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Abstract—Automatic License Plate Recognition (ALPR)-based
Vehicle Identification Systems are vital for modern traffic man-
agement and law enforcement, yet they frequently encounter
challenges in real-world scenarios, leading to recognition errors.
Our ongoing research investigates a novel method to improve
ALPR accuracy through the integration of Fine-grained Vehicle
Classification (FGVC), with a particular focus on vehicle make
identification. By cross-referencing identified vehicle brands with
registered data, we aim to enhance the reliability of ALPR-
based vehicle identification systems. Nonetheless, initially, our
work-in-progress is concentrated on refining FGVC techniques
to facilitate their integration with ALPR. We assess four deep
learning models for vehicle make classification and explore
methods such as selective prediction and a new class reduc-
tion approach. Preliminary results from our experiments on
a modified Brazilian vehicle dataset indicate that combining
these methods significantly boosts vehicle make identification
accuracy. This improved classification approach is anticipated
to reduce false positives and increase recognition rates under
challenging conditions. Future efforts are going to be directed
towards integrating these observed enhancements into ALPR-
based vehicle identification systems to further improve their
performance in real-world applications.

I. INTRODUCTION

Vehicle identification systems based on ALPR are integral to
Intelligent Transportation Systems, supporting a broad spec-
trum of applications, such as toll collection, vehicle access
control, and criminal forensics [1], [2]. Despite their critical
role, these systems continue to encounter challenges in real-
world conditions, including poor lighting, obscured license
plates, and non-standard plate designs [3], [4]. Notably, the
Military Police of Paraná in Brazil has reported frequent
inaccuracies in their ALPR system during field deployments.

To address these persistent challenges, we propose incorpo-
rating vehicle make information as a cross-validation measure
for license plate recognition in vehicle identification tasks.
This approach can be especially valuable in challenging sce-
narios where errors occur in license plate recognition, allowing
the vehicle make data to validate results and narrow the search
space for identifying the correct license plate. Vehicle make
identification is particularly effective because, while less com-
plex than vehicle model classification, it remains sufficiently
descriptive to help correct misrecognized license plates.

The identification of a vehicle’s make is a key area of
research within FGVC, a field dedicated to classifying ve-
hicles based on attributes such as type, make, model, and

year [5]–[7]. Recent advancements in deep learning have sig-
nificantly improved FGVC-related tasks. However, integrating
these classification systems with ALPR to enhance vehicle
recognition accuracy remains underexplored. Challenges in
merging these fields stem from the differing scenarios they
address, with ALPR systems often being deployed in more
challenging environments. Therefore, it is vital to advance
FGVC not only to achieve better classification outcomes but
also to complement license plate recognition methodologies.

With this in mind, our research focuses on developing and
evaluating a vehicle make classification system specifically
designed for integration with ALPR. We explore four deep
learning architectures and investigate methods to enhance
classification accuracy and reliability. This study focuses on
two approaches: (i) selective prediction, where the model
abstains from making a prediction when confidence is low [8];
and (ii) class reduction, a method that simplifies the number
of make categories to boost accuracy without significantly
compromising the problem’s representativeness.

For our experiments, we expanded the Rodosol-ALPR [9]
dataset by incorporating vehicle make information. This
dataset was chosen because of its widespread use in ALPR
research [3], [10], [11], its realistic representation of intel-
ligent transportation systems scenarios, and its license plate
annotations, which support effective FGVC labeling. We first
assess the performance of the models in terms of accuracy,
precision, and recall. Afterward, we investigate the impact of
selective prediction and class reduction techniques using the
top-performing model.

The remainder of this work is organized as follows. Sec-
tion II gives an overview of related works. Section III de-
scribes the data preparation process. Section IV details the
experiments and results. Section V concludes the work and
explores potential directions for future research.

II. RELATED WORK

Vehicle make classification on FGVC has emerged as a
prominent area of research in computer vision, with recent
advancements significantly enhancing intelligent transporta-
tion systems. For instance, the use of an adaptive attention
mechanism in Convolutional Neural Networks (CNNs) to
focus on critical regions of a vehicle has led to a 94.1%
accuracy rate in vehicle make classification on the CompCars



dataset [12]. Similarly, a part-guided attention mechanism,
which autonomously distinguishes vehicle parts, has achieved
an impressive 97.9% accuracy on the same dataset [5].

Another innovative approach was presented by Sochor et
al. [13], which employs a multi-task learning framework
to simultaneously classify vehicle make, model, and year.
Their method reached a stunning 97.6% accuracy in make
classification on the Stanford Cars dataset. In a different
vein, the hierarchical vision transformer model leverages a
hierarchical structure to capture features at various levels of
granularity, achieving 96.8% accuracy in make classification
on the VehicleID dataset [14].

Contrastive learning has also made strides in the field, as
exemplified by the contrastive vehicle classification learning
model [15]. By employing hard negative sampling, this model
enhances the discriminative power of feature representations,
achieving a 95.3% accuracy rate in make classification on
the BoxCars116k dataset. Similarly, the multi-scale fusion
network model [16] integrates features from different scales
to capture both fine details and broader context, attaining a
98.2% accuracy on the CompCars dataset.

Few-shot learning techniques have been explored to enable
the classification of new vehicle makes with minimal training
data. For example, a prototype-based meta-learning approach
achieved a 91.7% accuracy with only five examples per
class on the VehicleID dataset [17]. Additionally, Generative
Adversarial Networks (GANs) have been employed for data
augmentation, with the vehicle GAN method [18] generating
synthetic vehicle images that improved make classification
accuracy by 3.5% on the Stanford Cars dataset.

These advancements in fine-grained vehicle classification,
particularly in make classification, offer significant opportuni-
ties to enhance vehicle identification systems by fusing their
results with ALPR. However, despite the promising outcomes
reported by existing research, many studies are often carried
out under controlled conditions that do not fully capture the
diverse and challenging conditions encountered in real-world
scenarios where ALPR systems are typically deployed.

III. DATA PREPARATION

The RodoSol-ALPR dataset [9] comprises 10,000 images
of cars and 10,000 images of motorcycles, all captured by
stationary cameras at toll booths along a Brazilian highway
(see Fig. 1). To adapt the dataset for vehicle make classifica-
tion, several preprocessing steps were required. This section
outlines the data preparation process applied to the dataset to
ensure its suitability for the proposed experimental research.

Inspired by [19], all motorcycle images were excluded due
to the limited research on accurate make identification for
motorcycles, making it an inconclusive area of study. To
maintain the focus on well-established tasks, only car images
were retained. The images were then standardized to ensure
that they depicted vehicles without background information.
Since the dataset did not include bounding box annotations,
the YOLOv10 [20] model was employed for vehicle detection.

Fig. 1. Sample images from the RodoSol-ALPR dataset [9], showcasing its
diversity of vehicle types and varying lighting conditions. For this figure, the
images have been slightly resized for better viewing.

Next, the images underwent manual curation to ensure their
suitability for the research problem. This process involved
grouping multiple images of the same vehicle based on license
plate annotations and selecting those that exhibited variations
in lighting, angle, or other features [21]. Images with sig-
nificant occlusions, such as those showing only the vehicle’s
bumper, were excluded to ensure accurate make classification.

For annotation purposes, license plate data was used to
retrieve vehicle information from Brazil’s National Traffic
Secretariat (SENATRAN) database, enabling the automatic
assignment of vehicle make labels. Fewer than 5% of the
recovered license plates lacked consistent information, re-
quiring manual annotation. Images with ambiguous make
identification were excluded to minimize errors.

The final dataset, referred to as the VehicleMake dataset,
comprises 9,553 images categorized into 29 vehicle make
classes. This includes prominent brands such as Chevrolet,
Fiat, Ford, Honda, Toyota, and Volkswagen. The class dis-
tribution, shown in Fig. 2, reflects the prevalence of specific
makes in Brazilian traffic [22]. Fig. 3 showcases examples of
images from the most common classes.
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Fig. 2. Distribution of classes in the VehicleMake dataset.

Naturally, the selected images from the RodoSol-ALPR
dataset, along with their corresponding vehicle make annota-
tions and our division into training, test and validation subsets,
will be made available upon request.

IV. EXPERIMENTS AND RESULTS

This section provides an overview of the experimental
research conducted, detailing each experiment and analyzing



Fig. 3. Examples of images from the VehicleMake dataset. The corresponding
vehicle make annotation is shown above each image. In this figure, the images
were resized to a uniform size for better viewing.

its results. Each experiment was repeated five times with
different dataset splits, and the results were averaged across
these iterations. The baseline metrics assessed include Top-1
accuracy, Top-2 accuracy, precision, recall, and F1-score, all
reported using class macro averaging. Further exploration with
the best-performing model focused on the correct classification
rate and did not include precision, recall, or F1-score metrics.

The dataset images were split into three subsets: 75%
for training, 12.5% for validation, and 12.5% for testing.
Each subset maintains the original class distribution found in
the entire dataset. When the exact class percentages did not
allow for precise splitting, any excess images were randomly
allocated to either the validation or test subsets.

The remainder of this section is organized as follows. Sec-
tion IV-A outlines the baseline experiment, where four deep
learning models were trained for vehicle make classification.
Section IV-B details the class reduction experiment performed
with the best-performing baseline model. Section IV-C covers
the selective prediction approach applied to this model and
evaluates the effectiveness of combining online class reduction
with selective prediction.

A. Baseline Experiment

The baseline experiment involved training four deep learn-
ing models for vehicle make classification: ResNet-34 [23],
MobileNetV3 [24], EfficientNetV2 [25], and ViT b16 [26].
These models were chosen due to their effectiveness in image
classification and fine-grained tasks [27], [28], as well as the
availability of pre-trained implementations that enhance repro-
ducibility. A transfer learning approach was used, initializing
the models with pre-trained weights from ImageNet [29] and
modifying the final fully connected layer to match the number
of vehicle make classes. Only these final layers were trained.

The Adam optimizer was employed with β1 = 0.9, β2 =
0.999, a batch size of 128, a weight decay of 10-5, and an
initial learning rate of 10-4. A learning rate reduction scheme
was implemented with a patience value of 10 epochs and a

reduction factor of 0.1. Training was carried out for up to
400 epochs, with early stopping applied if no improvement
was observed over 15 epochs. Cross-entropy loss was used
as the loss function. Two training protocols were employed:
(p1) training with data augmentation only, and (p2) utilizing
data augmentation techniques to increase the representation
of minority classes within batches by generating synthetic
data, known as oversampling. This approach can improve
performance by balancing the dataset distribution [30].

The data augmentation process began by resizing images
to 224 × 224 pixels to align with the model’s input size
requirements. A variety of affine transformations were then
applied, including rotations up to 180°, scaling between 0.9
and 1.3, and shearing up to 15°, all with a 50% probability.
Additionally, brightness and contrast were randomly adjusted
within a range of 0.2, with a 30% probability, and images
were blurred using a generalized normal filter with randomly
selected parameters, with a 40% probability. There was also a
25% chance that a random 72× 72 pixel region of the image
would be filled with random noise. Finally, each image was
normalized using the mean and standard deviation values from
ImageNet [29].

Table I summarizes the performance of each model across
the dataset using the training protocols (p1) and (p2). Models
trained under the second protocol generally achieved higher
accuracy compared to those trained under the first, although it
comes with a slight trade-off in precision. The ViT b16 model
delivered the best performance, reaching a Top-1 accuracy of
65.4% and a Top-2 accuracy of 73.8% under protocol (p2).
These results demonstrate strong generalization capabilities,
even in the challenging task of FGVC. Consequently, this
model was the selected one for further exploration in the
following subsections.

TABLE I
GLOBAL METRICS ACHIEVED BY ALL MODELS ON THE VEHICLE MAKE
CLASSIFICATION TASK (AVERAGED OVER FIVE RUNS). PROTOCOL (p2)

INCLUDES OVERSAMPLING OF MINORITY CLASSES, WHILE PROTOCOL (p1)
DOES NOT.

Protocol Model Top-1 Top-2 Precision Recall F1

(p1)

ViT b16 55.3% 62.6% 63.9% 55.3% 57.4%
ResNet-34 38.7% 47.8% 49.3% 38.7% 41.1%

EfficientNetV2 39.3% 49.1% 45.8% 39.3% 39.5%
MobileNetV3 40.9% 50.9% 52.2% 40.9% 43.5%

(p2)

ViT b16 65.4% 73.8% 53.0% 65.4% 56.8%
ResNet-34 49.4% 61.8% 33.9% 49.4% 36.9%

EfficientNetV2 49.4% 60.2% 31.7% 49.4% 33.8%
MobileNetV3 50.7% 61.8% 37.7% 50.7% 41.2%

B. Class Reduction Experiment

The class reduction approach aims to improve the accuracy
of the best-performing model by simplifying the vehicle make
classification problem while preserving data representativity
essential for an ALPR system. To achieve this, we reduced the
number of classes from 29 to 11. The top-10 most prevalent
vehicle makes in the Brazilian context [22] were retained as
individual classes, while the remaining makes were grouped
into a single class labeled “Others.” Table II presents the final



dataset classes used for the class reduction experiments, along
with the total number of images for each class.

TABLE II
CLASS DISTRIBUTION CONSIDERED FOR THE CLASS REDUCTION
EXPERIMENTS AND THE RESULTING DISTRIBUTION OBTAINED.

Class Images

Chevrolet 1,054
Fiat 1,189
Ford 1,662
Honda 231
Hyundai 352
Jeep 97
Nissan 168
Renault 968
Toyota 1,273
Volkswagen 1,256
Others 1,303

The experiment employs two evaluation methodologies:
1) Static Class Reduction: This method follows the base-

line approach but incorporates the new class definitions
as specified in Table II. Only the best-performing model,
ViT b16 with protocol p2, is retrained;

2) Online Class Reduction: Rather than retraining the
best-performing model, this method adjusts the model’s
output exclusively during the evaluation phase, based on
the new class definitions. For instance, if the ground
truth for a sample is “Audi” and the model predicts
“BMW,” the prediction is deemed correct as both brands
fall under the “Others” category.

Table III compares the baseline results with those obtained
using the best-performing model under the class reduction
approaches. Both static and online methods improved the base-
line accuracy by simplifying the vehicle make classification
task. Given the similarity of the results from these approaches,
we performed a paired t-test at a 5% significance level
to determine any statistical differences. The results indicate
that, on average, the static method produces more accurate
predictions than the online method, confirming a statistically
significant difference.

TABLE III
GLOBAL TOP-1 AND TOP-2 ACCURACY ACHIEVED BY VIT B16 FOR
VEHICLE MAKE CLASSIFICATION USING STATIC AND ONLINE CLASS

REDUCTION APPROACHES (AVERAGED OVER FIVE RUNS).

Method Top-1 Top-2

Baseline 65.4% 73.8%
Static class reduction 73.4% 85.0%
Online class reduction 71.1% 81.5%

Fig. 4 shows the average confusion matrices for the baseline
experiment (Fig. 4a) and the static class reduction experiment
(Fig. 4b), which yielded the best performance as shown in
Table III. The matrices reveal that when all original classes are
considered, there are more incorrect predictions, particularly
for the less-represented classes. In contrast, by reducing the
number of classes and consolidating those not among the top
10 most prevalent vehicle makes in Brazil, misclassifications

are reduced. This grouping helps minimize errors associated
with these less frequent classes.
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Fig. 4. Average confusion matrices for the baseline experiment (a) and the
static class reduction experiment (b). The brightness of each pixel directly
corresponds to the normalized frequency of samples at that matrix position,
with brighter pixels indicating higher frequencies.

C. Selective Prediction Experiment

Selective prediction allows a model to reject predictions
based on certain criteria [8]. In this experiment, we imple-
mented a naive softmax-response rejection method [8] during
the evaluation phase of the baseline best-performing model.
This straightforward approach neither alters the model’s ar-
chitecture nor its training process. It leverages the softmax
probability distribution to decide whether to accept or reject
predictions based on whether the highest probability surpasses
a predefined threshold. We tested nine threshold values ranging
from 0.1 to 0.9, in increments of 0.1. To further explore
selective prediction, we conducted an additional experiment
combining it with the online class reduction method, as both
techniques are applied solely during the evaluation phase.



Table IV compares the baseline results with those obtained
using selective prediction (both with and without online class
reduction) for the ViT b16 model at various confidence thresh-
olds. It also presents the total number of rejected images
and the number of originally correct predictions that were
incorrectly rejected, expressed as both absolute values and
percentages of the rejections from the test subset. The data
indicate that applying the selective prediction method enhances
accuracy compared to the baseline results. Moreover, combin-
ing selective prediction with online class reduction yields even
higher accuracy. However, higher thresholds result in increased
rejection rates and more correct predictions being incorrectly
rejected, thereby limiting further improvements in accuracy.

Finding a balance between accuracy improvements and ac-
ceptable rejection rates is crucial. A threshold of 0.4 provides
an optimal trade-off for the selective prediction approach,
improving accuracy while maintaining a reasonable rejection
rate. This method outperforms the baseline results without sig-
nificantly compromising correct predictions. By combining the
selective prediction approach with the online class reduction
method, the best performance was achieved at a threshold of
0.5, yielding Top-1 and Top-2 accuracies of 90.2% and 94.6%,
respectively. Although this threshold does not offer the highest
accuracy, it maintains a rejection rate below 45%.

TABLE IV
GLOBAL TOP-1 AND TOP-2 ACCURACY VALUES ACHIEVED BY VIT B16
ON THE VEHICLE MAKE CLASSIFICATION TASK USING ONLY SOFTMAX

RESPONSE REJECTION, AND COMBINING IT WITH ONLINE CLASS
REDUCTION APPROACH (AVERAGED OVER FIVE RUNS). REJECTION RATES

ARE PRESENTED AS BOTH ABSOLUTE NUMBERS AND PERCENTAGES.

Method Minimum
confidence

Rejected
images

Correct predictions
incorrectly rejected Top-1 Top-2

Baseline – – – 65.4% 73.9%

Selective
Prediction

0.1 0 / 0.0% 0 / 0.0% 65.4% 73.9%
0.2 37 / 3.1% 8 / 23.0% 66.7% 75.0%
0.3 207 / 17.3% 62 / 30.1% 71.9% 79.5%
0.4 382 / 32.0% 145 / 38.0% 77.0% 82.5%
0.5 534 / 44.7% 239 / 44.8% 75.4% 79.7%
0.6 655 / 54.9% 328 / 50.1% 75.8% 78.5%
0.7 770 / 64.5% 426 / 55.3% 75.8% 77.0%
0.8 876 / 73.4% 523 / 59.7% 75.3% 75.8%
0.9 1013 / 84.8% 656 / 64.8% 71.3% 71.5%

Selective
Prediction

+
Online
Class

Reducing

0.1 0 / 0.0% 0 / 0.0% 71.1% 81.6%
0.2 37 / 3.1% 10 / 0.9% 72.6% 83.0%
0.3 207 / 17.3% 71 / 5.9% 78.6% 87.6%
0.4 382 / 32.0% 159 / 13.4% 84.7% 91.8%
0.5 534 / 44.7% 255 / 21.3% 90.2% 94.6%
0.6 655 / 54.9% 345 / 28.9% 93.4% 95.7%
0.7 770 / 64.5% 445 / 37.3% 95.8% 97.4%
0.8 876 / 73.4% 543 / 45.5% 94.3% 94.7%
0.9 1013 / 84.8% 677 / 56.7% 88.5% 88.8%

V. CONCLUSIONS

Our ongoing research seeks to enhance vehicle identification
in challenging conditions by integrating Automatic License
Plate Recognition (ALPR) systems with Fine-grained Vehicle
Classification (FGVC) methods. Preliminary findings indicate
that FGVC needs further refinement to be effectively integrated
with ALPR systems. This study specifically examines two
approaches to enhance vehicle make classification: selective
prediction and class reduction.

The results show that both approaches can improve classi-
fication accuracy. Initially, it was observed that online class

reduction – where the model’s output is adjusted to consider
a reduced set of vehicle make classes – yields slightly worse
results to training a new model with these classes (static class
reduction). However, the selective prediction approach needs
more careful consideration. It requires a precise balance be-
tween rejection rates and accuracy to avoid excessive rejection
of correct predictions. In conclusion, combining both methods
appears promising for achieving better FGVC results and an
improved integration with ALPR systems.

Future research should focus on refining selective prediction
techniques to reduce the rejection of correct predictions, po-
tentially through methods like learning with rejection [31] and
confidence calibration [32]. Developing an integrated system
for ALPR and FGVC system will be critical to assess how
enhanced vehicle make classification can improve license plate
recognition in challenging real-world scenarios. Additionally,
further exploring the impact of environmental conditions and
image quality on classification performance will be essential.
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