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Abstract - This paper reviews various image syn-1

thesis methods, highlighting key techniques such as2

Convolutional Neural Networks (CNNs), Generative3

Adversarial Networks (GANs), Variational Autoen-4

coders (VAEs), and Diffusion Models. We analyze5

commonly used datasets and evaluation metrics,6

including SSIM, MS-SSIM, FID, IS, and LPIPS. Our7

findings show a preference for SSIM in structural8

quality assessment, while FID and IS are favored9

for overall quality and diversity. The growing use of10

LPIPS indicates a shift towards advanced percep-11

tual metrics. This review emphasizes the necessity12

of combining multiple metrics for a comprehensive13

evaluation of image synthesis models, aiding future14

research in the field.15

I. INTRODUCTION16

Image synthesis is a field of Artificial Intelligence (AI)17

developed with the intention of generating artificial images18

from various types of input data, such as text, audio, images,19

or sketches. This field has garnered increasing interest from20

the scientific community, spurred by innovations like the intro-21

duction of convolutional neural networks. These advancements22

have enabled the generation of images not only from other23

images but also from text, sketches, speech, and additional24

sources [1].25

The advancement in the high-performance image synthesis26

process occurred with the introduction of generative adver-27

sarial Networks [2]. These models are composed of two28

networks: a generator, which tries to create realistic images,29

and a discriminator, which tries to distinguish between real30

and generated images. This competition between the networks31

results in a continuous improvement in the quality of the32

generated images.33

Another important technique is the variational autoencoder34

[3], a type of generative model that consists of an encoder and35

a decoder trained to minimize the reconstruction error between36

the original data and the encoded-decoded data. Additionally,37

Diffusion Models [4] are also relevant in the field of image38

synthesis. These models start by slowly adding random noise39

to the input through direct diffusion steps, learning to reverse 40

the diffusion process to reconstruct the input from the noise. 41

The relevance of studying image synthesis lies in its vast 42

potential applications across multiple domains. Scientific re- 43

search can benefit from synthesized images for simulation and 44

analysis. The ability to generate realistic images from various 45

input types expands the possibilities and utility of AI in these 46

areas, driving further innovation and development. 47

Evaluating image synthesis models is crucial for several 48

reasons. Firstly, the quality of generated images must meet 49

specific standards to be useful in practical applications. Metrics 50

such as Structural Similarity Index (SSIM), Fréchet Incep- 51

tion Distance (FID), and Inception Score (IS) help quan- 52

tify the structural accuracy, overall quality, and diversity of 53

the generated images, respectively. Secondly, understanding 54

the strengths and weaknesses of different models allows re- 55

searchers to make informed decisions about which models to 56

use for specific tasks. 57

In summary, the field of image synthesis has advanced 58

rapidly thanks to the development of various innovative tech- 59

niques. These approaches allow for the generation of high- 60

quality images from diverse data sources, expanding the pos- 61

sibilities for applications in various areas such as art, entertain- 62

ment, healthcare, and scientific research. Rigorous evaluation 63

of these models is essential to ensure their effectiveness and to 64

drive further advancements in image synthesis technologies. 65

Despite these advances, there remains a critical need to con- 66

tinuously evaluate and improve these models. The relevance of 67

this study lies in its aim to provide a comprehensive evaluation 68

of the different models and metrics used in image synthesis. 69

By assessing these models, we can identify their strengths 70

and weaknesses, which is essential for guiding future research 71

and development. This evaluation is particularly important 72

given the diverse applications of image synthesis, where the 73

quality and reliability of generated images can have significant 74

impacts. 75

A. Article Structure 76

This article presents the following sections: 77



Section III: This section presents the benchmark78

datasets popularly used to train various models, with79

a brief review of their compositions.80

Section IV: This section will present the evaluation81

metrics used to validate the models.82

Section V: This section will present an analysis, and83

discussion, of the results obtained.84

Section VI: This section provides the conclusion of85

the current study, summarizing the main findings and86

their implications. It will also outline future work to87

address the limitations identified in this research.88

II. RESEARCH METHODOLOGY89

Parsifal1 is being used as a support tool for conducting90

the systematic literature review, guiding and implementing91

the process. Consequently, the following methodology is92

organized according to the software stages, encompassing:93

defining objectives; establishing PICOC criteria; formulating94

research questions; identifying sources or research databases;95

establishing selection criteria (inclusion or exclusion); data96

extraction; presentation of results and discussion.97

A. PICOC Criteria98

The Parsifal tool incorporates the PICOC method, which99

is an approach to formulate and refine research questions by100

integrating five fundamental criteria: Population, Intervention,101

Comparison, Outcomes, and Context. The delineation of the102

PICOC criteria is organized as follows:103

• Population: Articles relevant to the research topic, avail-104

able in academic journals or presented at conferences.105

• Intervention: Quantitative and qualitative methods used to106

evaluate the quality of images generated by the models.107

• Comparison: Assessing the effectiveness and suitability108

of different metrics in evaluating image synthesis models.109

• Outcomes: Determining which metrics are most accurate110

and representative of the quality of generated images,111

and how their selection influences the development and112

refinement of image synthesis models.113

• Context: Applications in academic research, including114

areas such as computer vision.115

B. Research Questions116

The formulated research questions are directly related to117

evaluation metrics in image synthesis models. Table I shows118

the research questions along with their objectives.119

C. Search Key and Research Databases120

The search for articles was guided by a carefully crafted121

search key, aiming to specifically cover the relevant topics for122

this systematic review. The search key used was the following:123

• (“image synthesis” OR “image generation” OR124

“synthetic images”) AND (“evaluation metrics” OR125

“objective metrics” OR “automatic evaluation” OR126

“performance metrics” OR “automated evaluation127

metrics” OR “image quality metrics”)128

1(https://parsif.al)

This key was crafted by combining terms relevant to the 129

research scope. The use of logical operators like “AND” 130

allowed the inclusion of multiple aspects, ensuring that the 131

retrieved articles simultaneously addressed image synthesis, 132

evaluation metrics, and other elements related to the generation 133

and quality of synthetic images. 134

The search was conducted on the following platforms: IEEE 135

Digital Library, Google Scholar, CAPES Journals, and Scopus. 136

This multi-database approach aims to ensure broad coverage, 137

encompassing relevant journals and conferences in the areas 138

of interest. 139

D. Inclusion and Exclusion Criteria 140

After the initial search phase using the search key in the 141

selected databases, the process of classifying the identified 142

studies was carried out, following the previously established 143

inclusion and exclusion criteria. These criteria were essential 144

to ensure the selection of relevant studies and the exclusion 145

of those that did not meet the specific requirements of the 146

research scope. 147

The inclusion criteria (IC), presented in Table II, were 148

defined to identify studies with specific characteristics relevant 149

to the research scope. 150

On the other hand, the exclusion criteria (EC), detailed in 151

Table III, were determined to eliminate studies that did not 152

meet the desired requirements or presented specific limitations. 153

These inclusion and exclusion criteria were applied during 154

the analysis of the search results, ensuring the relevance of the 155

selected studies for the next phase of the systematic review. 156

E. Quality Assessment 157

To ensure the validity and relevance of the studies included 158

in the review, a quality assessment checklist was employed 159

using the Parsifal tool. This checklist provides a systematic 160

framework for assessing the methodological quality of the 161

selected studies, ensuring that only robust and reliable research 162

is considered in the final analysis. Table IV shows how this 163

checklist was developed. 164

The responses to the criteria were categorized as “Yes”, 165

“Partially”, or “No”, with respective weights of 1.0, 0.5, and 166

0.0. The maximum quality score is 10.0, calculated based on 167

the number of questions and the highest weighted response. 168

For a study to be considered of sufficient quality for inclusion 169

in the review, it must achieve a minimum score of 7. 170

III. DATABASES 171

This section presents the most commonly used datasets in 172

the field of image generation. 173

ImageNet 2: A large-scale database consisting of over 174

14 million images, including 1,034,908 human body images 175

annotated with bounding boxes. 176

COCO val2014 dataset 3: A dataset used for segmenta- 177

tion, object detection, keypoint detection, and captioning. The 178

dataset has various features instantiated in 328,000 images. 179

2https://image-net.org/
3https://cocodataset.org/#home



TABLE I
RESEARCH QUESTIONS AND THEIR OBJECTIVES

Research Question Objective
Q1 What are the most used metrics to evaluate the quality of images generated by artificial intelligence models?
Q2 How do different quality evaluation metrics compare in terms of accuracy and reliability when evaluating generated images?
Q3 Are there significant differences in the applicability of quality evaluation metrics between different types of images?
Q4 How have image evaluation metrics evolved over time in response to advances in image generation models?

TABLE II
INCLUSION CRITERIA

ID Inclusion Criteria (IC)
IC1 Articles written in Portuguese or English
IC2 Studies discussing or using automatic evaluation metrics
IC3 Studies published in the last 5 years to ensure the review covers the most current technologies and methods.
IC4 Studies involving any AI model capable of generating images
IC5 Studies using automatic and objective metrics for evaluating the quality of images generated by AI models.
IC6 Original research articles published in peer-reviewed journals or conferences.

TABLE III
EXCLUSION CRITERIA

ID Exclusion Criteria (EC)
EC1 Case studies with no applicability or generalization beyond the specific context studied.
EC2 Studies published more than 5 years ago unless they are of historical significance to the field.
EC3 Articles not subjected to peer review.
EC4 Articles for which the full text is not accessible or requires payment.
EC5 Studies focusing on applications unrelated to image generation.
EC6 Studies published in languages other than English or Portuguese.
EC7 Studies that do not clearly specify the methodologies used to apply or evaluate image quality metrics.
EC8 Articles focusing exclusively on subjective evaluations of image quality without objective analysis.

TABLE IV
QUALITY ASSESSMENT CRITERIA

ID Question
Q1 Are the study objectives clearly defined and specific?
Q2 Are the metrics used to evaluate image quality clearly defined and justified?
Q3 Are details provided on how the metrics are calculated and interpreted?
Q4 Does the study discuss the validity and reliability of the metrics used?
Q5 Does the study specify the data sources used to train and test the models?
Q6 Are the limitations of the data, such as bias or sample size, mentioned?
Q7 Are the statistical analysis techniques used appropriate for the data type and study objective?
Q8 Does the discussion contextualize the results within the field of AI image generation?
Q9 Are the results presented clearly and in detail?

Q10 Does the study address the generalization of the results to different types of images or usage conditions?

Market-1501 4: A dataset for person identification, contain-180

ing 32,668 annotated bounding boxes of 1501 individuals.181

DeepFashion 5: A large-scale clothing database containing182

over 800,000 images. Each image in this database is labeled183

with 50 categories and 1000 attributes.184

CelebA 6: A facial attribute database containing more185

than 200,000 images of celebrities, each with 40 attribute186

annotations.187

CIFAR-10 7: This dataset contains more than 60,000 images188

organized into 10 classes: automobile, airplane, deer, bird, cat,189

dog, frog, truck, ship, and horse.190

CUB 200 8: One of the most used datasets for fine-grained191

4https://paperswithcode.com/dataset/market-1501
5https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
6https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
7https://www.cs.toronto.edu/∼kriz/cifar.html
8https://www.tensorflow.org/datasets/catalog/caltech birds2011?hl=en

visual categorization tasks. This database contains 11,788 192

images of 200 bird subcategories. 193

Oxford 102 flower 9: A collection of 102 flower categories 194

commonly found in the United Kingdom, containing between 195

40 and 258 images per category. 196

MNIST 10: Widely used to train various image processing 197

systems. It contains over 70,000 images of handwritten digits. 198

Omniglot 11: A database of handwritten characters, con- 199

taining 1,623 different handwritten characters collected from 200

50 different alphabets. 201

VGG-Face 12: A facial identity recognition database con- 202

taining over 2,622 identities and consisting of more than 2.6 203

9https://www.tensorflow.org/datasets/catalog/oxford flowers102?hl=en
10https://www.tensorflow.org/datasets/catalog/mnist?hl=en
11https://github.com/brendenlake/omniglot
12https://paperswithcode.com/dataset/vgg-face-1



million images.204

IV. EVALUATION METRICS205

To evaluate the performance of image synthesis models,206

both qualitative and quantitative metrics are used:207

• Qualitative Metrics: Based on user observations and208

preferences, focusing on the quality and correspondence209

of generated images to human perception. These assess-210

ments can vary between individuals, be time-consuming,211

and challenging to find suitable participants.212

• Quantitative Metrics: Using statistics to evaluate the213

model provides a more robust and reliable assessment,214

using numerical values to measure the quality and effec-215

tiveness of models, eliminating the subjectivity inherent216

in qualitative assessments.217

Proposed by Salimans et al. in 2016, the IS [5] is a218

quantitative evaluation metric used to measure both the quality219

and diversity of generated images. A good model should be220

able to generate high-quality images with great variety. This221

metric is defined by Equation 1.222

IS = exp
(
Ex∼pg

[DKL (p(y|x) ∥ p(y))]
)

(1)

In this formula, p(y|x) is the distribution of the classifica-223

tion of the generated images x, and p(y) is the marginal dis-224

tribution p(y) =
∫
p(y|x)pg(x)dx. The IS uses the Kullback-225

Leibler (KL) divergence to measure how much the distribution226

of the generated classes diverges from the marginal distri-227

bution, encouraging the production of images that are both228

distinct and realistic. As stated by Barratt and Sharma, the229

introduction of IS aims to capture two important qualities of230

a generative model [6]:231

• Image Clarity: Generated images should present distinct232

and sharp objects, meaning the entropy of p(y|x) should233

be low.234

• Image Diversity: The generative model should produce a235

wide variety of images covering all classes of ImageNet,236

indicating that the entropy of p(y) should be high.237

When a generative model meets both conditions, a high238

Kullback-Leibler (KL) divergence between the distributions239

p(y) and p(y|x) is expected, resulting in a high IS value.240

According to Salimans et al. and Betzalel et al., although241

IS correlates with human evaluations of image quality, it has242

limitations [5], [7]. For example, since IS only considers the243

generated images and does not compare them with real ones,244

it does not adequately assess the generator’s effectiveness.245

Additionally, IS does not indicate how well the generated246

images correspond to the provided input.247

A commonly used quantitative measure for assessing image248

synthesis model quality is the FID [8]. This metric considers249

not only the generated images but also the real ones, calculat-250

ing the distance between the distribution of features extracted251

from the generated images, pg(x), and from the real images,252

preal(x). The formula for FID is presented in Equation 2:253

FID = ∥µreal −µg∥2+Tr(Σreal +Σg − 2(ΣrealΣg)
1/2) (2)

In this equation, µreal and µg are the means of the features 254

of the real and generated images, respectively. Σreal and Σg 255

are the covariance matrices of the features of the real and 256

generated images, respectively. Tr denotes the trace operation 257

of a matrix. However, as noted by Salimans et al. and Betzalel 258

et al. [5], [7], since the distance between generated and real 259

images depends on extracted features which can be affected 260

by artifacts, the result can be impacted even by a small artifact 261

in the feature space. 262

The Multi-Scale Structural Similarity (MS-SSIM) [9] is 263

designed to evaluate the quality of generated images by 264

comparing them with real images to measure their similarity. 265

The basic principle of MS-SSIM is that the human visual 266

system is effective at perceiving structural information in the 267

environment, thus measuring the structural similarity between 268

two images can be a way to assess their visual quality. 269

The MS-SSIM metric value ranges from 0 to 1, with values 270

closer to 1 indicating greater perceptual similarity between 271

the compared images. Equation 3 shows the formula used for 272

calculating MS-SSIM. 273

MS-SSIM(x, y) = [lM (x, y)]
αM

M∏
j=1

[cj(x, y)]
βj [sj(x, y)]

γj

(3)
In this equation, lM (x, y) is the luminance comparison at 274

the highest scale, cj(x, y) and sj(x, y) are the contrast and 275

structure comparisons at scale j. The αM , βj , and γj are the 276

weights applied at each scale j and M represents the total 277

number of scales. 278

MS-SSIM is an enhanced version of the SSIM [10], which 279

measures the similarity between two images at multiple scales 280

through successive downsampling steps. This process allows 281

for the incorporation of details at different resolutions. Starting 282

with the calculation of contrast and structural comparisons, 283

iteratively, a low-pass filter is applied, and the image resolution 284

is reduced by a factor of 2 after each application. 285

Like the other evaluation metrics mentioned, MS-SSIM and 286

SSIM also have their limitations, such as being computa- 287

tionally more intensive than pixel-based metrics, and their 288

performance can vary depending on the specific content of 289

the image and application [11]. 290

Another notable objective metric is the Learned Perceptual 291

Image Patch Similarity (LPIPS) [12]. This metric aims to 292

replicate human judgment on the similarity between two im- 293

ages, measuring the differences between the generated image 294

and the corresponding real image. LPIPS calculates these 295

differences in terms of visual features extracted from a pre- 296

trained neural network. Regarding LPIPS values, higher values 297

indicate greater similarity between the generated image and the 298

real image. 299

V. RESULTS ANALYSIS 300

In conducting this literature review, several studies on 301

image generation methods were selected. Table V summarizes 302

these studies, providing a comprehensive view of the different 303



approaches and resources used in image generation, allowing304

for a comparison between the approaches in the field.305

TABLE V
SELECTED STUDIES FOR LITERATURE REVIEW

Author Year Input Data Type Dataset
[13] 2019 Image DeepFashion
[14] 2019 Image MNIST, Flower
[15] 2020 Sketch CelebA
[16] 2020 Sketch ShoeV2, ChairV2
[17] 2020 Text CUB 200, Oxford102
[18] 2020 Speech CUB200, Oxford102
[19] 2020 Image CelebA
[20] 2020 Sketch Sketchy, ImageNet
[21] 2020 Text COCO, MNIST
[22] 2020 Image Market1501, DeepFashion
[23] 2021 Image DeepFashion
[24] 2021 Text CUB 200, Oxford102
[25] 2021 Image MNIST, Omniglot, VGG-Face
[26] 2021 Speech CUB200, Oxford102
[27] 2021 Text COCO

Table VI provides an overview of the evaluation metrics306

applied in the reviewed articles. It shows that each study307

is evaluated using one or more of these metrics, reflecting308

the methodological diversity and different approaches adopted309

in current literature. The listed metrics contribute to the310

evaluation of the generated image quality in different ways,311

as discussed in Section IV.312

TABLE VI
EVALUATION METRICS APPLIED IN THE STUDIES

Author SSIM MS-SSIM FID IS LPIPS
[13] x x x x
[14] x
[15] x x x
[16] x x
[17] x
[18] x x
[19] x x x
[20] x x
[21] x
[22] x x
[23] x x
[24] x
[25] x x x
[26] x x
[27] x x

Table VI highlights how different studies have prioritized313

various aspects of image quality. For example, some studies314

focused on structural similarity (SSIM and MS-SSIM), while315

others worked with global quality and element diversity as-316

sessments (FID and IS).317

A. Discussion of Results318

In this section, we discuss the implications of the results319

presented in tables V and VI, evaluating the approaches320

adopted by the different studies and their evaluation metrics.321

The studies analyzed indicate a significant diversity in322

image generation techniques, ranging from sketches and text323

to images and speech as input data. The variety of input data324

reflects the flexibility and comprehensiveness of contemporary325

image synthesis methods, which seek to simulate the human 326

ability to create images from various forms of representation. 327

We note that the most widely used databases, such as Deep- 328

Fashion, MNIST, CelebA, CUB200 and Oxford102, provide 329

a wide spectrum of challenges for image synthesis models, 330

contributing to the robustness of the developed methods. 331

The analysis of the evaluation metrics reveals a considerable 332

preference for SSIM for the evaluation of the structural quality 333

of the generated images, present in seven of the fifteen studies 334

analyzed. The choice of SSIM can be attributed to its ability to 335

capture important information about the luminance, contrast, 336

and structure of the images, crucial elements for the human 337

perception of visual quality. 338

On the other hand, the MS-SSIM metric, an extension of 339

SSIM that incorporates evaluation at multiple scales, was used 340

only once. The low adoption of MS-SSIM may be due to its 341

additional complexity and greater difficulty of interpretation, 342

despite its potential superiority in providing a more detailed 343

and comprehensive analysis of structural quality at different 344

levels of detail. 345

The FID metric is present in ten of the fifteen studies. This 346

metric is particularly effective in identifying subtle discrepan- 347

cies that may not be captured by direct similarity-based metrics 348

such as SSIM. 349

Furthermore, IS was used in nine of the studies, often 350

in conjunction with FID, thus reflecting a complementary 351

approach, where researchers seek an assessment considering 352

both the quality of the individual images and the diversity of 353

the generated set. 354

The use of LPIPS in seven of the studies analyzed indicates 355

a trend toward adopting more sophisticated perceptual metrics. 356

LPIPS, unlike traditional metrics, learns directly from human 357

perception, providing an assessment more aligned with how 358

humans perceive image quality. Its inclusion suggests that 359

researchers are increasingly interested in understanding how 360

image synthesis methods perform in terms of perceptual 361

quality, beyond purely technical assessments. 362

A critical aspect to consider is the combination of different 363

metrics to obtain a more robust assessment. The analysis of the 364

studies suggests that no single metric is sufficient to assess the 365

quality of the generated images. For example, while SSIM and 366

FID provide data on structural similarity and global quality, IS 367

and LPIPS offer insights into diversity and human perception. 368

However, there are important limitations to be acknowl- 369

edged. For example, variability in the datasets used can 370

significantly influence evaluation results. Databases such as 371

MNIST and CelebA have very different characteristics, and 372

the effectiveness of a model can vary dramatically depending 373

on the dataset used. These differences can lead to variations 374

in how models perform across these datasets, highlighting 375

the need to consider dataset-specific factors when interpreting 376

validation metrics. As a result, conclusions drawn from one 377

dataset may not be directly applicable to another without a 378

consideration of these underlying differences. 379



VI. CONCLUSION AND FUTURE WORK380

In this paper, a brief literature review on image synthesis381

methods was conducted, examining various approaches, eval-382

uation metrics, and commonly used datasets in this field.383

The analysis of the use of metrics to evaluate model quality384

revealed a significant preference for SSIM in assessing the385

structural quality of images, while FID and IS were used to386

measure the overall quality and diversity of generated images.387

The adoption of LPIPS highlighted a growing trend towards388

using perceptual metrics, aligned with human perception.389

The results of this review suggest that an approach combin-390

ing multiple evaluation metrics is essential for understanding391

the quality of generated images. Allowing researchers to392

evaluate images from multiple perspectives, providing a more393

comprehensive view of the effectiveness of the methods.394

While this study has provided insight into the current state395

of the image synthesis field and its evaluation metrics, other396

areas remain under investigation. Future work will focus on:397

1) Expanding the Dataset. We plan to include a wider398

variety of datasets to better understand how different399

models perform across various types of input data.400

2) Exploring New Metrics. Exploration of additional per-401

ceptual metrics to complement SSIM, FID, and IS,402

providing a more holistic evaluation of image quality.403

3) Longitudinal Studies. Conducting longitudinal studies404

to observe how model performance evolves over time405

with continuous training and adaptation to new data.406
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