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Abstract—Facial authentication on mobile devices has become
prevalent in various applications. Face Liveness Detection, or
Face Anti-Spoofing (FAS), focuses on identifying attempts by
malicious users to impersonate someone else or hide their
own identity. One specific branch within this field is active
liveness detection, which involves analyzing both the input
signal and user behavior while they perform a required task
to verify the authenticity of the presented face. Despite the
significant amount of research in FAS, active liveness detection
remains mostly underexplored. This gap has led to outdated
methods, insufficient testing of proposed active techniques in
diverse scenarios, and a lack of comparative analysis between
different approaches. In this paper, we explore these differences
by comparing the performance of the latest existing close-up
methods with baseline models using ResNet-18 and ResNet-50.
Furthermore, we introduce a new model that builds on previous
work, combining projective invariants with facial embedding
for robust feature extraction. This approach directly improves
upon existing techniques, surpassing other baselines in detecting
spoofing attempts.

I. INTRODUCTION

The implementation of facial recognition technologies in
everyday systems has become a highly sensitive issue, even
for individuals without expertise in the field. When such
technology is employed for biometric authentication using
images or videos, it is crucial to complement this verification
with a liveliness check of the captured media. This check
determines whether the presented face is indeed genuine or
a malicious attempt to impersonate another individual using a
counterfeit face.

Various facial liveliness attacks are documented in the
literature, which can be categorized into injection attacks
and presentation attacks [1]. Injection attacks occur when an
attacker overwrites or bypasses the media acquisition process,
injecting a custom file of their interest [2]. Presentation attacks,
the most frequently discussed in the literature, involve showing
a Presentation Attack Instrument (PAI) to the camera during
media capture. The nature of presentation attacks is highly
diverse, including the use of printed photos, digital screens,
realistic synthetic masks, and numerous other techniques to
impersonate a target or conceal the attacker’s identity [3].

To mitigate such attacks, spoof detectors, also known as
presentation attack detectors, are developed. These detectors
are classified into two categories: passive and active [1].
Passive detectors do not require any special interaction during
media acquisition. In contrast, active detectors rely on some

form of user interaction to verify the presence of a legitimate
person in front of the camera during authentication.

In the field of active liveness detection, a range of user inter-
actions can be employed, including involuntary responses or
physiological reflexes such as natural head or eye movements,
blinking, or pupil dilation [4]–[6]. There are also approaches
based on introducing stimuli during capture, such as sound
or light patterns, and analyzing the response to determine if it
interacts with a real face or a PAI [7]–[10]. Another technique
involves asking the user to perform a simple task during media
capture, such as smiling, nodding, or intentionally blinking
[11], [12]. This approach often sacrifices system usability
to enhance liveness verification. By making it more difficult
to replicate a real face performing specific movements, it
increases the challenge’s difficulty and provides additional
information about the dynamic aspects of the task, such as
capturing the user’s face from multiple angles during the
movement.

Considering the tradeoff between usability and security in
challenge-response-based approaches, in this work, we explore
the close-up challenge, which involves two phases. In the
initial phase, the user must position their face within a small
area highlighted on the screen, maintaining a specific distance
from the device. Once properly aligned and held in place for
a brief period, the second phase is initiated. In this phase, the
user is prompted to position their face within a larger area
displayed on the screen, requiring them to move closer to the
device. Figure 1 illustrates the two stages of this challenge. We
believe that the close-up challenge is straightforward enough
to minimally impact the usability of any system requiring
liveness verification, yet it is capable of providing valuable
information for accurate liveness detection.

Although the field of liveness detection is well-established
and extensively discussed, the active liveness branch remains
underdeveloped. One indicator of this is the scarcity of pub-
licly available active datasets, often leading to new solutions
being developed and evaluated with in-house data that cannot
be shared due to its sensitive nature. Moreover, previous active
liveness studies, such as Face Close-up [13] and Camera
Close-up [14], have frequently been limited by datasets with
too few subjects or controlled environments that do not accu-
rately reflect real-world conditions.

To address these limitations, we have compiled a com-
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Fig. 1. 1a - Distant alignment step; 1a - Close alignment step.

prehensive dataset1 comprising 683 live videos and 1027
spoof videos, captured in both indoor and outdoor settings
without constraints and featuring over 1000 distinct identities.
Additionally, we developed a new presentation attack detector
called Hybrid Close-up, which outperforms two recent close-
up movement-based approaches. We also compare its perfor-
mance with two ResNet variants, emulating a simple passive
approach.

The structure of this paper is as follows: Section II re-
views previous works in the field of face liveness detection.
Section III details the Hybrid Close-up method. Section IV
presents the experimental results and outlines the reproduction
steps. Finally, Section V summarizes the findings and con-
cludes the paper with some discussions for future approaches.

II. RELATED WORK

In this section, we present published works related to FAS.
Section II-A discusses important passive liveness datasets,
Section II-B summarizes studied passive face anti-spoofing
methods, and Subsection II-C presents studied active face anti-
spoofing methods.

A. Datasets for Passive Facial liveness

The advancement in the area of passive liveness detection
has driven the proposal and creation of various datasets for
this task. More recent studies consider not only the number of
individuals and attacks used but also the variety of scenarios,
lighting, camera quality, and diversity of the individuals that
make up the dataset. Table I summarizes some of the most
popular datasets in the literature and includes data from the
datasets presented together with the Face Close-up and Camera
Close-up methods [13], [14], as well as our dataset collected
specifically for this study.

It is important to note that the cited passive datasets are not
suitable for active approaches with the close-up paradigm, as
they do not include any kind of interaction of this nature. An
exception to this statement is the SiW dataset [23], which
includes a partition of images with individuals performing

1In this work, the dataset is briefly presented; its complete version will be
described in a future journal paper.

non-trivial tasks to assess the robustness of passive methods
to variations in pose and distance. Moreover, the studies
mentioned in Section II-C did not disclose the data used in
their respective experiments. Therefore, to the best of our
knowledge, there are no publicly available datasets designed
for the active liveness detection scenario using the close-up
paradigm.

B. Passive Facial liveness Mechanisms

Over the years of liveness studies, approaches for Face
Anti-Spoofing (FAS) have transitioned from detecting simple
handcrafted features to learning feature maps. Among the
earlier strategies, Boulkenafet et al. [29] described facial
appearance by applying Fisher vector encoding to features
extracted from different color spaces for FAS. Chingovska et
al. studied the effectiveness of using texture features based on
Local Binary Patterns and their variations in classification.

More recent methods may use handcrafted features in a
hybrid manner, combining them with features extracted from
a deep neural network [30], [31]. Traditional Deep Learning-
based methods use end-to-end CNNs to learn a direct mapping
from face image to liveness label, relying on direct [32] or
pixelwise [33], [34] supervision for model training.

Generalized Deep Learning methods take a step further and
aim to be robust against characteristic changes (for example,
variations in the input sensor or in attack types). Methods
may focus on domain generalization (when a model is trained
only once) [35], [36] or adaptation (when the model undergoes
an adaptation algorithm that leverages test data) [37], [38],
or generalizing to unseen attack types with zero- and few-
shot strategies (where no or only a small quantity of data is
provided for training) as well as anomaly detection (where the
model learns an accurate representation for live samples in-
stead of learning the characteristics of spoofs) [24]. Examples
of pixel-wise supervision and domain generalization include
the DC-CDN network [33], which produces a face depth map
as output, and the IADG method [35], which whitens instance-
specific features to avoid domain bias.

C. Active Facial Liveness Mechanisms

As mentioned earlier, active methods depend on user in-
teraction for liveness detection. They can be classified into
three main lines: based on involuntary interaction, based on
voluntary interaction, and injected information.

Face anti-spoofing based on involuntary interaction typically
employs features from natural physiological movements. Some
works extract specific features [6], [39], classifying a sample
as real or spoof based on blinking patterns and lip movement
patterns. Pupil movement is also used as a cue for liveness
detection [5], and it has been experimented with combining
more of such cues [4] (namely blinking, mouth movements,
face-background consistency, and other aspects of samples)
for facial liveness detection.

In strategies based on injected data, additional information
is introduced during media capture. The usage of light pattern
emissions has been studied [7], as well as using a CNN



TABLE I
STUDIED DATASETS’ MAIN CHARACTERISTICS.

Dataset Samples Subjects Attack types User interaction
NUAA [15] 5105 real, 7509 spoof 15 1 Passive
PRINT-ATTACK [16] 200 real, 200 spoof 50 1 Passive
CASIA [17] 150 real, 450 spoof 50 3 Passive
Replay-Attack [18] 200 real, 1000 spoof 50 3 Passive
MSU-MFSD [19] 110 real, 330 spoof 55 3 Passive
MSU-USSA [20] 1140 real, 9120 spoof 1140 2 Passive
MLFP [21] 150 real, 1200 spoof 10 2 Passive
Oulu-NPU [22] 990 real, 3960 spoof 55 4 Passive
SiW [23] 1320 real, 3300 spoof 165 6 Multiple angles, face expressions and the subjects move
SiW-M [24] 660 real, 968 spoof 493 13 Passive
HQ-WMCA [25] 555 real, 2349 spoof 51 10 Passive
DMAD [26] 900 real, 1800 spoof 300 6 Passive
Celeb A-Spoof [27] 156,384 real, 469,153 spoof 10,177 6 Passive
WFAS [28] 529,571 real, 853,729 spoof 469,920 18 Passive
Face Close-up dataset [13] 710 real videos, 4970 spoof videos 71 3 Close up
Camera Close-up dataset [14] 89 real videos, 2537 spoof videos 41 5 Close up
Ours 683 real videos, 1027 spoof videos 372 live, 709 spoof 5 Close up

for depth map recovery and liveness classification with a
regression branch that performs light CAPTCHA checking to
search for the injected pattern in the user’s face and eyes [8].
Another work focuses on emitting sound signals while the
user is engaged in a simple task, analyzing the recovered
signal (i.e., the echo of the emitted signal) to extract 3D facial
geometry properties, and feeding these properties to an SVM
classifier [10].

In systems relying on user cooperation, also known as
challenge-response systems, the user is instructed to perform
simple actions. For instance, the user might be required to
follow a displayed pattern with their eyes or to point their eyes
at a designated point on the screen [40], [41]. If the user fails
the challenge or completes it with suspicious patterns, they are
classified as spoofed. Another example is to ask the user to
pronounce a randomized sequence of words and detect liveness
based on the consistency between mouth and face movement
and the audio sample [42]–[44]. It is also possible to verify
facial three-dimensionality through projective invariants from
a sequence of head movements [45].

Regarding the close-up paradigm, the Face Close-Up
method [13] selects a reference frame along with a set of
frames from an input video based on the face size rela-
tive to the entire image. It computes facial landmarks for
each selected frame and creates feature vectors based on the
distances between pairs of landmarks. Each feature vector
is normalized using the reference feature vector, which is
generated from the distances in the reference frame. These
vectors are then stacked into a matrix and used as input to a
Convolutional Neural Network (CNN). Camera Close-Up [14]
adapts this work by adopting a frame selection based on bins
and altering the CNN design while maintaining the matrix
of feature vectors based on landmark distances. These minor
changes are sufficient to outperform the earlier method using
the data collected for their study. To the best of our knowledge,
these are the most recently published methods addressing the
close-up paradigm for liveness classification.

III. METHODOLOGY

The proposed method employs the close-up movement to
capture facial features at various distances. This approach
was inspired by the Camera Close-Up liveness detector [14],
sharing similarities in the frame selection process and some
portions of its architecture. The Hybrid Close-Up approach
integrates the concept of projective invariants, as defined
by De Riccio et al. [46], extracted from landmarks, with
face embeddings in a fusion model. The Hybrid Close-Up
method is composed of three modules: frame selection, feature
extraction, and classification. Figure II-C provides a general
overview of the method, and each module is described in this
section.

A. Frame selection

The first module of the pipeline is responsible for selecting
the frames used in the next steps and is identical to the Camera
Close-up frame selection process. First, a face detector and
a landmark extractor are used to discard frames that do not
contain a face or where landmarks cannot be computed. Next,
N frames are selected using a system of s bins, where each
frame is assigned to a bin based on its timestamp, starting with
the face farthest from the camera and ending with the face
closest to the camera. Then, the frame closest to the center of
the video is sampled to be a reference frame, and N

s frames
are randomly chosen from each bin.

B. Feature extraction

The next module is responsible for extracting features from
the selected frames.

The Hybrid Close-Up model has two types of features:
distortion features and frame embeddings. Distortion features
are computed by first extracting landmarks from the faces
in the frames and then calculating the Euclidean distances
between all pairs of landmarks, excluding the distances be-
tween landmarks in the mouth region. This process produces
for each selected frame-k a distortion feature vector dk =
(fk0, fk1, . . . , fkM−1) with k ∈ [0..N−1] of length M , where
M is the number of distances between pairs of landmarks.



Fig. 2. Hybrid CloseUp scheme; C.L:2D Convolutional Layer; M.P: Max-Pooling Layer; F.C: Fully Connected; S: stride; B.N: Batch Normalization

Similarly, a reference distortion feature vector dref =
(fref0, fref1, . . . , frefM−1) is computed using the reference
frame. For each dk, where k ∈ [0..N − 1], a normalized
distortion feature vector dnk is calculated as

dnk =

(
fk0
fref0

, . . . ,
fkM−1

frefM−1

)
. (1)

Lastly, the distortion feature vectors are reorganized to form
an N ×M distortion feature matrix.

The second type of feature is frame embeddings. These are
extracted using the encoder of a ResNet model pre-trained
on ImageNet, which computes the embeddings of lenght E
for each selected frame, except for the reference frame. The
embeddings are concatenated producing an video embedding
vector of lenght N × E.

By following these steps, the module effectively extracts
and normalizes the required features from the frames.

C. Classification

The final module of the Hybrid Close-Up method is re-
sponsible for classifying between live and spoof using the
computed features. The parameters of the proposed CNN are
shown in Figure II-C. The distortion feature matrix serves as
the input to the convolutional layers of the Hybrid Close-up
model, which consists of only three convolutional layers, each
followed by batch normalization, ReLU activation function,
and max pooling.

The video embedding vector is concatenated with the
flattened features produced by the convolutional layers and
the resulting linear feature vector serves as input to a fully
connected network with two hidden layers, followed by the
final layer consisting of a single neuron with a sigmoid
activation function.

IV. EXPERIMENTS AND RESULTS

This section is dedicated to describing the setup used to
conduct the experiments and their results. We implemented

the Camera Close-up and Face Close-up methods based on the
descriptions available in their respective articles using PyTorch
and these implementations are available at https://github.com/
BOVIFOCR/Active liveness-Close Up methods .

A. Experiment Setting

The number of video bins s used in the frame selection
module of the Hybrid Close-up method was set to 3. The
Python module of dlib library [47] was utilized for face
detection and landmark extraction in all implemented models.

The used landmark extractor computes 68 points, with 10
of them being from the mouth region. Thus, the distortion
feature vector has a length of 2088 (M = 2088) (resulting
from the distances of all pairs of points except all distances
between pairs of the 10 points from the mouth region). For
embedding extraction in the Hybrid CLose-up method, the
encoders from ResNet-18 and ResNet-50 were used, producing
for each selected frame embeddings of sizes 512 and 2048,
respectively. Thus, the final frame embedding vector that is
concatenated with the features from convolutional layers has
dimension N × 512 when using the ResNet-18 encoder and
N × 2048 with the ResNet-50 encoder. It is important to
note that these encoders were pre-trained on ImageNet, and
their weights were frozen during the training of the remaining
Hybrid Close-up architecture on our dataset.

We used the number of selected frames for the Camera
Close-up and Face Close-up methods as indicated in their
respective papers from the best results achieved there. Initially,
these active models were compared to ResNet-18 and ResNet-
50, which used a single frame randomly sampled from the
input video and with encoders pre-trained on ImageNet. Since
they rely on only one frame for liveness classification and do
not leverage the close-up movement of the dataset, the ResNet
models in this work operate under conditions similar to passive
approaches based on single-frame classification. Thus, they
represent a naive passive approach. Then, we also employ a



majority vote scheme on the ResNet models aiming for a fair
comparison with the active ones.

The dataset currently used in the experiments contains 683
live samples and 1027 spoof samples, which are divided into
training, validation, and test partitions in proportions of 60%,
20%, and 20%, respectively. The results present the evaluation
of Accuracy, HTER (Half Total Error Rate), and F1-score
on the test set, using the trained weights that achieved the
lowest HTER on the validation set. All experiments were run
10 times, and the reported values are the averages followed
by the standard deviations of these runs. Every network was
trained using the ADAM optimizer, with a learning rate of
0.001, a batch size of 50, and 500 epochs.

Firstly, experiments were conducted to evaluate the impact
of the number of selected frames N in the proposed method
as shown in Table II. It can be seen that the Hybrid Close-
up model with the ResNet-18 encoder improves its results by
increasing the number of selected frames whilst it reaches its
maximum efficiency at 18 frames when using the ResNet-
50 encoder. In light of the presented results, the following
experiments were conducted selecting 18 and 30 frames when
applying ResNet-50 and ResNet-18, respectively.

TABLE II
PERFORMANCE IMPACT COMPARISON

Encoder N Accuracy(%) HTER(%) F1-score

ResNet-18

12 97.04 ± 0.72 3.23 ± 0.81 0.962 ± 0.009
18 96.75 ± 0.86 3.63 ± 0.99 0.958 ± 0.011
24 96.75 ± 0.55 3.65 ± 0.63 0.958 ± 0.006
30 97.16 ± 0.65 3.08 ± 0.92 0.964 ± 0.008

ResNet-50

12 97.99 ± 0.57 2.27 ± 0.79 0.976 ± 0.008
18 98.11 ± 0.68 2.12 ± 0.79 0.976 ± 0.008
24 97.87 ± 0.13 2.39 ± 0.11 0.973 ± 0.001
30 97.93 ± 0.47 2.37 ± 0.54 0.973 ± 0.006

Additionally, Table III shows a comparison of the studied
methods. We start with the performance of the active baselines
Face Close-Up and Camera Close-Up. And, we also display
the results achieved by ResNet-50 and ResNet-18 using both
only a single image and a majority voting scheme from the
individual classification of 18/30 randomly sampled frames.
Finally, we show the results for the proposed Hybrid Close-
Up using the ResNet-50 encoder to extract frame embeddings.

TABLE III
STATE OF THE ART PERFORMANCE COMPARISON

Method Accuracy(%) HTER(%) F1-score
Face Close-up [13] 85.03 ± 1.06 15.22 ± 1.20 0.817 ± 0.014
Camera Close-up [14] 91.36 ± 0.49 8.66 ± 0.72 0.890 ± 0.007
ResNet-18

94.44 ± 0.44 5.85 ± 0.55 0.930 ± 0.005(single-frame)
ResNet-18

96.48 ± 0.62 3.08 ± 0.92 0.964 ± 0.008(majority voting - 30)
ResNet-50

95.78 ± 0.23 4.16 ± 0.17 0.952 ± 0.002(single-frame)
ResNet-50

98.81 ± 0.46 1.57 ± 0.31 0.982 ± 0.004(majority voting - 18)
Hybrid Close-up 98.11 ± 0.68 2.12 ± 0.79 0.976 ± 0.008

We observe that the ResNet models using a single frame
outperform the active baselines in all three reported metrics.

Moreover, the Hybrid Close-up method by combining the
distortion features of Camera Close-up and embeddings from
the ResNet-50 encoder improves the previous results by a sig-
nificant margin. However, the best values were achieved using
a majority voting scheme of the ResNets results, highlighting
the current gap between the latest active methods and passive
approaches.

We hypothesized that the large size of the distortion feature
(50,144/36,416 for Camera Close Up/Face Close Up when
compared to the one of the ResNet 50/18, i.e., 2048/512)
strongly impacted the classification performance.

V. CONCLUSION

In this work, we proposed a method for active face anti-
spoofing based on the close-up face challenge paradigm. The
method leverages the fusion of features extracted from face
embeddings and distances between landmarks, thus exploiting
temporal and spatial features enhanced by the dynamic aspect
introduced by the active interaction with the user at the
moment of sample capture. Furthermore, Hybrid Close-Up
outperforms the latest and most relevant methods proposed in
the area that use the same paradigm in a diverse and uncon-
strained dataset. Nevertheless, the existing disparity between
active liveness detectors and their passive counterparts is still
latent as demonstrated in this paper.

Future works are encouraged to explore more robust frame
selection criteria by combining the temporal information with
the spatial content on each image, leading to a selection of
frames with more relevant information.

Another promising study from our hypothesis presented in
the experiments is to develop a smaller and more suitable
distortion embedding to be fused with the ones from ResNet-
18 and ResNet-50. We also plan to employ an optical flow
approach for the close-up challenge as already employed on
other works [48], [49].

ACKNOWLEDGMENT

This work was supported by a tripartite-contract, i.e., unico
- idTech, UFPR (Federal University of Paraná), and FUNPAR
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