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Abstract—Vehicle identification plays a crucial role in Intelli-
gent Transportation Systems, impacting areas such as toll collec-
tion, vehicle access control, and criminal forensics. Despite recent
strides in Automatic License Plate Recognition (ALPR) research,
real-world scenarios still pose significant challenges. This work
explores potential enhancements in vehicle identification systems
by integrating modules such as ALPR with Fine-Grained Ve-
hicle Classification (FGVC), which categorizes vehicles based on
attributes such as type, make, model, and year. Our study focuses
on advancing FGVC, particularly vehicle type classification. We
investigate selective prediction, a technique that allows models to
discard uncertain predictions, and examine superclass methods,
including a novel online superclass approach that operates solely
during the test phase. We trained and evaluated four deep
learning models using a dataset adapted from a widely adopted
ALPR dataset. The results demonstrate that both superclass
methods and selective prediction improve classification accuracy,
with the combination of online superclass and selective prediction
delivering the best performance. Future research will focus on
integrating these enhancements into ALPR systems to determine
how FGVC can further enhance their capabilities.

I. INTRODUCTION

Vehicle identification is an important component of Intelli-
gent Transportation Systems, with various applications ranging
from toll collection and vehicle access control to criminal
forensics [1]–[4]. Despite recent advancements that have led
to high recognition rates in Automatic License Plate Recog-
nition (ALPR), significant challenges remain in real-world
scenarios [5]–[7]. For instance, the Military Police of Paraná in
Brazil has reported frequent inaccuracies in their ALPR system
during actual deployments. These issues underscore the need
for more robust vehicle identification methods, as inaccuracies
can severely undermine the reliability and effectiveness of
these systems in critical situations.

To improve vehicle identification methods, we propose
integrating ALPR techniques, which have become increasingly
common in recent years, with Fine-Grained Vehicle Classifi-
cation (FGVC). FGVC categorizes vehicle images based on
specific attributes such as type, make, model, and year [8]–
[10]. This integration offers two key advantages. First, by
cross-referencing vehicle attributes with documentation, it can
effectively detect ALPR errors, reducing false positives. Sec-
ond, FGVC can help narrow the search space for license plates
by utilizing vehicle attributes, which is particularly useful in
cases where license plates are low-quality or obscured.

The FGVC field is inherently challenging due to the need
for a precise understanding of vehicle appearance, as many
vehicles can look remarkably similar. However, research ex-
ploring deep learning models, such as Convolutional Neu-
ral Networks (CNNs) and Vision Transformers (ViTs), has
achieved classification accuracies exceeding 90% [11]–[13].
Despite these advancements, certain aspects that could benefit
the proposed integration remain underexplored. Research on
FGVC often assumes well-controlled conditions [12], [14],
whereas ALPR systems typically operate in more challenging
environments. This highlights the need to improve the robust-
ness of FGVC systems to ensure reliable performance in real-
world, surveillance scenarios.

One way to enhance classification performance is through
selective prediction, where machine learning models reject
uncertain results, reducing error rates and flagging data for
manual verification [15], [16]. Another strategy involves using
a superclass approach, which reduces the number of classes
by clustering them based on specific criteria [17]. While these
methods have not yet been explored for FGVC, they have
shown effectiveness in improving classification tasks in other
contexts [17]–[20].

In light of this, this work-in-progress outlines the initial
steps in applying selective prediction and superclass ap-
proaches to vehicle type classification. Vehicle type was cho-
sen because it offers a fundamental level of classification with
fewer categories, which streamlines the preliminary analysis.
Despite its apparent simplicity, vehicle type information is
valuable for identifying errors in license plate recognition. For
example, distinguishing between cars, trucks, and motorcycles
can aid in manual verification to validate recognition results.

Four deep learning models were evaluated for classifying
vehicle types using an adapted version of the RodoSol-
ALPR dataset [21]. The best-performing model was further
analyzed under various scenarios: (i) employing a Softmax
Response Rejection (SRR) scheme; (ii) training and evaluating
with superclasses; (iii) applying a naive superclass scheme
solely during evaluation, referred to as online superclass; and
(iv) combining online superclass with selective prediction.

The remainder of this work is organized as follows. Sec-
tion II briefly reviews related works. Section III describes
the data preparation process. Section IV details the methodol-
ogy used in the experiments. Section V presents the results



obtained. Finally, Section VI summarizes our findings and
suggests directions for future research.

II. RELATED WORK

Extensive research on FGVC has yielded many promising
results [8], [11], [12]. In this work-in-progress, we specifically
focus on studies related to vehicle type classification.

Ferryman et al. [22] developed a 3D model to recover vehi-
cle pose and structure information, enabling differentiation be-
tween vehicle types. Jolly et al. [23] proposed a segmentation
algorithm integrating motion and edge data with deformable
templates, which was then used for classification through tem-
plate matching. Lai et al. [24] conducted classification using
a visual-based approach that estimates the width, length, and
height of vehicles. Wu et al. [25] introduced a parameterized
edge model combined with a multilayer perceptron to capture
vehicle structure and perform classification. Ma et al. [26]
enhanced feature discriminability by associating edge points
with SIFT-based descriptors and applied clustering techniques
for classification.

Dong et al. [27] were pioneers in applying CNNs for vehicle
type classification, using a sparse Laplacian filter learning
method with large amounts of unlabeled data. Following this,
Hu et al. [28] developed a multi-task CNN that localizes
vehicles and performs fine-grained classification, leveraging
collaborative feature learning to handle subtle inter-class vari-
ations. Wang et al. [29] explored Faster R-CNN for both
vehicle detection and classification. Shvai et al. [30] employed
a Gradient Boosting classifier to integrate the outputs from a
CNN classifier and an optical sensor-based classifier. Kim [14]
applied YOLOv4 for vehicle detection and used a pre-trained
ResNet-50 for vehicle type classification.

These studies demonstrate the shift from traditional hand-
crafted methods to advanced deep learning techniques in
vehicle type classification, marking significant progress in the
field. However, there is a noticeable gap in the literature
regarding the integration of vehicle type classification with
ALPR systems. While FGVC research has shown promising
results, it is often conducted under well-controlled conditions,
such as single viewpoints and stable lighting. These controlled
environments do not fully represent the diverse and chal-
lenging conditions encountered in real-world scenarios where
ALPR systems are commonly applied, potentially complicat-
ing the integration of these two fields.

III. DATA PREPARATION

This section outlines the data preparation process for the
experimental research. The RodoSol-ALPR dataset [21] was
selected for model training and evaluation. This dataset com-
prises 20,000 images captured by static cameras at toll booths
on a Brazilian highway (see Fig. 1). We chose this dataset
due to its: (i) widespread use in ALPR research [6], [31],
[32]; (ii) representation of real-world intelligent transportation
systems scenarios; and (iii) accurate license plate annotations,
which enable the derivation of vehicle attributes for FGVC
and support research that integrates both domains.

Fig. 1. Samples from the RodoSol-ALPR dataset [21]. These images illustrate
the diversity of vehicle types and varying lighting conditions captured by the
dataset. The original images have been slightly resized for better viewing.

Similar to [33], we standardized the images by cropping the
vehicles to remove any background, preparing the dataset for
the proposed classification task. As the RodoSol-ALPR dataset
does not provide vehicle bounding box annotations, we applied
YOLOv8 [34] for vehicle detection. To preserve data integrity
and accurately reflect real-world conditions, we refrained from
applying noise reduction or image enhancement techniques.

The next step involved a manual review and filtering process
to select images suitable for vehicle type classification. We first
grouped images of the same vehicle based on the license plate
annotations, recognizing that a vehicle might appear multiple
times on different days or at different times. We retained
samples that exhibited significant variations in lighting, pose,
or other distinguishing attributes. Additionally, we excluded
images where the vehicle was heavily occluded; for example,
images showing only the vehicle bumper were discarded, as
they are inadequate for accurate vehicle type classification.

Finally, we carried out the annotation process. Each image
was initially linked to its corresponding vehicle license plate,
enabling us to automatically retrieve vehicle information from
Brazil’s National Traffic Secretariat (SENATRAN) database.
We identified 12,785 unique license plates, but 424 of these
lacked complete data. Consequently, we manually labeled the
vehicle types for the remaining entries.

After completing the preparation process, the dataset, here-
inafter referred to as Vehicle-Type1, comprised 17,393 images
categorized into eleven classes: bus, car, minibus, motorcycle,
pickup, scooter, Sports Utility Vehicle (SUV), subcompact
SUV, tractor-trailer, tricycle, and truck. Fig. 2 shows the final
class distribution, which exhibits a long-tailed pattern typical
of Brazilian traffic scenarios, where motorcycles and cars are
more prevalent than other vehicle types [35].

Fig. 3 showcases examples of images from each class within
the dataset, highlighting the close relationships between certain
classes. For example, the scooter and motorcycle classes
feature similar vehicles with subtle differences. Despite these
similarities, all classes were maintained separately to ensure
the data’s fidelity, as recorded in the SENATRAN database.

1 The list of selected images from the RodoSol-ALPR dataset, along with
their corresponding vehicle type annotations and our division into training,
test and validation subsets, will be provided upon request.
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Fig. 2. Distribution of vehicle types in the Vehicle-Type dataset.
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Fig. 3. Examples from the Vehicle-Type dataset, obtained after applying the
data preparation process on the RodoSol-ALPR dataset [21]. Each image is
annotated with its corresponding vehicle type, displayed above the image.
Here, all images have been resized to a uniform size for better viewing.

IV. METHODOLOGY

This section describes the experimental research conducted
to investigate the impact of selective prediction and superclass
approaches on the FGVC problem. The initial experiment,
referred to as the baseline experiment, involved training four
models for vehicle type classification (Section IV-A). The
best-performing model was then subjected to further analysis
under various scenarios: (i) retraining and evaluating with
the superclass approach and the proposed online superclass
scheme (Section IV-B); (ii) assessing with the SRR selective
prediction method (Section IV-C); and (iii) evaluating by
combining online superclass with selective prediction (Sec-
tion IV-D).

Each experiment was conducted five times with different
dataset splits, and the results are reported as the average out-
comes. The metrics include Top-1 accuracy, Top-2 accuracy,
precision, recall, and F1-score. Subsequent experiments focus
on analyzing the correct predictions of the best-performing
model, with results reported in terms of Top-1 and Top-2
accuracy. All metrics are presented using macro averaging.

The dataset was split into training, validation, and test sub-
sets in an 8:1:1 ratio, maintaining the original class distribution
percentages in each subset. When exact class percentages did
not allow for a precise division, any surplus images were
randomly assigned to either the validation or test subsets.

A. Baseline Experiment

The models explored in this study are ResNet-34 [36],
MobileNetV3 [37], EfficientNetV2 [38], and ViT b16 [39].
They were selected for their widespread application in im-
age classification tasks, including fine-grained classification
research [40]–[42], as well as their availability of pre-trained
implementations across various frameworks, which enhances
reproducibility. We applied a transfer learning approach for
training: each model was initialized with pre-trained weights
from ImageNet, and only the final fully connected layer was
modified to match the prediction classes. During training,
adjustments were made exclusively to these final layers.

The Adam optimizer was used with β1 = 0.9, β2 = 0.999,
a batch size of 128, weight decay of 10-5, and an initial
learning rate of 10-4. A learning rate reduction scheme was
configured with a patience of 10 epochs and a decrease factor
of 0.1. The training was capped at 400 epochs, with early
stopping applied if no improvement was observed over 15
epochs. Cross-entropy loss was employed as the loss function.

During training and evaluation, all images were resized to
224× 224 pixels to meet the models’ input requirements. To
increase data variability, the following transformations were
applied to each training batch at every epoch: (i) rotations up
to 180°, scaling between 0.9 and 1.3, and shearing up to 30°,
each with a probability of 50%; (ii) random changes to image
brightness and contrast within a range of 0.2, with a probabil-
ity of 30%; (iii) blurring using a generalized normal filter with
randomly selected parameters, with a probability of 40%; (iv)
A random 72×72 pixel section is replaced with random noise,
with a probability of 25%; (v) All images were normalized
using the mean and standard deviation from ImageNet.

Two training protocols were adopted: (p1) training with data
augmentation alone; and (p2) training with the oversampling
of minority classes to balance the dataset distribution, which
enhances performance on imbalanced datasets [43]. The sec-
ond protocol increases the representation of minority classes
across batches, generating synthetic data through the data
augmentation techniques mentioned above.

B. Superclass and Online Superclass

The superclass experiment aims to establish a higher-level
class distribution for classification tasks [17], [19]. This is
achieved through semantic clustering, which groups images of
vehicles with similar characteristics into a common superclass.
Table I presents the mapping of individual classes to their re-
spective superclasses and the resulting class distribution. Thus,
the superclass experiment involves replicating the baseline
methodology, but using the classes as defined by this mapping.

The online superclass experiment assesses whether retrain-
ing the best model from the baseline experiment is necessary



TABLE I
MAPPING OF ORIGINAL CLASSES TO SUPERCLASSES BASED ON SIMILAR

VEHICLE CHARACTERISTICS, ALONG WITH THE RESULTING
DISTRIBUTION OF CLASSES IN THE NEW DATASET.

Original Class Superclass Images

Motorcycle
Motorcycle 7,942Scooter

Tricyle

Car Car 6,245

Pick-up
SUV 2,743SUV

Subcompact SUV

Tractor-trailer Truck 311Truck

Bus Bus 152Minibus

to achieve the results of the superclass experiment. Instead of
retraining, we incorporate superclass mapping only during the
evaluation phase. For instance, if a data sample is labeled as
“motorcycle” and the model predicts “scooter,” the prediction
is deemed correct because “scooter” belongs to the same
superclass as “motorcycle” (see Table I).

C. Selective Prediction

The naive Softmax Response Rejection (SRR) method [15],
[20] is applied using the best-performing model from the
baseline experiment. This method is chosen for its simplicity
in determining whether to accept or reject predictions, as it
requires no modifications to the model architecture or training
process. It relies on the probability distribution from the
softmax layer of the classification network. A threshold is set,
and predictions are accepted if the highest softmax probability
surpasses this threshold; otherwise, they are rejected and
excluded from the evaluation metrics.

This experiment thoroughly examined selective prediction
by testing nine threshold values, ranging from 0.1 to 0.9
in increments of 0.1. Additionally, it tracked extra metrics,
including the number of rejected images and the originally
correct predictions that were incorrectly rejected, both as
absolute numbers and percentages from the test subset. These
metrics provide a deeper understanding of the impact of the
SRR approach on the FGVC task.

D. Online Superclass and Selective Prediction

To further investigate the effects of both the superclass and
selective prediction approaches, a final experiment was con-
ducted that combines the methodologies from Sections IV-B
and IV-C. The online superclass method was selected for
this experiment because it operates exclusively during the
evaluation phase, similar to the selective prediction method.

V. PARTIAL RESULTS

Table II presents the results of the baseline experiment for
each model on the evaluated dataset, following the two training

protocols described in Section IV-A. Notably, models trained
using protocol (p2) achieved higher accuracy compared to
those trained with protocol (p1). This outcome was expected,
as the second protocol enhanced accuracy for minority classes,
thereby increasing the overall macro average. However, this
approach also led to a decrease in the models’ precision.

TABLE II
GLOBAL METRICS REACHED BY ALL MODELS ON THE VEHICLE-TYPE

DATASET, AVERAGED OVER FIVE RUNS. PROTOCOL (p2) INCORPORATES
OVERSAMPLING OF MINORITY CLASSES, WHEREAS (p1) DOES NOT.

Protocol Model Top-1 Top-2 Precision Recall F1

(p1)

ViT b16 65.9% 88.1% 75.3% 65.9% 69.1%
ResNet 34 58.2% 80.4% 76.6% 58.2% 64.0%
EfficientNetV2 50.6% 77.2% 69.2% 50.6% 56.1%
MobileNetV3 61.7% 78.8% 73.5% 61.7% 65.5%

(p2)

ViT b16 78.2% 92.0% 65.9% 78.2% 70.2%
ResNet 34 74.7% 89.4% 53.1% 74.7% 58.0%
EfficientNetV2 73.7% 87.7% 50.1% 73.7% 55.8%
MobileNetV3 70.3% 86.6% 51.5% 70.3% 57.1%

Focusing on correct predictions, the ViT b16 model emerged
as the top performer, achieving 78% Top-1 and 92% Top-
2 accuracy when trained under protocol (p2). These results
highlight the model’s strong generalization capabilities, even
in the challenging FGVC scenario. Consequently, the ViT b16
trained with protocol (p2) was selected for further analysis
to explore potential improvements in classification accuracy
through the superclass and selective prediction approaches.

Table III compares the baseline results with those obtained
using the ViT b16 model across the two superclass approaches.
Both superclass methods showed higher accuracy than the
baseline model. This improvement is attributed to the reduced
task complexity, achieved by clustering similar classes to-
gether based on their visual characteristics. The normalized
average confusion matrix from the best-performing model in
the baseline experiment (Fig. 4) shows that similar vehicle
types exhibited noticeable misclassifications. Thus, grouping
visually similar classes can minimize incorrect predictions.

TABLE III
GLOBAL TOP-1 AND TOP-2 ACCURACY VALUES REACHED BY VIT B16 ON

THE VEHICLE-TYPE DATASET USING THE SUPERCLASS AND ONLINE
SUPERCLASS APPROACHES, AVERAGED OVER FIVE RUNS.

Method Top-1 Top-2

Baseline 78.2% 92.0%
Superclass 87.8% 98.1%
Online Superclass 88.0% 96.7%

Additionally, it is worth noting that the Top-1 accuracy
difference between the two superclass methods is minimal.
Further analysis using a paired t-test at a 5% significance
level shows no statistically significant difference between
the methods. Nevertheless, the online superclass method is
preferred because it enables the model to retain the ability to
predict the original classes.

Table IV presents the results reached by the ViT b16
model (from the baseline experiment) when applying selective
prediction with SRR across different minimum confidence
thresholds. Naturally, higher thresholds lead to the rejection
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Fig. 4. Normalized confusion matrix illustrating the performance of the
ViT b16 model trained with data augmentation and oversampling techniques,
which achieved the best results on the baseline experiment.

of more images. The range of minimum confidence thresholds
produced rejection rates from 0.4% (with a threshold of 0.3)
to 55% (with a threshold of 0.9) of the total test subset.

TABLE IV
GLOBAL TOP-1 AND TOP-2 ACCURACY VALUES ACHIEVED BY VIT B16

ON THE VEHICLE-TYPE DATASET USING SOFTMAX RESPONSE
REJECTION, AVERAGED OVER FIVE RUNS. REJECTION RATES ARE SHOWN

AS BOTH ABSOLUTE NUMBERS AND PERCENTAGES.

Minimum
Confidence

Rejected
Images

Correct Predictions
Incorrectly Rejected Top-1 Top-2

0.1 0 / 0.0% 0 / 0.0% 78.2% 92.0%
0.2 0 / 0.0% 0 / 0.0% 78.2% 92.0%
0.3 7 / 0.4% 2 / 0.1% 78.5% 92.4%
0.4 71 / 4.1% 28 / 1.6% 80.5% 94.0%
0.5 192 / 11.0% 92 / 5.3% 83.4% 95.0%
0.6 348 / 20.0% 192 / 11.0% 86.9% 95.6%
0.7 503 / 28.9% 308 / 17.7% 86.1% 92.3%
0.8 692 / 39.8% 472 / 27.4% 86.9% 92.9%
0.9 968 / 55.7% 730 / 42.0% 85.5% 90.3%

Although raising the threshold improves accuracy compared
to the baseline, a significant issue arises: as the rejection rate
increases, so does the number of correct predictions that are
incorrectly rejected. In the worst-case scenario (threshold of
0.9), 42% of initially correct classifications were rejected. This
results in a plateau in accuracy improvement as the threshold
increases. For confidence thresholds above 0.6, accuracy gains
level off and may even decline compared to lower thresholds
Therefore, balancing accuracy and rejection rate is crucial for
optimizing results. At a threshold of 0.5, baseline accuracy is
improved with an 11.0% rejection rate, while minimizing the
loss of correct predictions to 5.3% of them.

Table V shows the results of combining selective prediction

with the online superclass method. This improved the baseline
results without requiring retraining or changes to the best-
performing model architecture. Remarkably, with a confidence
threshold of 0.4, we achieved a rejection rate of 4.1% and Top-
1/Top-2 accuracy rates of 90.1% and 98.3%, respectively.

TABLE V
GLOBAL TOP-1 AND TOP-2 ACCURACY VALUES REACHED BY VIT B16 ON

THE VEHICLE-TYPE DATASET USING SRR AND ONLINE SUPERCLASS,
AVERAGED OVER FIVE RUNS. REJECTION RATES ARE SHOWN AS BOTH

ABSOLUTE NUMBERS AND PERCENTAGES.

Minimum
confidence

Rejected
Images

Correct Predictions
Incorrectly Rejected Top-1 Top-2

0.1 0 / 0.0% 0 / 0.0% 88.0% 96.7%
0.2 0 / 0.0% 0 / 0.0% 88.0% 96.7%
0.3 7 / 0.4% 4 / 0.2% 88.4% 97.1%
0.4 71 / 4.1% 45 / 2.6% 90.1% 98.3%
0.5 192 / 11.0% 129 / 7.4% 91.3% 98.7%
0.6 348 / 20.0% 260 / 15.0% 92.9% 98.9%
0.7 503 / 28.9% 399 / 22.9% 93.4% 99.1%
0.8 692 / 39.8% 580 / 33.4% 93.6% 99.2%
0.9 968 / 55.7% 850 / 48.9% 94.3% 99.3%

In conclusion, online superclass and selective prediction
approaches led to notable improvements over the baseline.
Top-1 accuracy increased from 78.2% to 87.8% with online
superclass and to 88.9% with selective prediction. Similarly,
Top-2 accuracy rose from 92.0% to 98.1% and 96.7%, re-
spectively. By combining these techniques, final accuracy rates
reached 90.1% for Top-1 and 98.3% for Top-2, with a rejection
rate of ≈ 4.1% of total predictions. These results demonstrate
the effectiveness of the studied methods.

VI. CONCLUSIONS

This work represents an initial exploration of enhancing ve-
hicle identification systems through the integration of modules
such as Automatic License Plate Recognition (ALPR) and
Fine-Grained Vehicle Classification (FGVC). Our work-in-
progress study identified areas within existing FGVC literature
that could benefit from this integration and introduced prelim-
inary methods that incorporate both superclass and selective
prediction approaches into vehicle type classification.

The experiments showed that both selective prediction and
superclass methods can improve overall classification accu-
racy. It is noteworthy that adapting a model to evaluate
predictions based on a superset of classes can yield results
similar to training a model from scratch with these super-
classes. Additionally, balancing rejection rates with accuracy
improvements prediction remains an area for future research.

In conclusion, the combination of the studied methods
shows promise for advancing FGVC and integrating it with
ALPR systems. Future research should focus on several key
areas: (i) improving the superclass method by employing
automatic clustering techniques to map original classes to
superclasses; (ii) refining the selective prediction scheme using
more robust techniques, such as confidence calibration and
learning with rejection; (iii) developing a combined ALPR and
FGVC system to assess how vehicle attribute classification can
further enhance license plate recognition accuracy.
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