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Abstract—Machine learning has significantly advanced health-
care by aiding in disease prevention and treatment identification.
However, accessing patient data can be challenging due to privacy
concerns and strict regulations. Generating synthetic, realistic
data offers a potential solution for overcoming these limitations,
and recent studies suggest that fine-tuning foundation models
can produce such data effectively. In this study, we explore the
potential of foundation models for generating realistic medical
images, particularly chest x-rays, and assess how their perfor-
mance improves with fine-tuning. We propose using a Latent
Diffusion Model, starting with a pre-trained foundation model
and refining it through various configurations. Additionally, we
performed experiments with input from a medical professional
to assess the realism of the images produced by each trained
model.

I. INTRODUCTION

In recent years, Machine Learning (ML) has played a crucial
role in healthcare. For instance, in disease prevention and treat-
ment, ML can help analyze large datasets to identify trends and
predict disease outcomes, such as modeling the progression
and treatment of cancerous conditions [1]. Nevertheless, the
adoption of ML techniques in healthcare has been slow due
to factors like scarcity of patient data, data privacy concerns,
regulatory requirements, and the critical nature of healthcare
decisions [2], [3].

One of the main barriers to accessing patient medical data is
the need to protect sensitive and confidential information from
unauthorized access. Additionally, the lack of standardized
records and the effort required to collect medical data pose
significant challenges [4], [5]. Generating synthetic, realistic,
and high-quality medical data could be a viable alternative to
mitigate some of these issues. The industry predicts a signifi-
cant increase in the availability of synthetic data in the coming
years, potentially doubling the amount of real data currently
available [6]. Examples include generative models for creating
photorealistic images from natural language descriptions [7]
and improving GAN-based (Generative Adversarial Network)
models’ performance on super-resolution images [8].

In the context of medical images, generative models may
offer a practical solution, with some work focusing on fine-
tuning foundation models using small datasets [9]. Foundation
Models (FMs) are machine learning models trained on a

wide range of generalized and unlabeled data, typically using
self-supervision techniques. Examples of Foundation Models
include ELMo [10], GPT-3 [11], CLIP [12], ResNet [13],
DALL-E [14], and Stable Diffusion [15]. These models
have achieved significant advancements in various complex
tasks [16], such as Question Answering [11], Knowledge Base
Construction [17], and Information Retrieval [18]. Fine-tuning
such models targets the foundation model generalization ca-
pabilities into specific applications.

One example is the MedCLIP project [19], where a
Contrastive Language-Image Pre-Training (CLIP) model was
adapted using the ROCO dataset [12], which includes fine-
tuned images and corresponding captions. Researchers claim
that the adjusted model, MedCLIP, can identify higher-level
characteristics such as the image modality, distinguishing
between PET (Positron Emission Tomography) scans and
ultrasound scans. Other studies have used generative model
approaches for various purposes, including synthesizing real-
istic medical data [20], [21] and augmenting datasets for deep
learning model training [8].

In this work, we present an initial exploration of the capa-
bilities of foundational models on generating realistic medical
images and how their performance is impacted by fine-tuning.
We use a small dataset during the fine-tuning process to
assess the ability of FMs to learn effectively with limited
data. We focus on generating chest x-ray images, considering
healthy and unhealthy diagnoses. We propose utilizing a Latent
Diffusion Model (LDM) approach, employing a pre-trained
foundation model as a basis and later fine-tuning it with dif-
ferent configurations. Furthermore, we conducted experiments
with the assistance of a medical professional to evaluate the
realism of images generated by each model trained.

The remainder of this work is organized as follows: Sec-
tions II presents related work that has played an important role
in understanding different approaches to generating synthetic
medical data. Section III details our proposed method for
generating synthetic medical images. Section IV presents the
experiments conducted and preliminary results achieved. Fi-
nally, Section V presents our final considerations, limitations,
and possible future contributions.



II. RELATED WORK

The literature presents various image-generated techniques,
often based on a textual description. Chen et al [22] proposed
Re-Imagen (Retrieval-Augmented Text-to-Image Generator), a
generative model that utilizes retrieved information to produce
accurate images. It is distinguished by its capability to generate
faithful images, even for rare or never-before-seen entities.
Zhou et al. [23] introduced LAFITE (LAnguage-Free traIning
for Text-to-image gEneration) to address one of the major
challenges in training text-to-image generation models: the
requirement for a large number of image-text pairs. The
authors claim that their proposed model can be trained without
any text data, and it has shown promising results.

Focusing on medical images, Pinaya et al. [21] proposed
a model to generate synthetic images from high-resolution
brain MRIs. Their model uses data to learn the probabilistic
distribution of brain images based on covariates like age, sex,
and brain structure volumes. The authors employed Latent
Diffusion Models (LDM), which combine autoencoders to
compress input data into a lower-dimensional latent represen-
tation with the generative modeling properties of diffusion
models. The compression model, crucial for enabling the
scalability of high-resolution medical images, was trained
using a combination of perceptual loss and an adversarial
objective based on patches—specific small areas of an image
used to modify or manipulate parts of the image to create
adversaries or deceive machine learning algorithms.

Ali et al. [24] investigated medical image synthesis using
diffusion models. Initially, the authors used a pre-trained
DALLE2 [14] model to generate lung x-ray and CT images
from text prompts, then, they trained a stable diffusion model
on 3,165 x-ray images. For evaluation, two independent ra-
diologists conducted a qualitative analysis by labeling ran-
domly chosen samples as real, fake, or uncertain. The results
indicated that the diffusion model could effectively translate
features specific to certain medical conditions into chest X-
rays or CT images.

Packhauser et al. [25] utilized (LDM) to generate high-
quality chest x-ray images while preserving the privacy of
sensitive biometric information. Conditional information was
embedded using a trainable lookup table combined with cross-
attention at the U-Net bottleneck. The model was trained
on a dataset of chest X-rays from 30,805 patients, including
metadata with 14 abnormality labels and an additional class
for healthy individuals. The generated dataset was evaluated
in a thoracic abnormality classification task, and the approach
outperformed GAN-based methods.

Other recent work focuses on image generation for dataset
augmentation. Sundaram et al. [6] proposed using Genera-
tive Adversarial Networks (GANs) to augment a chest x-ray
dataset to address class imbalance. Their strategy involved
creating synthetic chest X-ray images featuring at least one
of three underrepresented pathologies: lung injury, pleural
injury, or fracture. These synthetic images were added to the
original dataset to reduce class imbalance. Motamed et al.

[20] introduced the Inception Augmentation GAN (IAGAN)
for chest x-ray data augmentation, targeting semi-supervised
detection of pneumonia and COVID-19. Inspired by the Data
Augmentation Generative Adversarial Networks (DAGAN)
[26], their model aimed to generate synthetic data to enhance
training datasets for other models.

III. PROPOSED MODEL

In this work, our main task is to perform the fine-tuning of
a Latent Diffusion Model in order to generate high-resolution
synthetic chest x-ray images. Section III-A describe the dataset
utilized for fine-tuning, composed of real chest x-ray images.
Section III-B describes the fine-tuning process, resources and
parameterization utilized.

A. Dataset

In this study, we use the Montgomery County CXR Set
dataset for tuberculosis, developed by the National Library
of Medicine in collaboration with the Department of Health
and Human Services in Montgomery1. The dataset is publicly
available2 and is composed of 138 postero-anterior chest x-ray
images. Of these, 80 are from normal (or healthy) cases, and
58 are from abnormal (or unhealthy) cases with manifestations
consistent with tuberculosis.

Additionally, the dataset includes consensus annotations
from two radiologists for resized 1024 × 1024 images and
a report describing the imaging results [27]. Figure 1 presents
sample images of both cases and their respective annotations.
All images are anonymized and available in PNG format.
Based on the 138 x-rays available, we used a subset consisting
of 30 images (50% healthy images and 50% unhealthy images)
to fine-tune the models. We chose to work with a data set of
this size as an initial exploration so that we could obtain more
precise guidance on the next steps to be taken in future work.

B. Fine-tuning

In our approach, we utilized the Kohya-ss GUI3, a friendly
user interface that allows the setup, training and fine-tuning of
diffusion models. The interface provides different techniques
for fine-tuning, such as DreamBooth [28] and LoRA (Low-
Rank Adaptation) [29]. We believe LoRA to be a more
appropriate option for our method, given its training efficiency
by having a smaller number of parameters, reduced hardware
requirements for adaptive optimizers, versatility in fine-tuning,
and a smaller final model [29]. Additionally, we utilized
TensorBoard4 alongside the Kohya-ss GUI as a visualization
toolkit for the loss and learning rates during the fine-tuning.

We selected “stable-diffusion-v1-5”, proposed by Rombach
et al. [15], as our foundation model, which is capable of
generating realistic images based on textual descriptions. We

1Information on the research is available at: https://lhncbc.nlm.nih.gov/
LHC-downloads/dataset.html

2The dataset is available for download at: https://data.lhncbc.nlm.nih.
gov/public/Tuberculosis-Chest-X-ray-Datasets/Shenzhen-Hospital-CXR-Set/
index.html

3Available at: https://github.com/bmaltais/kohya ss
4Available at: https://github.com/tensorflow/tensorboard
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(a) “Normal chest x-ray”

(b) “Large infiltrate Right Upper Lobe with
cavitation plus infiltrate in RML. Consistent
with active cavitary TB.”

Fig. 1. Sample images from the dataset and their respective annotations [27].
(a) presents a normal case, and (b) an abnormal case.

performed a fine-tuning on this foundation model utilizing the
chest x-ray dataset described in Section III-A. For the fine-
tuning process, we consider different optimizers, described
next:

• AdamW8bit: is a variant of Adam, a stochastic optimiza-
tion method designed for large-scale machine learning
problems. It adjusts the learning rate for each model
weight individually and computes adaptive learning rates
for different parameters [30]–[32].

• Adafactor: aims to overcome the memory requirements
of stochastic optimization methods like RMSProp and
Adam by storing only the row and column sums of
these averages, reducing memory usage while retaining
adaptability [33].

• DAdaptSGD: is a variant of DAdaption, specifically
designed to automatically determine the learning rate
in the Stochastic Gradient Descent (SGD) optimization
algorithm [34].

• Prodigy: is an optimizer that estimates the distance to the
solution, allowing for optimal learning rate adjustment
in adaptive methods like Adagrad and Adam. It’s an
adaptation of the D-Adaptation method for learning-rate-
free learning, where the learning rate is set automatically
[35].

We fine-tuned five distinct models, two utilizing the
AdamW8bit, and one with each remaining optimizer. Table I
presents the parameterization of each training. All models
were trained for 100 epochs. Finally, we utilized the Stable
Diffusion Web UI5 for generating the images. The interface
allows the user to select different models, image quantities and
dimensions, seeds, and the prompt used for the generation.

TABLE I
PARAMETRIZATION OF THE FINE-TUNING PROCESS. ALL MODELS WERE

TRAINED USING “stable-diffusion-v1-5” AS FOUNDATION MODEL. THE
ADAM8BIT OPTIMIZER WAS USED IN TWO DISTINCT MODELS, M1 USING
ITS DEFAULT PARAMETERS, AND M2 USING A CONFIGURATION SIMILAR

TO THE REMAINING OPTIMIZERS.

Model M1 M2 M3 M4 M5
Optimizer AdamW8bit AdamW8bit Adafactor DAdaptSGD Prodigy
Clip Skip 2 2 2 2 2
Epochs 100 100 100 100 100

LR 1.10−4 1.10−4 1.10−4 1.10−4 1.10−4

Max Resolution 512x512 512x512 512x512 512x512 512x512
LR Scheduler constant constant constant constant constant

Train Batch Size 2 2 2 2 2
Text Encoder LR 5.10−5 5.10−5 5.10−5 1.10−5 1.10−5

Unet lr 1.10−4 1.10−4 1.10−4 1.10−5 1.10−5

VAE Batch Size 0 32 32 32 32
Noise Offset Type Original Multires Multires Multires Multires

Noise Discount 0 0.1 0.1 0.1 0.1
Noise Iteration 0 6 6 6 6

IV. EXPERIMENTAL RESULTS

For our experiments, we generated images of chest x-rays
using six different models: the pre-trained foundational model,
named M0, and the five models fine-tuned using the different
optimizers presented in Table I, named M1 through M5. Each
model was used to generate two sets of 12 images each: one set
representing normal cases, created with the prompt “healthy
or normal human chest x-ray”; and the other representing
abnormal cases, created with the prompt “Human chest x-ray
with tuberculosis. Bilateral miliary nodules with Right Middle
Lobe infiltrate. Right pleural effusion”.

Figure 2 and Figure 3 present the sets of images generated
for the normal and abnormal cases, respectively. All fine-tuned
models (i.e., M1 through M5) were trained for 100 epochs.
We presented the generated images to a medical doctor, who
evaluated their level of realism using a five-level Likert scale
from Very Unrealistic (1) to Very Realistic (5). Normal and
abnormal images were evaluated separately for each model.

Table II presents the evaluation of the images made by the
medical doctor regarding each model, with respect to their
realism. Models M0, M3, M4, and M5 were evaluated as
Very Unrealistic (1) for both image sets. Indeed, it can be
empirically observed in Figures 2 and 3 that these models
generate images that are quite different from a real x-ray image
(Figure 1). Additionally, models M4 and M5, in particular,
presented a similar result to the foundational model M0 by
generating more colorful and cartoon images.

Models M1 and M2 achieved better results, with M1
obtaining a Very Realistic (5) evaluation for normal cases
and Average Realism (3) for abnormal cases. Both models

5Available at: https://github.com/AUTOMATIC1111/stable-diffusion-webui
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(a) M0-Normal (Foundation) (b) M1-Normal (Adam8bit1)

(c) M2-Normal (Adam8bit2) (d) M3-Normal (Adafactor)

(e) M4-Normal (DAdaptSGD) (f) M5-Normal (Prodigy)

Fig. 2. Set of normal chest x-ray images generated by the models presented in
Table I. All models except M1 were fine-tuned for 100 epochs on a dataset of
30 chest x-ray images. All images were generated using the prompt ”healthy
or normal human chest x-ray”.

utilize the Adam8bit optimizer, with M1 using the default
configuration. These results indicate that further experimen-
tation could be conducted using the Adam8bit optimizer,
as it demonstrated satisfactory performance. However, it is
important to acknowledge the limitation of having only one
evaluator.

TABLE II
RESULTS OF THE MEDICAL DOCTOR’S EVALUATION. IMAGES GENERATED
BY EACH MODEL WERE EVALUATED USING A FIVE-LEVEL LIKERT SCALE,

FROM VERY UNREALISTIC (1) TO VERY REALISTIC (5).

Model Normal
(Figure 2)

Abnormal
(Figure 3) Total

M0 (Foundation) 1 1 2
M1 (Adam8bit1) 5 3 8
M2 (Adam8bit2) 3 2 5
M3 (Adafactor) 1 1 2
M4 (DAdaptSGD) 1 1 2
M5 (Prodigy) 1 1 2

(a) M0-Abnormal (Foundation) (b) M1-Abnormal (Adam8bit1)

(c) M2-Abnormal (Adam8bit2) (d) M3-Abnormal (Adafactor)

(e) M4-Abnormal (DAdaptSGD) (f) M5-Abnormal (Prodigy)

Fig. 3. Set of abnormal chest x-ray images generated by the models presented
in Table I. All models except M0 were fine-tuned for 100 epochs on a
dataset of 30 chest x-ray images. All images were generated using the prompt
”Human chest x-ray with tuberculosis. Bilateral miliary nodules with Right
Middle Lobe infiltrate. Right pleural effusion”.

V. CONCLUSION

In this work, we presented an initial exploration of the im-
pact of fine-tuning foundation models for generating medical
images, focusing on chest X-rays. Our approach considers a
Latent Diffusion Model as a base model and different opti-
mizer configurations for the fine-tuning process. We generated
a set of images using these models, considering both normal
and abnormal cases. Our experiments indicate that even the
use of a small dataset for fine-tuning could generate images
with satisfactory levels of realism. However, our work has
some limitations. The experiments were conducted with input
from only one medical doctor and relied on visual inspection.
Additional validation techniques could be applied, such as
using qualitative metrics to assess the generated images and
evaluating potential overfitting in the fine-tuned models.

For future work, we consider further experimentation with
different dataset sizes, evaluating the impact of different
training times, and evaluating our model with more medical
professionals. The Adam8bit optimizer, in particular, presented
better results and could be used in such experiments. We also



consider experimenting with additional prompts for abnormal
cases, given the variety of conditions that could be presented in
an x-ray. Finally, we also consider the development of applica-
tions that will be beneficial in both healthcare and educational
settings. One concept involves creating an application that
allows teachers to use our method to generate personalized
examples tailored to their students’ needs. This approach can
improve the teaching and learning experience by providing a
more interactive and engaging environment.
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