performance while using fewer parameters.

I. INTRODUCTION

The recent surge in popularity of Graph Neural Networks
(GNNs) stems from their ability to effectively leverage the
power of neural networks for processing data structured as
graphs. Unlike traditional methods, GNNs effectively nav-
igate the challenges of non-Euclidean data by leveraging
the inherent structure of the graph. This powerful approach
enables them to exploit information from both neighboring
nodes and edges, capturing crucial local and global structural
information.

The application of GNNs in the field of computer vision
marks a significant advancement in processing and interpreting
visual data. Graph-based image representation leverages the
spatial relationships between image elements to model image
content more effectively [1]. This representation can amplify
the comprehension of image semantics and context by integrat-
ing domain-specific knowledge into the learning process [2].

While graph-based image representation offers numerous
benefits, constructing graphs from images remains an active
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area of research. The most common approach involves image
segmentation methods, which partition the image into distinct
regions, each represented by a node in the graph [3]–[8].
Superpixel algorithms group pixels into perceptually mean-
ingful regions, replacing the rigid grid structure [9]. This
approach captures image redundancy, provides a convenient
basis for computing image features, and significantly reduces
the complexity of subsequent image-processing tasks.

However, this straightforward approach comes with its own
set of challenges. For example, the success of a given method
may heavily depend on the quality and quantity of regions
generated by the segmentation process. Additionally, image
segmentation methods usually produce flat representations
of images, failing to capture the hierarchical relationships
between image elements.

To overcome these limitations, this work proposes a novel
approach that leverages hierarchical segmentation methods
to generate nodes from a base graph, which is computed
using superpixel methods. This approach yields a multi-scale
graph-based representation of an image that captures intricate
details often missed by other methods. Our approach uniquely
generates a new set of nodes at different scales and defines
relationships between them in four different adjacency setups
using edges that connect nodes at various scales.

To assess the effectiveness of our hierarchical representa-
tion in image graph classification, we used CIFAR-10 and
STL-10 datasets. This evaluation involved two novel models
specifically designed to leverage the hierarchical structure: the
Hierarchical Graph Convolutional Network for Image Clas-
sification (HGCIC) and the Hierarchical Image Graph with
Scale Importance (HIGSI). Notably, HIGSI incorporates the
newly proposed Region Graph Readout (RGR) function. This
function assigns importance weights to graph features at each
level of the hierarchy, enabling the model to effectively capture
and integrate information across all scales before generating a
fixed-size representation of the entire image graph.

This paper is structured as follows. The theoretical back-
ground is presented in Section II. Section III details the
proposed representations and models, followed by the exper-
imental setup outlined in Section IV. Section V presents and
analyzes the results, offering insights into their significance.
Lastly, Section VI draws some conclusions.



II. GRAPHS, HIERARCHICAL SEGMENTATION AND GNNS

A graph G = (V,E) contains a set of nodes V =
{1, 2, ..., N} and a set of edges E ⊆ V × V , such that
(i, j) ∈ E denotes a directed edge from a node i to a node j.

Each node i ∈ V is associated with a feature vector hi ∈
Rd1 , and optionally there may be edge feature vectors (termed
as weights) {wij ∈ Rd2 | (i, j) ∈ E}.

A. Hierarchical Segmentation

Hierarchical image segmentation is a set of image segmen-
tations at different detail levels, in which the segmentations
at coarser detail levels can be produced from simple merges
of regions from segmentations at finer detail levels [10]. The
resulting hierarchy of regions/segments can be represented
with a tree structure, where the root node represents the entire
image, and each subsequent level represents a finer detail level.

Hierarchical approaches must obey the two principles of
multi-scale image analysis [11]: (i) the causality principle
which defines that a contour presented at a scale k1 should be
present at any scale k2 < k1; and (ii) the location principle,
which defines that contours should be stable, in the sense that
they do neither move nor deform from one scale to another.

B. Graph Neural Networks

In recent years, GNNs became the standard for analyzing
and learning from data in graphs [7]. In each layer of a
GNN, the features of the nodes are updated by aggregating
the features of their neighbors.

The input of each layer is the node features vector {hi ∈
Rd | i ∈ V } and the set of edges E, the result of each
layer is a new node’s representation {h′

i ∈ Rd
′

| i ∈ V },
where the same parametric function fθ is applied to each node
given its neighbors Ni = {j ∈ V | (j, i) ∈ E)}, defined
as h

′

i = fθ(hi, aggregate({hj | j ∈ Ni})), in which fθ
is a parametric function of θ and aggregate represents an
aggregation function. One of the main differences between
GNNs’ architectures is the selection of parametric function fθ
and the aggregation function.

The Gated Graph Convolutional Network (GatedGCN) [12]
combines the GCN and edge gating mechanism. The authors
in [7] proposed enhancements to the GatedGCN architecture
by incorporating residual connections and batch normalization.
The updated node representation is computed following h′

i =
hi + ReLU(BN(U ℓhi +

∑
j∈Ni

αij ⊙ V ℓhj)), in which U ℓ

and V ℓ represent linear transformations, while the symbol ⊙
denotes the Hadamard product. ReLU is an abbreviation for
Rectified Linear Unit, and BN stands for batch normalization.

The edge gates, represented as αij , are defined by Equa-
tions 1 and 2,

αij =
σ(ŵij)∑

j′∈Ni
σ(ŵij′) + ε

(1)

ŵij = Aℓhℓ
i +Bℓhℓ

j + Cℓwij (2)

in which Aℓ, Bℓ, and Cℓ denote linear transformations, while
σ represents the sigmoid function. The term ε is a small,

fixed constant introduced for numerical stability. The edge
gate, as defined by Equation 1, operates as a soft attention
mechanism [7], enabling the model to learn the significance
of different nodes within a neighborhood.

Lastly, the edge features are updated following w′
ij =

wij+ReLU(BN(ŵij)), in which ReLU is an abbreviation for
Rectified Linear Unit, and BN stands for batch normalization.

III. HIERARCHICAL GNN’S BASED ON MULTI-SCALE
IMAGE REPRESENTATIONS

A. Multi-Scale Image Representation Using Hierarchies

Let an image be represented by a RAG of superpixels G =
(V,E), in which the set of nodes V represents the collection
of superpixels and the set of edges E describes the adjacency
relation between the superpixels.

Let H = (P1, . . . ,Pℓ) be the hierarchy derived from the
graph G. Let Rj represent the set of regions in the partition Pj

of the hierarchy H. Consider that wij is the edge weight given
by Euclidean distance of the average colors of superpixels i
and j, chosen for its widespread use in the literature [6]–[8],
ensuring comparability. Finally, let R be a set that consists of
all regions belonging to all partitions Pj ∈ H.

By applying hierarchical segmentation to the base RAG,
one can obtain a hierarchy of partitions at different scales,
allowing for multi-scale representation and analysis. This
multi-scale representation is useful in GNNs, as it allows for
information sharing and message passing between different
scales in the graph, enhancing the model’s ability to capture
complex patterns and structures within the graph, and leading
to improved performance in tasks such as graph classification.

The selected adjacencies were chosen for their significant
empirical gains. The hierarchy-based adjacency preserves the
structure and relationships established by the hierarchy. The
complete-based adjacency enables all vertices to share in-
formation during the message-passing stage. The kNN-based
adjacency facilitates information sharing among similar ver-
tices in the feature space, irrespective of their scale. Lastly,
the HRG adjacency maintains the hierarchical structure and
relationships while also allowing vertices at the same scale to
exchange information.

The following subsections delve into the details of the four
distinct graphs constructed from the hierarchy and explore the
corresponding hierarchical GNN architectures.

B. Hierarchy-based Graph

This graph, denoted by Gh = (Vh, Eh), is a graph computed
from the hierarchical structure H in which the set of vertices
Vh is equal to the R. The set of edges Eh is defined by Eh =
{(ri, rj), (rj , ri) | ri, rj ∈ R, ri ̸= rj , in which rj is the
smallest region that contains ri}.

C. kNN-based Graph

This graph, denoted by Gk = (Vk, Ek), is a graph
computed from the k-nearest neighborhood of regions in
the hierarchical structure H in the feature space, in which
the set of vertices Vk is equal to the R. Let W (V ) =



Fig. 1. HRG construction pipeline. A hierarchical segmentation algorithm
is applied to the base graph. Horizontal cuts are made in the hierarchy, and
RAGs are created for every cut, forming Region graphs (RG). Ultimately, the
hierarchy is represented as a Hierarchical Region Graph (HGR) which is used
to train the HIGSI model.

{w(v), ∀v ∈ V } be the set of feature vectors related
to the vertex set V . The set of edges Ek is defined by
Ek = {(ri, rj) | w(rj) is one of the kNN of w(ri)}.

D. Complete-based Graph

This graph, denoted by Gc = (Vc, Ec), is a graph computed
from hierarchical structure H, in which the set of vertices Vc

is equal to the R. The set of edges Ec is defined by Ec =
{(ri, rj) | ri, rj ∈ R, ri ̸= rj}.

E. Hierarchical Region Graph

Intending to extract pertinent information from various
levels of the hierarchy, this work also introduces the HRG
representation. Figure 1 illustrates the proposed method for
computing the HRG representation from images.

Horizontal cuts C are made within the hierarchy H (usually,
equivalent to the partitions of the hierarchy, so C = ΠH). For
each cut, denoted as cj ∈ C, a RAG is computed with the
hierarchy nodes in cut cj that correspond to the set of regions
Rj belonging to the partition Pj of the hierarchy H. The
RAGs computed from the cuts in the hierarchy and the base
RAG are referred to as region graphs RGj

, j = 0, . . . , |C|,
with the base RAG denoted by RG0

. Lastly, the edges of the
hierarchy are also incorporated.

The spatial adjacency captured by the RAGs in different
partitions (or scales) enables neighboring regions to exchange
information during the GNN’s message-passing step. Simi-
larly, hierarchy adjacency allows information sharing across
different scales.

F. Hierarchical Graph Convolutional Network for Image Clas-
sification Model – HGCIC

Figure 2 shows the Hierarchical Graph Convolutional Net-
work for Image Classification (HGCIC) architecture. To em-
bed the input edge and vertices features, two linear layers
were applied to produce D-dimensional embeddings. The
dimension of the edge and vertices embeddings remained the
same across all layers. Inspired by [13], this model adopted
M + 1 convolutions, in which M is chosen at training and
inference time. All M convolutional layers share the same
weights, which improved the results and made the proposed
architecture parameter-efficient [13].

Fig. 2. The architecture of the HGCIC model comprises two Graph Convo-
lutions, a Readout Function, and an MLP. The second convolution is applied
M times.

Fig. 3. The architecture of the HIGSI model comprises three GP modules, a
Region Graph Readout, and an MLP. Each GP module is structured with
a sequence of six components: a linear layer, layer normalization, graph
convolution, another layer normalization, a second linear layer, and a final
layer normalization.

An adaptive architecture can capture crucial features and
patterns by dynamically adjusting its depth, leading to en-
hanced accuracy and performance. In this specific problem,
the adaptive depth allows for efficient information propagation
between distant nodes within the tree. This effectively utilizes
the additional information encoded throughout the entire struc-
ture, leading to superior results.

Following the graph convolution layers, a readout layer is
employed to generate a fixed-size vector representation of the
graph features. The output of the readout layer is then fed
into a multi-layer perceptron (MLP) that learns to make class
predictions based on the graph features.

G. Hierarchical Image Graph with Scale Importance Model
– HIGSI

Figure 3 shows the Hierarchical Image Graph with Scale
Importance (HIGSI) architecture. Inspired by 14, this model
applies a linear and normalization layer before and after each
graph convolution. This approach aims to project the node
features into the same domain, thereby enhancing the diversity
of the features, which helps to alleviate the over-smoothing
problem. The sequence of layers (linear-norm-convolution-
norm-linear-norm) is referred to as a Graph Processing Module
(GP Module).

An additional linear layer is employed to embed the edge
features in the same dimensional space as the node features.
The transformation of edge features is solely handled by graph
convolutions. The node and edge embeddings have the same
dimension throughout all the graph convolutional and linear
layers. After the GP modules, the proposed Region Graph
Readout (RGR) is applied to generate fixed-size vectors that
reflect the importance of each region graph RGj for the task.
The readout output is then fed into a linear (CL) to perform
the classification.

Figure 4 illustrates the RGR scheme. After all GNN layers,
a linear layer with the ReLU activation function embeds node



Fig. 4. Illustration of the Region Graph Readout function steps: (i) embedding of node features; (ii) graph size normalization; (iii) generation of region
graphs’ representations; (iv) computation of importance coefficients; (v) reweighting of region graphs’ representations; and (vi) calculation of the final graph
representation.

features into a higher dimension. Then, the node features are
normalized using the graph size norm [7]. This prevents large
graphs from having an unbalanced influence on the coefficients
since they have more vertices than the other graphs. The graph
size norm is given by h̃i = hi/

√
|VRGj

|,∀i ∈ VRGj
, in

which hi and h̃i are the features of node i before and after
normalization, respectively, and |VRGj

| is the number of nodes
in the region graph that i belongs to. To obtain a fixed-size
vector for the region graph, denoted by hRGj

, one should sum
up the features of all the nodes that belong to the same region
graph, as described by hRGj

=
∑

i∈RGj
h̃i, ∀j = 0, . . . , |C|.

Drawing inspiration from the attention mechanism in trans-
formers, the method computes importance coefficients as
follows. Considering a D-dimensional region graph feature
vector hRGj

= (h1
RGj

, h2
RGj

, . . . , hD
RGj

), the non-normalized
importance coefficient, denoted as αRGj

, is obtained by taking
the exponential of each component of hRGj

subtracted by the
maximum value over the features of the graph max(hG) (to
avoid softmax overflow), and summing them all, defined by

αRGj
=

∑D
k=1 e

hk
RGj

− max(hG)
, ∀j = 0, . . . , |C|.

The importance coefficients are normalized by dividing each
coefficient by the total sum of all coefficients within the same
graph, i.e., α′

RGj
= αRGj

/
∑|C|

j=0 αRGj
,∀j = 0, . . . , |C|.

Reflecting the relevance of each region graph to the classifi-
cation task, the importance coefficients are utilized to pool the
corresponding region graph features. This results in a fixed-
size vector hG representing the entire graph, as expressed as
hG =

∑|C|
j=0 α

′
RGj

× hRGj
.

The graph feature hG is the input for a classifier to generate
the final prediction. This method can capture the diversity
and significance of the region graphs in the hierarchical
region graph HGR and produce a robust representation for
classification.

The hierarchical GNN plays a central role in this process.
It learns to extract relevant information from the hierarchy
and generates the region graph representation, hRG . This hRG

captures the diversity and significance of the individual region
graphs within the larger HGR structure. By understanding
these relationships, the classifier can then leverage this robust
representation created by the GNN to generate accurate final
predictions.

In both models, a modified version of GatedGCN was
adopted for graph convolution due to its ability to incorporate
edge features into the message-passing step, allowing the
model a more detailed understanding of the graph structure.
The soft attention mechanism in Equation 2 enables the model
to learn how important each neighbor j ∈ Ni is for the node
i.

IV. EXPERIMENTAL SETUP

A. Datasets and Baseline Model

The methods were evaluated using CIFAR-10 and STL-
10 datasets. The CIFAR-10 dataset contains 60,000 32×32
color images across ten classes, split into 45,000 training,
5,000 validation, and 10,000 test images. The validation set
was obtained by randomly sampling 5,000 images from the
training set [7]. The STL-10 dataset contains 13,000 96×96
color images across ten classes, divided into 4,500 training,
500 validation, and 8,000 test images. The validation split
was obtained using the same method used for the CIFAR-10
dataset.

A baseline model, named Base RAG Model (BRM), is
established by training solely on the base RAG, which is used
to derive the hierarchy. The performance of this baseline serves
as a benchmark against which the effectiveness of the proposed
methods can be measured. The baseline model architecture
also includes three GP Modules. The adopted readout function
combines global mean and max pooling. This readout function
is applied after each GP module. Lastly, all the results of
readout functions are summed and fed into an MLP consisting
of two linear layers with layer normalization.

B. Graph Construction

Due to its simplicity, speed, and memory efficiency, the
SLIC method [9] was chosen for superpixel segmentation. This
choice also allows for a fair comparison since most of the
works in comparative analysis utilize this method.

Superpixel segmentation quality can significantly impact the
performance of computer vision tasks. To evaluate this impact,
the study additionally employed the DISF method [15], which
demonstrably outperforms the SLIC method in segmentation
accuracy and optimal delineation.



1) Complete-based, kNN-based and Hierarchy-based
Graphs: Experiments were only conducted using 20
superpixels. The hierarchical segmentation method employed
was Watershed by area [16]. The number of nearest neighbors
k was set to 8 on the kNN-based graph setup.

2) Baseline RAG and HRG: To create both the baseline
RAG and the HRG, two superpixel segmentation methods,
SLIC and DISF, were adopted and evaluated. Additionally,
the Watershed by area [16] was employed for hierarchical
segmentation in a canonical setup.

For the DISF method, 200 initial seeds were used on
the CIFAR-10 dataset and 2,000 on the STL-10 dataset.
Experiments targeted 20, 40, 60, and 80 superpixels for the
CIFAR-10 dataset, while 50, 185, and 250 superpixels were
the targets for the STL-10 dataset. It is important to note
that the actual number of generated superpixels might vary
depending on individual image characteristics when using the
SLIC method.

C. Node and Edge Features
For graphs created from CIFAR-10 images, each node

is characterized by the following set of features: (i) color;
(ii) texture; (iii) region; (iv) X and Y mean position; and
(v) node altitude in the segmentation tree. These features
are concatenated into a feature vector hi ∈ R104 for each
i ∈ V . The same set is used in the base RAG setup, excluding
the node altitude in the segmentation tree. Hence, each base
RAG node is represented by hi ∈ R103. The edge feature,
represented by wij , is computed by the L2 norm of the
difference in features between the nodes connected by the
edge, i.e., wij = ∥hi − hj∥2.

The larger image size in the STL-10 dataset compared
to CIFAR-10 allows for the extraction of more superpixels.
However, this increased complexity sometimes makes simpler
feature sets outperform more intricate ones. Therefore, we
adopted a simpler approach, using only the mean color values
and the mean X and Y positions, similar to the methods used
in [3], [6], [8]. Thus, in the graphs derived from images be-
longing to the STL-10 dataset, each node i ∈ V is represented
by a feature vector hi ∈ R5. The edge feature wij is computed
using the same procedure used in the CIFAR-10 dataset.

D. Parameter Settings for GNN Training
The models trained for 300 epochs, starting with a learning

rate of 10−3. This rate gets halved if validation accuracy does
not improve for 10 epochs, stopping at a minimum of 10−5.
The training used cross-entropy loss with the Adam optimizer
and an L2 penalty to control overfitting. The model with the
best validation performance was saved. To ensure reliable
results, each experiment was run five times with different
random seeds, and the reported accuracy is the average of
these five runs.

V. QUANTITATIVE RESULTS

A. Results for HGCIC and HIGSI Model on CIFAR-10 Dataset
Table I presents the results for the HGCIC models,

which were trained using three different graphs: kNN-based

TABLE I
HIGSI, BRM AND HGCIC MODELS RESULTS ON CIFAR-10 DATASET.

Model # params Superpixel # nodes # edges Avg. Accuracy # Region
Method (± std dev.) Graphs

HGCICh 97,208 SLIC 47.13 92.26 0.6167(±0.007) ×
HGCICc 97,208 SLIC 47.13 2177.84 0.6210(±0.004) ×
HGCICk 97,208 SLIC 47.13 377.06 0.6125(±0.006) ×
BRM20 128,394 SLIC 24.06 110.62 0.6472(±0.002) ×
HIGSI20 111,562 SLIC 35.45 214.45 0.6474(±0.007) 5.3
BRM40 128,394 SLIC 35.71 176.71 0.6539(±0.004) ×
HIGSI40 111,562 SLIC 52.72 350.97 0.6642(±0.008) 6.38
BRM60 128,394 SLIC 63.10 339.66 0.6612(±0.006) ×
HIGSI60 111,562 SLIC 92.92 686.47 0.6750(±0.003) 8.27
BRM80 128,394 SLIC 63.54 344.20 0.6611(±0.005) ×
HIGSI80 111,562 SLIC 93.57 694.07 0.6728(±0.003) 8.3
BRM20 128,394 DISF 20.00 97.13 0.6316(±0.004) ×
HIGSI20 111,562 DISF 28.27 173.98 0.6450(±0.005) 4.55
BRM40 128,394 DISF 40.00 221.62 0.6390(±0.002) ×
HIGSI40 111,562 DISF 57.35 412.15 0.6623(±0.005) 6.36
BRM60 111,562 DISF 60.00 352.10 0.6381(±0.009) ×
HIGSI60 111,562 DISF 86.51 671.67 0.6649(±0.007) 7.73

(HGCICk), hierarchy-based (HGCICh), and complete-based
(HGCICc). It also includes the performance of HIGSI models
and BRM variants for comparison. The subscript preceding
each HIGSI and BRM model name indicates the target number
of superpixels of the RAG used for training each BRM model
or to create the HRG representation for training each HIGSI
model.

Notably, the HGCICh model, trained on the graph with hi-
erarchical adjacency, outperforms the HGCICk model despite
having significantly fewer edges and achieves results compa-
rable to the HGCICc model. This underscores the importance
of edge relationships in graph neural networks, which rely on
these connections to extract structural information. While the
complete adjacency approach has been explored in previous
studies [17], it does not yield substantial improvements in
model performance.

When using 20 superpixels, the HIGSI and BRM models
exhibit nearly identical performance with the SLIC method,
but a difference of 2.12% emerges with the DISF method.
As the number of superpixels increases, the HIGSI model
consistently outperforms the BRM model, regardless of the
superpixel method used. This advantage is due to the propor-
tional increase in nodes and region graphs generated by the
hierarchy with more superpixels. The proposed RGR function
in HIGSI models effectively manages this growth better than
the BRM method.

Unlike the DISF method, the SLIC method tends to generate
more superpixels than the target value. Given that images from
the CIFAR-10 dataset are small and relatively simple, the
superior segmentation quality of the DISF method does not
have as significant an impact as the number of superpixels.

B. Comparison with State-of-the-Art Methods on CIFAR-10
Dataset

Table II presents the results for the best-performing HIGSI
and HGCIC models, alongside the top BRM variant and some
state-of-the-art methods on the CIFAR-10 dataset (for the
complete version of this table and a detailed discussion, please
refer to the dissertation text).

The GAT model [6] consists of three Graph Attention layers
[19], a global sum readout function, and utilizes an RAG



TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CIFAR-10

DATASET. AN ASTERISK (*) INDICATES THE TARGET NUMBER OF NODES,
AS THE AUTHORS DO NOT REPORT THE AVERAGE VALUE. CELLS MARKED

WITH ‘—’ DENOTE DATA THAT HAS NOT BEEN REPORTED. A QUESTION
MARK (?) INDICATES THAT THE STANDARD DEVIATION WAS NOT

REPORTED BY THE AUTHORS.

Model # params Superpixel # nodes # edges Avg. Accuracy # Region
Method (± std dev.) Graphs

Proposed Spatial GNN
HGCICc 97,208 SLIC 47.13 2177.84 0.621(±0.007) ×
BRM60 128,394 SLIC 63.1 339.66 0.6612(±0.006) ×
HIGSI60 111,562 SLIC 92.92 686.47 0.6750(±0.003) 8.27
Spatial GNN from the Literature
GAT [6] 55,364 SLIC 75* – 0.4593(±?) ×
GatedGCN [7] 104,357 SLIC 117.63 941.04 0.6731(±0.003) ×
ShapeGNN [18] 862,000 FH 70* – 0.8004(±?) ×
Spectral GNN from the Literature
H-L Cheby-net [3] 200,000 SLIC 253* – 0.7318(±0.005) ×

derived from images for training. Although HGCICc has only
slightly more parameters than GAT [6], it achieves a significant
35.21% improvement in performance. Notably, it also utilizes
the smallest graphs among the compared models, with the
lowest average number of nodes.

While BRM60 utilizes more parameters than HGCICc, it
strikes a better balance between graph size and performance.
It achieves a respectable 6.47% performance improvement
over HGCICc despite employing smaller graphs with fewer
nodes and edges. Notably, BRM60 achieves this without using
the computationally expensive M convolutions applied in
HGCICc, demonstrating its potential for efficiency.

In contrast to BRM60, HIGSI60 utilizes larger graphs due to
its inherent hierarchical extraction method. However, it effec-
tively leverages this hierarchy to outperform GatedGCN [7],
despite having smaller graphs and slightly more parameters.
GatedGCN [7] uses four GatedGCN layers [12], a global
sum for readout, and single-scale RAGs for training. This
demonstrates the advantage of using a hierarchical approach
to extract meaningful information from larger graphs without
suffering from computational inefficiency.

While methods like ShapeGNN [18] and H-L Cheby-net [3]
have achieved superior results compared to the proposed mod-
els, they come with trade-offs. These include increased model
complexity, the need for additional processing blocks, and the
use of a spectral approach that requires the calculation of
eigenvalues and eigenvectors of the graph’s Laplacian matrix.

C. Results for HIGSI Model on STL-10 Dataset

Table III presents the performance of various HIGSI model
configurations alongside BRM variants on the STL-10 dataset.
Notably, no prior research has addressed image-graph classi-
fication on this specific dataset. The subscript preceding each
model name indicates the target number of superpixels of the
RAG used for training each BRM model or to create the HRG
representation for training each HIGSI model.

The segmentation quality positively influences the perfor-
mance on STL-10 images. Unlike the experiments conducted
with the CIFAR-10 dataset, models trained on graphs gener-
ated from superpixels obtained via the DISF method outper-
formed those trained on graphs generated from superpixels
obtained via the SLIC method. The superior segmentation

TABLE III
HIGSI MODELS RESULTS ON STL-10 DATASET.

Model # params Superpixel # nodes # edges Avg. Accuracy # Region
Method (± std dev.) Graphs

BRM50 122.122 SLIC 48.46 242.02 0.4848(±0.010) ×
HIGSI50 105,226 SLIC 71.25 491.24 0.5151(±0.009) 7.34
BRM185 122.122 SLIC 193.91 1116.53 0.5303(±0.011) ×
HIGSI185 105,226 SLIC 280.94 2368.54 0.5469(±0.008) 13.76
BRM250 122.122 SLIC 253.75 1498.64 0.5337(±0.008) ×
HIGSI250 105,226 SLIC 366.52 3197.53 0.5481(±0.012) 15.51
BRM50 122.122 DISF 50.00 263.26 0.5024(±0.004) ×
HIGSI50 105,226 DISF 69.77 491.40 0.5608(±0.006) 6.74
BRM185 122.122 DISF 185.00 1124.98 0.5333(±0.012) ×
HIGSI185 105,226 DISF 260.36 2231.07 0.5847(±0.009) 12.36
BRM250 122.122 DISF 250.00 1557.88 0.5445(±0.006) ×
HIGSI250 105,226 DISF 353.53 3150.68 0.5815(±0.004) 14.33

achieved in the base RAG is propagated through the hierarchy,
resulting in improved segmentation at all scales and region
graphs.

It is worth noting that utilizing the HRG representation and
the HIGSI model resulted in significant improvements across
all configurations compared to the equivalent baseline model.
The performance boost was particularly noticeable when using
the DISF method for superpixel generation. The HIGSI50
model trained with DISF-based graphs outperformed all other
baseline models trained exclusively with RAG, even those
trained on graphs with more nodes and edges.

VI. CONCLUSION

This work introduces four distinct multi-scale image-graph
representations. These representations are constructed by ap-
plying hierarchical segmentation techniques to a base graph of
the image, which is a RAG of superpixels. In addition to the
novel representations, two new models, HGCIC and HIGSI,
were introduced. The latter utilizes the proposed Region Graph
Readout function, a mechanism designed to reweight nodes
based on the significance of their associated scale when
obtaining a fixed-size vector from the graph.

Remarkably, HIGSI, trained with the proposed Hierarchical
Region Graph representation, achieved superior or compara-
ble results to other methods that employ spatial GNNs for
the graph-image classification task, despite utilizing smaller
graphs or having fewer model parameters.

VII. PUBLICATIONS AND AWARDS

The author’s dissertation yielded two conference papers
[20], [21] and an article accepted to a journal [22]. The
article [21] was also nominated for the best paper of IEEE
ISM 2023.

ACKNOWLEDGMENT

The authors thank the Pontifı́cia Universidade Católica de
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