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Abstract—In this work-in-progress report we propose a Graph
Convolutional Network (GCN) capable of diagnosing chest x-
rays using radiologist captured data for training. While other
neural networks are capable of making inference on medical
image exams with gaze data, the examples found in literature
use architectures that combine this data with traditional CNNs
that learn from the whole image. Our model, on the other
hand, learns from a graph of gaze fixations as nodes, each
accompanied by a feature vector describing only their region
of observation. Such graph is, naturally, euclidean. Traditional
convolution and readout operations in GCNs are not conceived to
leverage local features and attributes of euclidean graphs, usually
aggregating nodes and edges into a whole-graph representation.
QOur approach divides the graph in a grid, performing such
operations in small regions as to preserve local features. With
this we aim to prove two hypotheses: 1) a model can learn from
specialist gaze data over an image without being paired with
the image in its original structure and 2) it is possible to take
advantage of euclidean graphs by not aggregating local features
in graph convolution and readout layers.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have been a stan-
dard ML tool for learning and inference in domains with eu-
clidean data, such as images and sound. To leverage the power
of the convolution operation into non-euclidean domains, the
Graph Neural Network (GNN) [1] and the Graph Convolu-
tional Network (GCN) [2] have been conceived. Instead of
using a fixed sized kernel, convolution in a graph is a weighted
aggregation of the features of a node and its neighbors’.
GCNs have been adopted in a wide range of applications, such
as recommendation systems; molecular biology; urban traffic
optimization; social network analysis and prediction; among
many others [3].

However, some of the data that can be intuitively thought as
graphs show euclidean properties when modelled as such. This
is the case of gaze tracked data. If one models each eye fixation
as a node, these nodes are distributed in a 2D euclidean space
that represent the observed area. GCNs typically aggregate
all nodes into a graph wide representation (readout) before
feeding this aggregation into an MLP for inference. In doing
so, nodes of different regions of this 2D space are treated
uniformly, possibly losing local particularities.
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It is not uncommon for Machine Learning (ML) medical
imaging applications to learn from images combined with eye
tracking data captured from specialists while examining such
images [4]. The present research is one of such instances. In
this work-in-progress report, we present a strategy to diagnose
chest x-rays (CXRs) using radiologist gaze data, using the
REFLACX [5] dataset. We do so by modelling the gaze
fixations as nodes in a graph, where the features of each
node correspond to the local image features for that fixation.
Contrary to existing approaches, however, our model only
learns from the fixation graph and these localized features,
not performing any learning on the whole medical image.

Hence, the aim of this ongoing research is two-fold: 1)
investigate whether it is possible to generate correct diagnoses
for CXRs using only local image features and eye fixation
data; and 2) while doing so, develop a GNN that takes into
consideration the euclidean nature of the fixation graph.

The following sections describe the current state of this
research, and its possible future directions. Section II presents
the recent works related to our research domain. Section III
describes the structure of the adopted dataset, as well as
its transformation into a graph of gaze fixations. In section
IV we present the proposed model architecture, detailing
its components and how they could attain the preservation
of euclidean local features during the feed forward process.
The current state of the research, as well as its next steps
are presented in section V. We end this paper with a brief
conclusion in VI.

II. RELATED WORK

The references for this work are compiled according to
three research fields we find most relevant: state of the art
graph convolutional network literature (II-A); works that use
gaze-tracking as insight about medical data (II-B); and specific
datasets that can be used to test our hypothesis (II-C).

A. Graph Convolutional Networks

A survey containing industrial applications of graph neural
networks was published in Ref. [3]. Most of the applications



of graphs for inference do not have input data in an euclidean
space..

In computer vision applications, however, data modelled as
euclidean graphs as inputs to GNNSs is a common feature. Ref.
[6] extracts 3D meshes from 2D pose images using a GNN.

The seminal works on GNN form the theoretical basis for
the model proposed in this article. Graph Convolutional Net-
works (GCN) [7] provide a manner to perform the convolution
operation, successful in learning image features, over nodes
of a graph. Similarly to the original convolution operation, a
node n’ in a graph ¢’ will be calculated as some aggregation
of the original node n with its neighbors in graph g. After this
operation was adopted, GCN and GNN became interchange-
able terms. A further development, Graph Attention Networks
(GAT) were first proposed in [2], providing a learnable weight
matrix for the edges, effectively implementing a self-attention
mechanism in GNNS.

Visual GNNs research adapts a lot from both in visual and
NLP transformers [8]-[11]. In the next steps of our work —
detailed in V-A— we intend to apply some of this knowledge
as well.

B. Gaze Data for Inference in Medical Imaging

The term gaze-tracking has two main application in medical
research: 1) understand eye movement behaviour in patients
and 2) extract medical specialists —usually radiologists— gaze
data to elucidate how trained professionals observe medical
exams. Our research is concerned only with the second in-
stance. Precisely in this scope, [4] provides an comprehensive
survey of recent studies where medical gaze is combined with
machine learning models.

In Ref. [12], a GNN is proposed to solve a problem very
similar to ours, diagnosing chest x-rays using gaze data. How-
ever, the devised graph deploys a multi-modal node structure,
using the total amount of gaze time spent in a region as an
extra information to the original image.

Ref. [13] presents a study where eye-tracking was employed
to differentiate between novice and experienced ophthalmolo-
gists while they screened exams for glaucoma.

Ref. [14] examines how image areas observed by experts
for a long time, but not marked as relevant, often contribute
to false positives in NN that classify vulvovaginal candidiasis.
It also presents a model that takes this multi-modal data and
improves the accuracy in detecting the disease.

C. Relevant Datasets

MIMIC-CXR [15] is a dataset of chest x-ray images,
containing 377,110 de-identified data points. It is one of the
largest and most popular medical imaging datasets.

REFLACX [5] and EYE-Gaze [16] are both datasets that
capture radiologists gaze data while examining a subset of
MIMIC x-rays. The former contains 3032 data points and, the
latter, 1038. In the current stage of the research, we are using
REFLACX to train and test our model.

REFLACX: distribution of class labels
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Fig. 1. REFLACX [5] dataset label distribution for 6 abnormalities. For
each abnormality studied, a 0 to 5 likelihood is assigned by the observing
radiologists. In this work, these values were normalized to a [0, 1] interval
and treated as a probability. The significant imbalance between positive and
negative cases is an issue to be tackled during the next steps of the research.
There are more than six abnormalities, but these are the ones shared by all
data-points. Therefore, at this stage of the research, they are the only ones
being considered, as they maximize the available data volume for training.

III. DATASET STRUCTURE

This section provides details of the data structures used
in the project. Section III-A briefly describes the REFLACX
[5] data and its relationship to the original MIMIC-CXR
[15] dataset. Additionally, it also explores REFLACX data
distribution. Section III-B details the fixation graph dataset
that is the actual input to the proposed model and how it is
compiled from REFLACX.

A. REFLACX Structure and Data Distribution

Each REFLACX data-point is a chest x-ray image from
MIMIC-CXR, accompanied by an observation made by a
radiologist. This observation is comprised of this radiologist’s
captured gaze fixations, timed transcript of their recorded
voice, and their final diagnoses (figure 3). Each original
MIMIC image can be the subject of more than one REFLACX
data-point. The dataset is divided into 3 separate phases,
differing from one another only by the types of abnormalities
being screened for. Only the abnormalities present in all three
phases are being considered in this research (figure 1), so that
all of the 3052 data-points can be leveraged together. For each
x-ray image, a bounding box of the chest area is also provided
by the dataset.

As illustrated in figure 1, REFLACX data is significantly
imbalanced in favor of x-rays without abnormalities. This
asymmetry poses a problem for training the model that will
have to be addressed in the next stages of the research.

As for the structure of the fixation data, each data-point
contains a list of gaze fixations. Each fixation contains:

o Start and end timestamps;
e (X, y) gaze position in image coordinates;
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Fig. 2. Transformation of a REFLACX [5] data-point into a graph. DenseNet [17] generates a 7x7x1024 feature map for the corresponding MIMIC-CXR [15]
x-ray. Since each fixation contains the visualized image area around the fixated point itself, it’s possible to crop a 1x1x1024 feature vector from the DenseNet
feature map to represent the fixation region. This feature vector, together with the fixation’s duration time, (X, Y) position, and visualized area limits make up
for a node’s features. An edge exists between nodes if their visualized regions overlap. Its weight is the intersection over union (IOU) between these regions.
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Fig. 3. REFLACX [5] dataset structure summary. Each original MIMIC-CXR
[15] image is examined by one or more radiologists. Each pair of image
and new examination is a REFLACX data-point, containing the diagnoses;
captured gaze fixations; the radiologist’s timed voice transcription; manually
drawn ellipses around found anomalies; and a bounding box around the chest.

o captured pupil area;

o the angular resolution: calculated pixels per degree of
vision, vertically and horizontally;

« the crop of the image that was being displayed on screen
(zoom level);

« the location of this last crop in screen coordinates.

B. Fixation Graph Dataset

Each graph node of our GNN architecture corresponds
to a gaze fixation in a REFLACX data-point, together with
information about the region observed by that fixation in the
image.

The dimensions of this region are modelled as a normal
distribution. The (x, y) position is the distribution mean point

and the standard deviation is one degree of vision, which can
be converted into pixels using the available angular resolution.
This is how it is implemented in REFLACX’s original code
[5] while processing the gaze heatmaps, and we adopted the
same method. To select the area of the image corresponding to
a specific fixation, one needs to select the number of standard
deviations and crop the image around the fixation’s position.
In the experiments performed so far, the crops contain one
standard deviation around the fixations.
Hence, a fixation node structure is as follows:

e (X, y) position inside chest bounding box, normalized to
[0, 1];

o duration of the fixation, in seconds;

« coordinates of the region visualized by the fixation;

« localized image features corresponding to the visualized

region.

For the localized image features, a 7x7x1024 feature map
is generated by feeding the entire x-ray through densenet121
[17]. These features are then cropped in a region corresponding
to the fixation crop, generating a 1024-sized local feature
vector (figure 2).

As for the edges of the graph, many are the possibilities.
Three of them have been considered so far: a) connect fixations
in the order they were observed; b) inverse euclidean distance,
connecting all nodes; and c) intersection over union of fixation
crops. In the current stage of the research, we deemed the last
option to be the most promising. Two nodes have a connecting
edge if their fixation crops overlap, and the edge weight is the
intersection over union (IOU) between these crops. All nodes
have an IOU of 1 with themselves, so a self edge was added.
This prevents silent regression of lone nodes during the graph
convolution, and facilitates all convolution calculations.

IV. METHODS

This section describes in details the approach used to ad-
dress the research questions proposed in Section I. Subsection
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Fig. 5. Convolution operation using a grid. Message passing is performed on the graph considering all its edges. Each node feature is updated according to
their neighbors’. The nodes are then divided by their spatial position in a grid. Each of the grid’s cells contains a separate linear layer that learns only from
that cell’s nodes. The nodes are then updated with the output of this linear layer to be used either by a new convolution, or by the readout layer.

Il - Grid Readout Layer

Aggregating nodes' features per grid cell

For each grid cell i

= sum(durations) || mean(post
convolution features)

v

Concatenate all grid's r

Final FC Layers Predictions

Fig. 6. Graph readout using a grid and final fully connected layers. After all convolution operations, a readout operation is performed on each grid cell. All
nodes in a cell are aggregated: their gaze durations summed and their convolved features averaged. The grid is then flattened and forwarded to a series of

fully connected layers for predictions.

IV-A provides the general architecture of the proposed model
(figure 4) and the following subsections dive into further
details of each individual component. The implementation is
available at [18]. A detailed explanation on the adjustable
parameters particular to this problem is presented at the end
of this section.

Our model differs from other GNN implementations in the
sense that our data generates, not only an euclidean graph,

but a very particular kind of euclidean graph. Since all chest
x-rays are oriented in the same way and the morphology
of individual chests are similar compared to other image-
related ML problems, we can assume that fixations in the same
spatial regions are observing similar physiological features.
The center is the heart, below is the diaphragm, etc.

General graph ML architectures frequently address prob-
lems in non-euclidean spaces. As a result, they are not



concerned with local spatial information. In the convolution
stage, this translates to all nodes features being fed into the
same NN for feature learning. If we approach REFLACX in
the same way, one NN would be fed both shoulder, lung,
and heart features, for instance. In parallel, during the readout
phase of a typical GNN, all nodes and edges are aggregated
into a single graph summary, being it a sum, mean, or max,
for example.

For these reasons, our proposed model attempts to preserve
local features by performing convolution layer activation and
readout using a square grid that divides the graph nodes
into smaller, more similar regions (figures 5 and 6). These
grid dimensions are user-defined, but are the same for both
operations.

A. Model Architecture

The main data-flow of the proposed model (figure 4) con-
sists in assembling the graph using the REFLACX fixations
and the localized image features obtained by cropping the x-
ray’s feature map from densenetl121 [17]. This graph is then
fed through two convolution layers. The convolved graph is
then summarized by performing a readout operation using a
grid, and the resulting features are fed through a regular MLP
for predictions. As of now, this problem is being treated as
a regression, the predictions being the probabilities of the
presence of each possible abnormality listed in figure 1.

At the current stage of this research, the whole image is
not being examined by the model. The model’s only access to
the image is through the fixation nodes’ cropped densenet121
features. This is being done to verify whether the eye gaze
information is enough to predict dataset labels.

B. Grid Convolution

Convolution in GNNs is a two-stage process: 1) assign a
node’s features to be an aggregation of its neighbors’ —and
itself— correspondent features and 2) run each resulting new
feature through a NN that learns node-level information.

As for stage (1), our proposed model does not differ from
traditional GNNSs. The first step in our convolution is the con-
catenation of positions, time duration, and 1024 densenetl121
features into a single new feature vector. For each node, this
new feature vector is set to be an average of its neighbors’
corresponding features, weighted by their respective edges. It
is important to recall that each node is adjacent to itself.

Stage (2), however, differs from traditional GNNs (figure
5). Instead of running every convolved feature through the
same NN, our module divides the nodes into a grid. Each
grid cell contain one NN of its own, so it learns features only
from nodes in close proximity. This is due to an intuition
that features considered important for the heart may not be
so significant to the lungs, for example. We believe that this
approach, should it prove itself successful, could be adopted
in other problems that deal with euclidean graphs with fixed
orientation.

The resulting features, after being fed through the NN, are
the input of any subsequent convolution layers.

It is important to distinguish our approach from the one
adopted by GazeGNN [12], referenced in section II-B, since
their domain and keywords are similar. The main difference
of our model is that the nodes are the fixations themselves,
enhanced with local features. GazeGNN divides the image in
a grid and uses each patch, enhanced by the gaze data, as
a node in their graph. Our approach does not use the whole
image as an input, precisely because the hypothesis we are
trying to prove is that it is possible to make inference about
an x-ray using only the regions observed by the radiologist.

C. Grid Readout

Similar to the second stage of the convolution, our readout
operation differs from traditional GNNs, as illustrated in
Figure 6. While usual readout operations aggregate all nodes —
and possibly edges— into a single representation for the whole
graph, we perform this aggregation by grid cells. For each
cell, the process takes the sum of the cell’s nodes time and
the average of the features that went through the convolution
NNs. This generates a matrix of aggregations, which is then
flattened and fed to a regular MLP for predictions.

D. Degrees of Freedom: Adjustable Parameters

The problem at hand, and the implementation chosen, have
particularities when compared to traditional neural networks.
This section presents the parameters that can be changed and,
therefore, require experimentation. Determining the sequence
of layers and their dimensions are common issues in all ML
problems, so they will not be explored in this article.

As stated in III-B, the area of the image actually observed
by a fixation is given by a normal distribution centered around
its position with standard deviation of one degree of viewing
angle. In the current stage of the research, we are cropping
the image with one standard deviation.

Both the convolution and readout operations (IV-B and
IV-C) employ a 4x4 grid to divide the fixation graphs. The
higher this dimension, more FC layers will be created to deal
with smaller, more particular, image regions. This, in theory,
generates a more detailed representation. However, smaller
grid cells mean less nodes per cell, and even a larger number of
empty cells. Smaller grid dimensions, on the other hand, mean
larger cells and the loss of more localized features. So, finding
the right number for this parameter is crucial in generating a
model useful for solving the problem at hand.

The fixation graph edges, as detailed in III-B, are being
considered as the IOU between a pair of nodes. Not only
would this IOU differ as the number of standard deviations in
a fixation crop change, but there would be a myriad of other
edge options to try should this approach proves insufficient.
An interesting edge type to be tried is an attention layer,
making the adjacency matrix learnable. This would make this
implementation resemble a GAT [2].

V. CURRENT STATE OF THE RESEARCH

At the present moment, the implementation of the proposed
model is complete and the training process runs through all



data with low loss. However, given the skewness of the dataset
(figure 1), and possibly other factors, the model favors predic-
tions of value zero, meaning no abnormalities for each possible
type. Dealing with this imbalance is crucial to improve the
training process to a usable state.

Moreover, while separate NNs for each grid cell provide
local feature learning, they also divide the dataset, making
each NN learn from less graph nodes.

A. Next Steps

The adjustment of the distribution of data mentioned in the
previous section is the most urgent step to perform. It poses
a challenge, since eliminating negative samples to a more
evenly balanced subset would yield far too few data-points.
This could be reasonable if more of our learnable parameters
could benefit from transfer learning. However, apart from the
feature extraction, that is not the case.

Experimenting with different values for the model param-
eters mentioned in IV-D is also a necessary step. Multiple
models with different parameters will have to be benchmarked
against each other, to empirically determine the best configu-
ration.

Parallelly, an approach that preserves local features using
positional embeddings is being studied. Opposite to the learn-
able embeddings in [12], ours would need to be static, as
gaze graphs have no fixed structure. Not only that, positional
embeddings for such graphs need to be two-dimensional,
as one of the approaches in [8]. This is being studied as
an alternative to the grid implementation, specifically during
graph convolution.

Lastly, this implementation is the first experiment in this
research and is not, by all means, the ultimate. Other ap-
proaches are being formulated simultaneously, each bringing
new bibliographic references and insights into the problem.
One continuous aspect of our work is searching for datasets of
images which contain gaze data and even proposing methods
of assembling such datasets.

VI. CONCLUSION

This paper detailed the current state of a piece of research
that proposes a GCN architecture to diagnose REFLACX
CXRs using gaze data with localized image features.

Our GCN model performs graph convolution and readout
operations while preserving particularities of different image
regions. This is achieved by having distinct learnable param-
eters representing each of these regions.

If proven successful, this approach would demonstrate two
hypotheses: 1) using a specialist gaze data with localized
image features is be enough for inference, without the need
of a neural network that learns from the whole image; 2) this
GCN architecture is also efficient for other euclidean graph
domains.
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