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Abstract—Video cropping aims trim video frames to highlight
a subject area. This paper introduces a new framework for
automated video cropping tailored to sidewalk footage, which
is particularly useful in applications such sidewalk navigability
and urban planning. By developing a method for video salience
annotation using simple mouse input, the introduced framework
provides a simple and flexible approach for video cropping. This
application is crucial in scenarios where accurately focusing on
pedestrian areas is necessary to enhance analysis and decision-
making processes. The experimental results obtained from real
data in the wild shows that the method is robust to a large variety
of sidewalk conditions in different Brazilian cities.

I. INTRODUCTION

Video cropping is used to trim down video frames to
emphasize an area of interest in the footage. This process
can be employed, for instance, to remove parts of a video,
change the video orientation to accommodate the content on
different screens (a process known as video retargeting [1]),
focus attention on a specific object in the scene, or used to
reduce network bandwidth load and processing time.

This task can be seen as an extension of image cropping,
traditionally used to automatically determine the optimal im-
age region (referred to as a window) through methods such as
visual quality assessment or salience detection [2]. A common
challenge in this task is determining the best window in the
image, which can vary subjectively or be guided by object
detection, semantic segmentation, and other techniques. When
dealing with video content, the temporal component is also
important and potentially adds complexity to the task.

A broader concept that supports these tasks is saliency pre-
diction, which involves predicting human gaze fixation when
perceiving dynamic scenes. Many cropping methods are based
on this concept, initially analyzing each frame individually
when it comes to videos. More recent research has enhanced
these solutions through the use of 3D convolutions, which,
however, introduces greater complexity and computational cost
to the models [3].

Despite the existence of many models that perform video
cropping, including those based on salience methods, there is
a lack of solutions applicable to videos recorded in motion.
This scenario hinders image stabilization and the filming
present more variable information [4]. Another challenge is
incorporating this technique into a smartphone for post-editing
videos, given the hardware limitations of these devices.

Fig. 1. An example focused on sidewalk pavement cracks using our
framework. The top left shows the original frame, the top right displays the
salience map resulting from our annotation process. At bottom left presents
a salience map resulting from the salience model prediction, and the bottom
right depicts a cropping window proposed by the salience prediction model.

This work aims to develop a framework for automated video
cropping in the domain of sidewalk footage. Our proposal
leverages existing saliency models that have been fine-tuned
on a dataset focused on pedestrian paths around hospitals in
three Brazilian cities, and can be extended to other countries.

Figure 1 demonstrates an example of what our framework
accomplishes in a specific scenario, focusing, for instance, on
sidewalk assessment. At the top left is the original frame of
a video. At the top right is a saliency map generated through
our annotation process, which was then used to fine-tune a
salience prediction model. At the bottom left is an example
of prediction using a fine-tuned model, and the image on the
right represents a cropped version using the model’s output to
determine the optimal frame window.

The main contributions of this paper are: a) introducing of a
new framework for automated video cropping; b) development
of a method video salience annotation based on mouse clicks;
and c) experimentation with video cropping using real-world
data, enabling analysis of sidewalk conditions.

The paper is organized as follows. After this introduction, II
presents recent papers on salience models, and video cropping.
Section III details the dataset used in this work and the em-
ployed pipeline. Section IV outlines the results obtained, both
quantitatively and qualitatively. Finally, Section V concludes



the paper and discuss potential future work.

II. RELATED WORKS

This section presents studies regarding salience maps and
video cropping, which are techniques employed in our work.
We explain the rationale behind our decisions regarding the
tasks and strategies used to build our study.

Several studies on human visual attention have utilized ma-
chine learning techniques for salience prediction. For instance,
the introduced models named SalEMA and SalCLSTM, neural
networks adapted to incorporate temporal information, demon-
strating enhanced performance in handling video salience pre-
diction [5]. Later, ViNet [6] was proposed as architecture for
audio-visual and non audio-visual saliency prediction and got
success in the task by using 3D fully convolutional archtecture
design. These 3D architecture also is studied with hierarchical
learning and domain adaptation to the same applications [3].

Another task related to visual human attention, although
different, involves movie editing. In this regard, strong corre-
lations between movie editing annotations and spectators gaze
distributions is identified [7], which could potentially improve
movie edition based on human visual attention. Similar, our
study explores human visual attention using distinct approach
based on mouse clicks to track and generate visual attention
distributions, aimed at fine-tuning a specific dataset related to
sidewalk footage.

For video cropping, a well-established it the model named
SalCrop which is based on spatio-temporal salience [8]. Their
proposed framework is built through four modules: video
scene detection, video salience prediction, adaptive cropping,
and video codec. The first module is responsible for splitting
the data into short sequences; the second module identifies
salient content in the frames; the third handles the cropping
task, finding the optimal strategy; and the last module manages
the encoding and decoding the video content. The authors also
provide a large-scale video cropping dataset composed of 100
training sequences, and 50 validation and testing sequences.

Reframing is a common sub-task of video cropping. Recent
frameworks leverages the temporal component of videos [9],
[10]. One such solution is based on mechanism that detects
jumping frames and smooths their importance, which arguably
reduces the jitter of resized videos [9]. Similarly to other
works [8], their method also includes an initial stage for scene
detection to split the videos into short sequences, followed by
a salience detection module.

Differently from these studies, our work is focused on a
specific domain and is not limited to aspect ratio transforma-
tion, which is the main characteristic of target reframing tasks.
Moreover, we leverage salience models to extract information
from videos with the goal of analyzing sidewalks, and their
pavement conditions as a preliminary case study.

III. METHODS

This section presents the dataset that we used in our
proposed work, the pipeline adopted to select and annotate
data, the train and evaluation of salience detection models, and

Fig. 2. Eight frames showing the ground of sidewalks near hospitals in three
Brazilian cities.

a case study on video cropping applications. We also discuss
the metrics employed in the evaluation of the models.

A. Dataset

The data used in this work is a subset of a dataset
generated in our ongoing work, where we developed a new
approach for multimodal data acquisition using smartphones
[11]. This project is an initiative to facilitate the generation
and analysis of multimodal datasets related to sidewalks. It
involves collecting various types of data, such as video with
audio and sensor data (accelerometer, magnetometer, among
others) using smartphones mounted on chest supports worn
by individuals. The most recent dataset focuses on videos
recorded during walks through hospitals and transportation
hubs.

The rationale behind our choice of this dataset relies on the
video recordings captured while people are in motion, resulting
in footage where frames vary as a reflection of their movement.
A video cropping framework has the potential to extract the
window of interest from each frame by isolating the subject
area, thereby mitigating the effects of motion on the footage.

One of the goals of the ongoing project [11] is conduct
studies related to the detection of pavement cracks, potholes,
and any other obstacles. Because of this, the smartphone
camera was focused on the ground at an angle that poten-
tially favors the view of the pavements. Figure 2 displays
two frames each from the videos JUNDIAI-HSV#BLOCK01,
SANTOS-CHE#BLOCK01, SAOPAULO-HC#ROUTE02, and
SAOPAULO-HUUSP#ROUTE02 to better illustrate the scene
characteristics.

The subset used in our study contains seven video files
filmed in the three Brazilian cities. As presented in Table I,
there are a total of 65,000 frames of data, representing 2,165
seconds of video. The authors recorded the videos at 30 frames
per second, with a resolution of 1280 by 720 pixels.

B. Pipeline

This work adopts a pipeline composed of six stages: dataset
selecting, dataset labeling, label processing, AI model experi-
mentation, cropping application, and information analysis (see
Figure 3). The following sections describe each of these stages.

1) Data selecting: It is important to mention that, due to
the nature of human gait, the videos exhibit camera movement,
resulting in a lack of stabilization. Therefore, we chose to
use this dataset with the idea of generating crop areas that



TABLE I
TOTAL DURATION (S), AND TOTAL NUMBER OF FRAMES OF EACH VIDEO

SAMPLE EXTRACTED FROM THE DATASET USED IN THIS WORK.

ID Duration (s) Total frames

JUNDIAI-HSV#BLOCK01 241.94 7,259
SANTOS-CHE#BLOCK01 330.32 9,910
SANTOS-HM#BLOCK01 321.43 9,644

SAOPAULO-HC#ROUTE01 239.77 7,194
SAOPAULO-HC#ROUTE02 689.88 20,680

SAOPAULO-HUUSP#ROUTE01 190.71 5,722
SAOPAULO-HUUSP#ROUTE02 151.08 4,533

All 2,165.14 64,942

could potentially stabilize the videos. Another goal was to use
this content to support automatic video cropping for selecting
frame windows focused on obstacles or pavement cracks. We
opted to include videos from different cities in this study,
depicting various types of pavement materials and potential
obstacles.

2) Data labeling: We developed an application1 to annotate
the videos by clicking on points of interest while following
the video walk-through. Two people annotated all seven video
files, totaling 4,462 different annotated frames. We opted to
perform one click per second, inspired in other studies related
to salience detection [12], [13].

Every click generates a coordinate pair (x, y) referring to
the mouse position in the video frame at the time of clicking.
This position indicates the location deemed significant by the
annotator within the frame. This approach is informed by
studies, which explore the relationship between mouse clicks
and eye gaze in visual attention research [14]; and other ones
proposed the capture of attention map based on clicks, arguing
that discrete clicks enable a more explicit record of points of
interest [13].

3) Label processing: To train a salience model, sparse
points alone are not sufficient. We processed these points to
generate salience maps as ground truth for every frame in the
dataset.

To achieve this, we first applied 1D cubic interpolation to
fill each (x, y) point across the video frames. Then, to generate
the final salience maps, we employ a Gaussian Mixture Model
with a standard deviation of 120, as described in [15]. A
sample of the frames and their annotations is shown in Figure
4.

1Our video annotation tool is freely available, but it was omitted here for
double-blind review purposes.
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Fig. 3. Pipeline of this study composed of: dataset selecting, dataset
labeling, label processing, AI model experimentation, cropping application,
and information analysis.

Fig. 4. Two samples of our data and their annotations. The first column shows
the original frame, the second column shows the clicked positions by each
annotator, and the third column presents the ground truth salience map.

4) AI Model Exploration: To automatically extract the
salience maps from the video, we adopted a previously es-
tablished method from the literature, specifically leveraging
encoder-decoder convolutional architectures.

ViNet [6] was the chosen network due its simplicity, good
reported metrics, and computational efficiency compared to
other models available for the same task. ViNet is pre-trained
on the DHF1K dataset [16], and has been tested on various
public datasets, showing solid results.

Our experiments focused on two primary objectives with
our dataset: assessing the performance of ViNet pre-trained
with DHF1K and conducting fine-tuning using our annotated
data.

5) Cropping application: Automatic cropping applications
leverage salience maps as information of the most significant
parts of the image, thereby enhancing the overall composition
and focus of the image. The cropping itself is a linear cropping
operation modeled as an optimization problem, where we want
to maximize the attention inside a given desired bounding box
shape.

Figure 5 shows the cropped frame in the third column,
resulting from the described process. For each frame (first
column), an attention map (second column) is generated to
highlight the most important areas. Subsequently, cropping
is applied, followed by resizing the frame to fit the initial
dimensions.

Fig. 5. Illustration of the results from our cropping application. Each row
represents a frame from the selected video. The first column shown the original
frame, the second column displays the predicted salience map, and the third
column presents the final cropped image.



TABLE II
EVALUATION OF VINET AND FINE-TUNED VINET MODELS ACCORDING TO

CC, SIM AND KLDIV METRICS FOR SALIENCE PREDICTION ON THE
DATASET USED IN OUR WORK.

Model CC SIM KLDiv
Original ViNet 0.39 0.42 1.05

Fine-tuned ViNet 0.46 0.45 1.42

C. Information analysis

The results obtained in our work were analysed from
two perspectives: quantitative and qualitative. The quantitative
evaluation was conducted using three main metrics to compare
the predictions with Gaussian ground truth: Similarity (SIM),
which measures the extent to which the predicted and ground
truth salience maps overlap; Linear Correlation Coefficient
(CC), which assesses the linear relationship between the
predicted and ground truth maps; and Kullback-Leibler Di-
vergence (KLDiv), which quantifies the difference between
the predicted probability distribution and the ground truth
distribution. These metrics are commonly used in the salience
prediction studies [3], [6], [8].

In the qualitative analysis, we manually observed the gen-
erated salience maps and resulting crop to detect important
elements in the scenes. The focus was on identifying objects or
pavement defects that can hinder the walkability on sidewalks.

IV. RESULTS

This section presents the results we obtained regarding
the metrics (quantitative results) and the manual analysis
(qualitative results) of the generated salience maps and the
extracted croppings.

A. Quantitative results

Table IV-A present the quantitative results obtained from
testing both the models pretrained on DHF1K and the version
fine-tuned on the dataset used in our work.

These results indicate that the fine-tuned model performs
better on the sidewalk dataset used in this work compared to
the pretrained model, as expected. Although we opted to use
the pretrained model on the DHF1K dataset, we encountered
issues with the KLDiv coefficient, which caused predictions
to be too dispersed, resulting in unstable cropping. The right
side image in Figure 6 exemplifies a prediction with fine-tuned
model.

Fig. 6. Predictions with the different models. The left side image is the
original frame, the middle is the salience map predicted with ViNet, and the
right side image is the salience map predicted by ViNet fine-tuned.

B. Qualitative results

This section presents a qualitative analysis conducted on five
example frames to better showcase the models’ capabilities in
detecting interesting objects in scenes. The first example is
Figure 7a, which highlights the salience map focusing on a
crack on the ground. This behavior was consistently observed
across other examples, demonstrating the model’s capability
to detect surface irregularities that could be potential hazards.

In Figure 7b we show a salience map focusing on tactile
pavement within the frame. Although the model successfully
highlights the tactile pavement, it fails to detect the pavement
crack at the bottom. This oversight goes in contrast with the
Figure 7a that highlight most the crack. It suggests that the
model is proficient at identifying prominent features, as also
can be observed in other examples.

In other situations, such as presented in Figure 7c, the
model’s capability to detect multiple regions of interest simul-
taneously can be helpful in analyzing complex scenes with
various significant features.

Figure 7d highlights a region where potential obstacles are
present. This behavior indicates the model’s effectiveness in
identifying areas that might affect the individual’s trajectory.

Finally, Figure 7e illustrates a salience map focusing on a
curb ramp and partially on a crosswalk. The model’s ability
to highlight these essential features underscores its potential
usefulness in assisting navigation and enhancing the mobility
of individuals.

The observed results suggest that the cropping framework
has the potential to serve as a tool for assessing sidewalk
conditions. The frames exemplified illustrate scenarios involv-
ing one or more elements or objects that can positively or
negatively affect walkability, detected by the framework.

As a cropping application, our solution can condense large
videos and high-resolution content into shorter versions with
lower resolution, as needed. The cropping framework, along
with the video salience annotation tool, can support policy
decision-making solutions.

V. CONCLUSION

In this work, we proposed a framework for automated video
cropping in the domain of sidewalk footage. We initially used
a well-know salience model, which was later fine-tuned for our
specific domain. We evaluate the results of both the pretrained
and fine-tuned models with respect to CC, SIM and KLDiv
metrics. Moreover, we qualitatively analyzed the video outputs
while using the salience model results for video cropping.

Our findings suggest that salience detection is a promising
technique to study subjects such sidewalk conditions or walk-
ability. The application of video cropping allow us to focus
and direct attention to the most relevant content of interest in
the videos, enhancing the effectiveness of visual analysis in
sidewalk footage.

However, one limitation of our study is the number of
annotators per frame, which can result in significant variation
in attention points. As future work, we plan to include more
annotators to increase the amount of labeled data. Additionally,



(a) Salience map focusing on a crack on the ground is shown.

(b) Salience map focusing on a tactile pavement in a frame. The pavement crack at the bottom of the frame was not captured in that shot.

(c) Salience map focusing in three distinct points in a frame.

(d) Salience map focusing on a region where potential obstacles occur.

(e) Salience map focusing on a curb ramp and partially on a crosswalk.

Fig. 7. Five example frames to better showcase the models’ capabilities in detecting interesting objects in scenes.

we intend to conduct new training procedures, and adapt
and deploy the fine-tuned model on smartphones. The goal
is to evaluate the models for post-recording video editing,

potentially facilitating on-site analysis.
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