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Abstract—The fusion of multispectral (MSI) and hyperspectral
(HSI) images is a crucial technique in various fields such as
remote sensing, medical imaging, and agricultural monitoring.
MSI captures light across several specific spectral bands, while
HSI provides detailed spectral information across contiguous
bands. Combining these two types of images leverages the high
spatial resolution of MSI and the rich spectral content of HSI,
creating a single, high-resolution image that is both spatially and
spectrally informative. Traditional wavelet based fusion methods
often employ a single wavelet across all dimensions, which can
result in suboptimal outcomes due to the different characteristics
of spatial and spectral data. This paper explores the use of
3D wavelet transforms with varied wavelets across dimensions
to improve the fusion process. Experiments conducted on the
ICASSP HyperSkin Challenge dataset showed that a combination
of Daubechies on the spatial dimensions and Coiflets on the
spectral dimension obtained higher fidelity and SSIM when
compared to simpler fusion methods.

I. INTRODUCTION

Multispectral Images (MSI) devices capture light in a
number of different frequencies across the electromagnetic
spectrum, while Hyperspectral Images (HSI) devices capture
light in a large number of equidistant frequencies across
the eletromagnetic spectrum [1]. These images are already
widespread throughout many applications, such as remote
sensing [2], medical imaging [3] and crop quality assessment
[4], and have been gaining traction in other contexts as
well. This is mainly due to the fact that MSIs and HSIs
are intrinsically more informative than RGB images, which
contain only 3 bands in the specific wavelengths (associated
to red, green and blue color), and the additional information
they contain has proven to be highly valuable [1].

However, the higher spatial resolution provided by HSIs
is also associated with elevated cost in acquisition cameras,
which is higher when compared to their MSI counterparts [5].
A common strategy for cost reduction is to use a very low
framerate (below 0.1 Hz) or to employ moving sensors (point
and line-scan), which may introduce noise in images [6].

In this context, a common alternative to using a single high-
cost high-resolution camera is to use a low spatial resolution
HSI camera alongside a high resolution MSI camera to register
a scene, and afterwards merge both images, ideally preserving
all the relevant information. However, working with two dis-
tinct images of a single subject is not an easy task. Thus, MSI-
HSI fusion is used to combine high quality spatial information
from the MSI image with high quality spectral information

from the HSI into one high resolution HSI, which can then
be used, modified, analyzed and handled as one single image
much more efficiently.

The process of fusing MSI and HSI images to create a
single high-resolution image is a crucial step in maximizing
the benefits of both techniques. This fusion process leverages
the detailed spatial resolution of MSI with the rich spectral
information provided by HSI. Several techniques have been
developed to perform MSI/HSI fusion, ranging from simple
interpolation methods to more sophisticated approaches in-
volving machine learning and advanced signal processing [7].

One of the promising approaches in this domain is the use
of wavelet transforms [8]. Wavelet-based fusion methods have
been extensively studied due to their ability to decompose
images into different frequency components, making it easier
to merge detailed spatial and spectral information. Wavelet
transforms can handle multi-resolution analysis, which is par-
ticularly useful in the context of image fusion, as they allow for
the efficient combination of high-frequency details from MSI
with the low-frequency spectral content from HSI. Despite the
advantages, there are challenges associated with wavelet-based
fusion techniques, particularly in the selection of appropriate
wavelets that can effectively represent the information in
different dimensions [9].

Most traditional approaches use a single wavelet for all
dimensions, which may not capture the distinct characteristics
of the spatial and spectral data adequately. This limitation can
result in suboptimal fusion results, where critical details may
be lost or improperly merged. In light of this, in this paper,
we analyze the application of 3D wavelet transforms with the
flexibility to vary wavelets across different dimensions. By
combining the wavelets to better match the unique properties
of the spatial and spectral information, higher-quality images
can be achieved in the fusion process. Our experiments show
this approach is able to improve the fidelity of the fused images
under the perspective of quality measures, such as SSIM.

II. HSI/MSI FUSION

Image fusion is generally defined as collecting all the
important information from multiple input images and com-
bining it into one single output image. The objective is to
obtain one single image, more informational than each of the
input images, preserving as much as possible all the relevant
information from all the input (Fig. 1).



Fig. 1. Different examples of image fusion. Adapted from [10]

In the context of fusing MSI and HSI images, the resulting
HSI should have complimentary spatial and spectral resolution
characteristics. The resulting HSI ideally retains all the spatial
information contained in the MSI image and all the spectral
information contained in the HSI, as well as discard any redun-
dant information (Fig. 2). There are many methods currently
in use for MSI-HSI fusion, such as high-pass filtering, IHS,
PCA and Discrete Wavelet Transform (DWT) methods [11].
In this work, we focus on the last one.

Fig. 2. MSI-HSI Image fusion visualization

III. WAVELET-BASED FUSION

Wavelets are mathematical functions that contain certain
characteristics which make them generally useful in signal
processing applications via the Wavelet Transform [8]. It can
be thought of as a more general application of the Fourier
transform, wherein any arbitrary wavelet can be used to
transform the incoming signal, instead of only sine and cosine
waves. More specifically, wavelets are localized wave-like
functions that exist for a finite duration, this property allows
them to decompose signals at different scales, revealing both
local and global level details, in other words, both frequency
and time domain information.

The DWT operates on a finite quantity of scales and
translations of a wavelet function and can be applied in any
number of dimensions, and more importantly, can be applied
with different wavelets and levels of decomposition in each
dimension, which can be very useful for data where different
dimensions have different overall characteristics. The most
common multilevel DWT approach is to decompose each axis

with a high-pass (H) and low-pass (L) wavelet, and then only
decompose the approximation subband at each subsequent
level (Fig. 3). The approximation subband is the subband
comprised of only low-pass decomposed axes.

Fig. 3. 2 level 2D DWT on an image

A. Classic Wavelets

The classical wavelets are split into different families, each
with its own distinct characteristics, shapes and applications.
The simplest wavelet is the Haar [12], which resembles a step
function, being very good at detecting edges, but not much
else. The Daubechies are a family of wavelets where each
wavelet is denoted dbN and N is the number of vanishing
moments (db1 is exactly equal to the Haar wavelet). They are
versatile and suited to decompose both edges and continuous
signals, making them a good candidate for visual applications.
Similarly, the coiflets are a family of numbered wavelets with
N/3 vanishing moments and have shown to be better than
the Daubechies in some specific image applications [13], and
due to their smoother curve may be better at capturing signals
without edges [13]. While there are other wavelet families, the
latter two were chosen based on their prevalence in MSI/HSI
literature. These wavelet families can be used in 2D DWTs as
well as higher dimensions.

B. 3D Wavelets

The 3D DWT is an extension of the 2D DWT to one more
dimension, which in our case would be the spectral axis.



The n level 3D DWT produces 7n + 1 subbands, which all
combined have the same shape as the original image (Fig. 4).
Although usual, 3D DWT does not necessarily decompose
all 3 axes with the same wavelet or level, and this can
potentially be exploited to produce better results, consume
less computational power, or discard unnecessary information.
For example, different wavelets can be chosen for different
axes whose data is previously known to differ in some way,
so for axis 1 we may choose a wavelet that is good at
detecting edges, while for axis 2 we may choose a wavelet
that does better at continuous signals. Similarly, different level
decompositions can be applied to different axes, so if axis 1
is generally smaller and has less information than axis 2, we
may choose to decompose it at a lower level, since a higher
level decomposition in this case would not necessarily obtain
more information.

Fig. 4. Iluustration of a 2 level 3D DWT subbands

C. 3D Heterogeneous Wavelet-Based Fusion

Wavelet-based MSI Fusion takes advantage of the flexibility
provided by the DWT to extract information specific to the
spatial domain and frequency domain. The idea is that by
decomposing the 2 input images via DWT, we can pick and
choose only the relevant information from each image [9]. So,
from the input image with more bands and lesser resolution
we extract the high-level frequency detail, and from the input
image with less bands and higher resolution we extract the
high-level spatial detail. Thus, the resulting fused image should
retain both the high-level frequency information and high-level
spatial information. Another benefit of using the DWT to fuse
HSIs is that different axes can be decomposed by distinct
wavelets, which means that it is possible to pick a wavelet
function more suited to the specific domain it’s being used on.
Therefore, it may be beneficial to choose a wavelet that is able
to retain more edges, and sharper information for the spatial
domain, and a smoother wavelet for the spectral domain.

Based on this, the proposed method can be stated as follows:
given two input images of varying shapes, we first resample
them naively to the same shape, by upsampling the number
of bands of the MSI image to the same number of bands
in the HSI, and upsampling the resolution of the HSI to
the same resolution of the MSI image. This resampling is

done by simply repeating every pixel to achieve the desired
resolution, and repeating every band to achieve the desired
number. When both images have the same shape, the DWT is
applied on both images with a given set of wavelet functions.
For each pair of DWT coefficient subbands, we either choose
one and discard the other, or get their average. Given n-level
3D DWT coefficients, let HHHj be the wavelet coefficient
subbands relative to the j-level high-pass (H) or low-pass (L)
decomposition in all axes. The 3D wavelet fusion method is
described as follows: For every subband with high frequency
spatial information and low frequency spectral information
(HHLj , LHLj , HLLj), take the corresponding MSI sub-
bands and discard the HSI ones. For every subband with
high frequency spectral information and low frequency spatial
information (LLHj), take the corresponding HSI subbands
and discard the MSI ones. For every other subbands which
contain equal levels of spatial and spectral information, take
the average between the MSI and HSI subbands. In doing so,
the resulting image will have the high frequency spatial infor-
mation from the MSI image and the high frequency spectral
information from the HSI, while simultaneously discarding
the high frequency spatial information in the HSI and high
frequency spectral information in the MSI, which should in
theory have a net positive effect on the fused image.

IV. HSI/MSI DATASET

The dataset [14] was originally developed for the ICASSP
Hyperskin Challenge, featuring 264 HSIs and MSIs of 44
human faces in 6 orientations each. HSIs were obtained using
a Specim FX10 camera covering 448 spectral bands from
400nm to 1000nm. The Specim FX10 is a pushbroom camera
and had to be moved using a customized rig, scanning each
line took approximately 22ms, and a whole 1024x1024 image
took about 22.7 seconds. Along with the full 62 band HSI,
the dataset comes with a 4 band MSI (RGB + NIR), used
as the input for the challenge the dataset was designed for.
The NIR band was captured at 960nm and RGB bands were
obtained converting the 62 MSI channels into RGB using the
RGB camera wavelength response [14].

The dataset utilized for testing the fusion methods described
in this paper has some distinctions to the original dataset. The
dataset was formatted in .hdf format, split into training and
validation images, each image having 66 bands (61 HSI bands
+ 4 MSI bands). The training and validation distinction was
not relevant to the fusion method, so they were abolished,
and from each original image three images were derived:
a 1024x1024 MSI (input), a 1024x1024 HSI (target) and a
256x256 HSI (input, obtained by skipping 3 pixels out of every
4). The 35th band was discarded since it was a duplicate of
the 36th.

V. EXPERIMENTS

All the experiments were completed in a virtual environ-
ment, and the code is available online1. All of them used

1https://github.com/eduardorittner/hsi fusion



resampled input images so they would have the same shape,
and the resulting fused image was then compared against the
original high-resolution HSI to compute the metrics. Two base-
line methods were considered: The first took a simple average
between both input images, and the second consisted of a 2D-
DWT applied individually to each band, the coefficients were
then fused with the following fusion rules: a simple average
between the approximation coefficients, and on all the other
subbands, the HSI coefficients were discarded, and only the
MSI coefficients were considered. Other than that, all other
experiments were done with the 3D-DWT and same fusion
rules and decomposition level, only changing the wavelets
used in the DWT.

A. Metrics

Fusion results were evaluated based solely on the Structural
Similarity Index (SSIM) from Skimage 2, which measures the
similarity bewteen 2 images taking into account luminosity,
contrast and structure [15]. Since the images in the dataset
contained a substantial amount of background noise, the SSIM
was evaluated only on the face of the subjects, by using the
masks produced by the ICASSP challenge RainbowAI team
[16] using a Segment Anything Model (SAM). Therefore, re-
ported results do not reflect the actual value of the metrics, and
they are only useful in relation to one another. In other words,
only the difference between reported metrics is important.

B. Results

Results show that the 3D-DWT based fusion methods
always produce higher SSIM values than the baseline methods,
which indicates an overall higher level of overall image fidelity
and structural similarity (Tab. I). The overall best scores
were from DWTs performed with Daubechies on the spatial
dimensions and Coiflets on the spectral dimension, which cor-
roborates the initial hypothesis that Daubechies wavelets are
better suited for spatial information, which generally contains
sharp edges and high-frequency information, while Coiflets do
better on spectral information, which has a smoother profile
overall.

VI. CONCLUSION

The proposed 3D-DWT fusion scheme for MSI-HSI fusion
shows promising results when compared to other simple
methods. Wavelets are a natural fit for HSI images, specifically
the pairing of Daubechies for the spatial domain and Coiflets
for the spectral domain. It is also of interest for future work
to ascertain whether the DWT can be used alongside more
sophisticated deep-learning based methods to provide even
better results.
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TABLE I
FUSION RESULTS

Method SSIM

Baseline Average 0.87± 0.02

2D-DWT 0.89± 0.05

Haar 0.91± 0.02

Db2 0.93± 0.05

Db4 0.92± 0.05

Db8 0.92± 0.05

3D Wavelets Coif1 0.92± 0.05

Coif2 0.92± 0.05

Db1-Db1-Coif4 0.93± 0.05

Db2-Db2-Coif2 0.94± 0.05

Db4-Db4-Coif4 0.93± 0.05

Coif2-Coif2-Db2 0.92± 0.05
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