
An Analysis of How Hypergraph Spectral
Clustering Deals with Higher-order Relationships
Ana Carolina Holzmeister Cunha
Federal University of Espirito Santo

Vitoria, Espirito Santo 29075-910
Email: anacarolholz@outlook.com

Fabiano Petronetto
Federal University of Espirito Santo

Vitoria, Espirito Santo 29075-910
Email: fabiano.carmo@ufes.br

Alcebiades Dal Col
Federal University of Espirito Santo

Vitoria, Espirito Santo 29075-910
Email: alcebiades.col@ufes.br

Abstract—Spectral clustering has recently been extended to
hypergraphs, which are formed by vertices and higher-order
relationships between these vertices. In this article, we consider
a methodology to qualitatively compare hypergraph spectral
clustering against the classical graph spectral clustering. More
precisely, we use a graph representation to create a graph from a
given hypergraph, thus allowing a comparison between spectral
clustering methods. Experiment shows that the hypergraph spec-
tral clustering deals differently with higher-order relationships.

I. INTRODUCTION

Spectral clustering is a well-established technique for data
analysis. In order to perform the analysis, a similarity graph
is usually derived from data and its structure is employed in
clustering [1]. Spectral clustering is widely used due to its
simplicity and because it outperforms other classical methods.

Spectral clustering has recently been extended to hyper-
graphs, a set of vertices endowed with relations of two or more
vertices. It has been called hypergraph spectral clustering [2].

In this work, we propose a qualitative comparison between
graph spectral clustering and hypergraph spectral clustering.
More precisely, hypergraph spectral clustering is applied to
path and squid hypergraphs and graph spectral clustering is
used in their (clique expansion) graph representations [3],
where each hyperedge of theses hypergraphs is replaced by
a clique (see Section IV).

II. GRAPH SPECTRAL CLUSTERING

Graphs can be used in numerous applications, such as health
care, neuroscience, urban transportation, network analysis and
social sciences [4]–[7]. Each edge connects two vertices and
has a weight that shows the similarity between these vertices.

On mathematical terms, a weighted graph is defined by G =
(V,E), where V is a finite set of vertices whose cardinality is
N and E is a set of edges that can be encoded in a weighted
adjacency matrix W . If vertices vi and vj are connected by
an edge e = {vi, vj}, e ∈ E, then the value wij measures
the similarity between vertices vi and vj . The unnormalized
graph Laplacian can be obtained by L = D−W , where D is
the degree matrix, whose i-th diagonal element dii are defined
by the sum of the weights of all the edges connected to the
vertex vi, dii =

∑
j wij .

Since the symmetric matrix L is positive semi-definite, it
has N real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. The

multiplicity k of the eigenvalue 0 of L equals the number of
connected components in the graph. If a graph is connected,
the smallest eigenvalue is λ1 = 0 and it has as corresponding
eigenvector the constant eigenvector 1.

The goal of graph spectral clustering is to ensure, as much as
possible, that vertices in a same group (or cluster) are similar
to each other. In other words, two vertices in the same group
must have an edge with high weight and vertices in different
groups should have low edge weight [1].

Graph spectral clustering with the unnormalized graph
Laplacian: Given a graph G = (V,E), we compute the
graph unnormalized Laplacian L and the first k eigenvectors
u1, u2, ..., uk of L, considering them organized according to a
crescent order of the corresponding eigenvalues. We define a
matrix U with these vectors as columns U = [u1 u2 . . . uk] ∈
RN×k. For each i = 1, . . . , N , we consider yi ∈ Rk as the
vector corresponding to the i-th row of U . After that, we
cluster the points (yi)i=1,...,n into k clusters C1, C2, ..., Ck

applying the k-means algorithm to these points. As a result,
we have the clusters S1, . . . , Sk with Si = {j|yj ∈ Ci} [1].

III. HYPERGRAPH SPECTRAL CLUSTERING

While a graph can describe a pairwise relation among data,
hypergraphs can describe the relationship between multiple
data, hyperedges connect more than two vertices and model the
polyadic interactions of the hypergraph, and the hypergraph
signals are those associated to the vertices of the hypergraph.
For example, if our data are authors and we have an edge
connecting two authors if they published an article together,
we would not be able to visualize if three authors published
together using a graph because it is composed of only pairwise
relationships, however in a hypergraph all the three authors
could be in a hyperedge and we would visualize that there is
an article that the three authors have written together.

A hypergraph is defined by H = (V (H), E(H)), where
V (H) = {v1, ..., vn} is a set of vertices and E(H) =
{e1, ..., ek} is a set of hyperedges, whose the elements are
multi-elements subsets of V (H). We define the maximum
cardinality of the hyperedges as M = max{|ei| : ei ∈ E(H)}.
A hypergraph can be represented by matricial or tensorial
algebraic descriptions. In this article, we use the tensorial
representation [2].

The adjacency tensor of a hypergraph H = (V (H), E(H)),
with N vertices and maximum cardinality M is an M th-
order N -dimensional tensor A ∈ RNM

= RN×...×N with
entries ap1,p2,...,pM

, 1 ≤ p1, p2, ..., pM ≤ N . A hyperedge
ei = {vl1 , vl2 , ..., vlci} ∈ E(H) of cardinality ci = |ei| ≤ M
is represented in A by the entries ap1,p2,...,pM

= ci/αi,

αi =
∑

k1,k2,...,kci
≥1

k1+k2+...+kci
=M

M !

k1!k2! · · · kci !
, (1)

where ci indices in the set {p1, p2, ..., pM} are {l1, l2, ..., lci}
and the other M − ci indices take into account every possible
subset combination from {l1, l2, . . . , lci} [8].

The degree of a hypergraph vertex vk ∈ V (H) is

d(vk) =
N∑

i2,i3,...,im=1

ak,i2,i3,...,iM , that is, the number of

hyperedges containing vk. The degree tensor is defined by
D = dp1,p2,...,pM

, 1 ≤ p1, p2, ..., pM ≤ N , which is a super-
diagonal tensor with diagonal elements dk,...,k = d(vk), 1 ≤
k ≤ N , and zero otherwise. The Laplacian tensor is then
defined by L = D −A ∈ RNM

[2].
Representing vectors as lowercase letters, matrices as up-

percase letters and tensors as calligraphic letters, the (i, j)-th
part of a 3rd-order tensor A ∈ RN1×N2×N3 is its tube scalar
denoted by aij = A(i, j, :) ∈ R1×1×N3 , the j-th part of the
tensor A is its lateral slides

−→
A j ≡ A(:, j, :) ∈ RN1×1×N3 ,

which is also a set of tubal scalars. The k-th part of the
tensor A is its frontal slices denoted by A(k) ≡ A(:, :, k) ∈
RN1×N2×1 and it forms a matrix.

Let us study the operations using the tensors. First, we have
the t-product operation, the product of two tubal scalars results
in another tubal scalar, that is, if we have the t-product between
the tubal scalars a ∈ R1×1×N3 and b ∈ R1×1×N3 it will result
in a tubal scalar c ∈ R1×1×N3 computed as c = a ⋆ b, where
⋆ represents the circular convolution between two vectors.

Generalizing, the tensor C ∈ RN1×N4×N3 is the result of
the t-product of two 3rd-order tensors A ∈ RN1×N2×N3 and
B ∈ RN2×N4×N3 computed as

C = A ∗ B = fold(bcirc(A) · unfold(B)) (2)

C = fold



A(1) A(N3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(N3) A(N3−1) · · · A(1)



B(1)

B(2)

...
B(N3)


 (3)

As an example of application of the t-product, we consider
the following three frontal slides of 3rd-order tensors A and B
and show the operations made with them to obtain the three
slides of the tensor C.

A(1) =

1 4 7
1 4 4
1 1 7

 , A(2) =

2 5 2
5 3 8
2 5 8

 , A(3) =

3 8 9
3 6 9
7 6 6



B(1) =

1 0 0
0 4 0
0 0 7

 , B(2) =

0 5 0
2 0 0
0 0 0

 , B(3) =

0 0 9
0 0 9
3 6 0


First, we multiply the first frontal slide of

A with the first frontal slide of B, the second frontal slide of
A with the last frontal slide of B and the last frontal slide of
A with the second frontal slide of B

A(1) ×B(1) =

1 16 49
1 16 28
1 4 49

 , A(2) ×B(3) =

 6 12 63
24 48 72
24 48 63



and A(3) ×B(2) =

16 15 0
12 15 0
12 35 0

 .

We sum up the results to find the first frontal slide of C.

C(1) = A(1) ×B(1) +A(3) ×B(2) +A(2) ×B(3)

C(1) =

23 43 112
37 79 100
37 87 112

 .

In order to obtain the second and the last frontal slides of C,
we perform the calculations

C(2) = A(2) ×B(1) +A(1) ×B(2) +A(3) ×B(3)

C(3) = A(3) ×B(1) +A(2) ×B(2) +A(1) ×B(3)

Besides the t-product operation, we have the t-
eigendecomposition. Let A ∈ RN1×N1×N3 be a tensor,
if each frontal slice of Â ∈ RN1×N1×N3 is diagonalizable,
where Â is the discrete Fourier transform of A along the
third dimension, that is, Â(k) = V̂ (k)Λ̂(k)(V̂ (k))−1, then the
t-eigendecomposition of A is given by [9]

A = V ∗ Λ ∗ V−1, (4)

where Λ is an f-diagonal tensor and V is an orthogonal tensor.
Hypergraph spectral clustering with the Laplacian ten-

sor: Given a hypergraph H = (V (H), E(H)), the Laplacian
tensor L is calculated. We then consider the symmetrized
version of the Laplacian tensor Ls ∈ RN×N×(2N+1) [8] and
its discrete Fourier transform along the third dimension L̂s.

Each frontal slice of L̂s is symmetric and therefore diago-
nalizable, then Ls can be t-decomposed as Ls = V ∗Λ ∗V−1.
Hypergraph spectral clustering employs the first frontal slice
V̂ (1) = [v1 v2 . . . vN] ∈ RN×N of V̂ and the first frontal
slice Λ̂(1) = diag(Λ̂(1)(1, 1), . . . , Λ̂(1)(N,N)) ∈ RN×N of
Λ̂. More precisely, given the number k of clusters, hypergraph
spectral clustering takes the matrix UH = [v1 v2 . . . vk] ∈
RN×k and for each i = 1, . . . , n it is considered yi ∈ Rk

the vector corresponding to the i-th row of U . The points
(yi)i=1,...,n are clustered into k clusters C1, C2, . . . , Ck apply-
ing the k-means algorithm to these points. Finally, the clusters
S1, . . . , Sk, with Si = {j|yj ∈ Ci}, are obtained.

IV. EXPERIMENTS AND RESULTS

In this section, we consider path and squid hypergraphs [10]
with additional hyperedges to perform comparisons between
graph and hypergraph spectral clustering. In addition, we use
the (clique expansion) graph representation [3] to generate a
graph from a given hypergraph. This method replaces each
hyperedge with a clique, that is, every two distinct vertices
in a hyperedge are connected by an edge in the graph. More
precisely, given a hypergraph H = (V (H), E(H)), the graph
representation leads to a graph G = (V,E) in which V =
V (H), E = {{u, v} ∈ e, e ∈ E(H), u ̸= v} [3]. The weight
w(u, v) of an edge {u, v} is commonly calculated by the sum
of the weight w(e) of the hyperedges e ∈ E(H) that contain
vertices u and v, that is,

w(u, v) =
∑

e∈E(H)

u,v∈e

w(e). (5)

In this article, we set the weight of all hyperedges equal to 1,
thus w(u, v) counts the number of hyperedges that contain u
and v. Figure 1 depicts a path hypergraph with N = 7 vertices
and a squid hypergraph with N = 13 vertices and the graph
representation of these hypergraphs.

1 2 5 743 6

1

2

5 7

43

6

8

9

10

11

12

13

1
2

3

4
5

6

7

1

2
3

4

5
67

8
9

10

1112
13

Fig. 1: Path and squid hypergraph (top line) and its graph
representations (bottom line).

Figure 2 shows the graph representation of a path hyper-
graph with N = 7 vertices and an extra hyperedge {v1, v2}.
In the graph representation, w(v1, v2) = 2 since hyperedges
{v1, v2, v3} and {v1, v2} contain the vertices v1 and v2.

In order to compare spectral clustering methods, we applied
the hypergraph spectral clustering to the hypergraph and the
graph spectral clustering to its graph representation with three,
four, five and six clusters (k = 3, 4, 5, 6).

As we increase the number of clusters for the hypergraph
spectral clustering, it is possible to see that the vertices
in the additional hyperedge (v1 and v2) remained in the
same cluster. On the other hand, on the graph representation,
when the number of clusters for the graph spectral clustering
became six (k = 6), the vertices v1 and v2 were separated
into different clusters. It is easier for hypergraph spectral
clustering to separate the vertices v3 and v5 than for graph

spectral clustering. In other words, the hypergraph spectral
clustering considers the connection between vertices v1 and
v2 ({v1, v2, v3} and {v1, v2}) stronger than the connection
between vertices v3 and v5 ({v3, v4, v5}). This result indicates
that hypergraph spectral clustering allow us to better under-
stand the existence of a hyperedge located inside of another
hyperedge {v1, v2} ⊂ {v1, v2, v3}.

In the next experiment, we consider a squid hypergraph with
N = 13 vertices and an extra hyperedge {v2, v3, v8}. Figure 3
illustrates the graph representation of this squid hypergraph
with the additional hyperedge highlighted by a triangle. Note
that w(v2, v3) = 2 since hyperedges {v1, v2, v3, v4} and
{v2, v3, v8} contain the vertices v2 and v3, and w(v3, v8) = 2
since hyperedges {v3, v8, v9, v10} and {v2, v3, v8} contain the
vertices v3 and v8. The other edges have a weight equal to 1.

We applied graph and hypergraph spectral clustering with
different numbers of clusters taking into account the squid
hypergraph. When we consider k = 3 clusters, the hypergraph
spectral clustering considers the bond of the additional hyper-
edge {v2, v3, v8} to be strong, then the vertex v2 is inside the
cluster with the vertices v3, v8, v9 and v10, while on the graph
spectral clustering the vertex v2 is not inside this cluster. In the
graph representation, w(v2, v5) = w(v2, v6) = w(v2, v7) = 1,
and w(v2, v1) = w(v2, v8) = 1 and w(v2, v3) = 2. Then, there
are three connections between vertex v2 and vertices in the
green cluster (v5, v6 and v7) with edge weight one and three
connections between vertex v2 and vertices in the red cluster
(v1, v3, v8, v9 and v10), one connection with weight two and
two connections with weight one. The graph spectral clustering
then prioritizes a cluster with small connection weights to
vertex v2. When k = 4, both graph and hypergraph spectral
clustering separate the vertex v1 into a cluster and keep the
other vertices in clusters according to the hyperedges. For
k = 5 and k = 6 clusters, the hypergraph spectral cluster
considers the cohesion of the group with vertices v2, v3, v8, v9,
v10 and chooses to keep them in the same cluster and separate
the other clusters. On the other hand, in the k = 5 case, the
graph spectral clustering separates the group with vertices v3,
v8, v9, v10, and, in the k = 6 case, it prioritizes a cluster
given by the vertices in the hyperedge {v1, v2, v3, v4} with the
addition of the vertex v8 considering the additional connection
between vertices v2, v3 and v8. Furthermore, the graph spectral
clustering divided vertices in the hyperedge {v3, v8, v9, v10}
into three different clusters.

V. CONCLUSION

Our work innovates by comparing hypergraph spectral clus-
tering with its graph counterpart while other works compare
it with specific hypergraph clustering methods. With this, we
contribute with an analysis of the novelties generated by the
use of hypergraphs.

In the future, we intend to study hypergraph inference
given a set of points in a high-dimensional space and then
analyze the differences between the application of graph and
hypergraph spectral clustering in this data analysis scenario.

(a) k = 3 (b) k = 4 (c) k = 5 (d) k = 6

Fig. 2: Hypergraph spectral clustering for a path hypergraph with additional hyperedge {v1, v2} (top line) and graph spectral
clustering for the graph representation of the path hypergraph with additional hyperedge {v1, v2} (bottom line).

(a) k = 3 (b) k = 4 (c) k = 5 (d) k = 6

Fig. 3: Hypergraph spectral clustering for a squid hypergraph with additional hyperedge {v2, v3, v8} (top line) and graph
spectral clustering for the graph representation of the squid hypergraph with additional hyperedge {v2, v3, v8} (bottom line).

ACKNOWLEDGMENT

The authors would like to thank the Fundo Nacional de
Desenvolvimento da Educação (FNDE/PET). Alcebiades Dal
Col and Fabiano Petronetto was supported in part by Con-
selho Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq) under grat 442238/2023-1 and 405903/2023-5.

REFERENCES

[1] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, pp. 395–416, 2007.

[2] K. Pena-Pena, D. L. Lau, and G. R. Arce, “t-hgsp: Hypergraph signal
processing using t-product tensor decompositions,” IEEE Transactions
on Signal and Information Processing over Networks, 2023.

[3] M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’on the edge... and
beyond,” Signal Processing, vol. 187, p. 108149, 2021.

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular

domains,” IEEE signal processing magazine, vol. 30, no. 3, pp. 83–98,
2013.

[5] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 80–90, 2014.

[6] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[7] W. A. Martins, J. B. Lima, C. Richard, and S. Chatzinotas, “A primer on
graph signal processing,” in Signal Processing and Machine Learning
Theory, P. S. Diniz, Ed. Academic Press, 2023, pp. 961–1008.

[8] A. D. Col, F. Petronetto, J. R. de Oliveira Neto, and J. B. Lima,
“Windowed hypergraph Fourier transform and vertex-frequency repre-
sentation,” Signal Processing, p. 109538, 2024.

[9] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM Journal on Matrix
Analysis and Applications, vol. 34, no. 1, pp. 148–172, 2013.

[10] S. Hu, L. Qi, and J.-Y. Shao, “Cored hypergraphs, power hypergraphs
and their laplacian h-eigenvalues,” Linear Algebra and Its Applications,
vol. 439, no. 10, pp. 2980–2998, 2013.

