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Abstract—The textile industry is one of the oldest and largest
industries in the world. Detecting defects early in manufacturing
enables cost reduction through fast intervention and fabric cor-
rection. Vision-based software can automatically identify defects
in fabrics during pre- or post-production. However, this detection
is challenging due to denim fabric color and texture variations,
making some defects less visible than others, such as double
thread and cut weft. A robust preprocessing approach can reveal
intrinsic features of the data. Therefore, this paper investigates
background normalization and defect segmentation to highlight
features and allow better differentiation during image analysis.
We propose a two-stage pipeline using a combination of filters to
reduce background information and merge it with the output
of a defect segmentation process based on thresholding and
morphological operations. To test this hypothesis, we extracted
100 features from the processed and unprocessed images and
benchmarked them using several machine learning algorithms,
including a deep learning model. With the processed data, we
achieved up to a 7% increase in accuracy for the evaluated
metrics compared to the unprocessed experiments. This study
demonstrates the feasibility of detecting defective regions in
denim fabric using computer vision techniques.

I. INTRODUCTION

Brazil plays an essential part in the world exporting scenario
of denim fabric — the primary fabric used in jeans produc-
tion [1]. Also, it is classified as the fifth largest textile industry
globally and the fourth country in the clothing segment [2].
In 2021, the cost of investments in the sector was BRL 4,9
billion, and USD 1,14 billion were exported [3], illustrating
the textile industry’s significant role in the country’s economy
and highlighting the potential for waste reduction. In general,
the textile industry has a variety of segments that require
optimization, and it has ample capacity for deploying systems
based on artificial intelligence [4]. However, some of its
processes, such as quality inspection, still require manual and
visual inspection. [5].

This process, which is often inaccurate and time-consuming,
leads to waste and reduces the fabric quality. For example,
we followed, in loco, the production process in a Brazilian
factory. We noted that defects caused by environmental con-
ditions (e.g., humidity) or the quality of the raw materials are
identified only ten to fifteen days after manufacturing. This

late inspection can represent a significant financial loss in the
order of millions of dollars.

Based on this problem, researchers have been studying
methods to minimize the waste of industry resources to
increase the competitiveness of enterprises [6]. Therefore,
researchers have been developed to identify and classify fabric
defects [6]–[9]. A vision-based system is made up of an
image acquisition, a feature extraction, and a classification
module [6].

A vision-based system needs to carefully normalize im-
ages, reduce unwanted information, and perform a suitable
preprocessing pipeline to identify and classify these defects.
These steps involve restructuring and highlighting important
image details for analysis, segmenting the region of interest,
and extracting significant descriptive features. Additionally, a
robust preprocessing pipeline can reveal intrinsic features of
the data, highlighting patterns in images of both defective and
non-defective fabric [5].

This analysis can be challenging in the case of denim
fabric. This type of fabric may be dyed in shades of blue
and other colors, such as green and black. While the fabric’s
color does not impact the detection of defects, some datasets
might mistakenly present defective fabric in specific colors.
Therefore, background normalization is important for defect
detection as it helps eliminate such errors.

Another aspect of this problem is the different types of
denim defects. Some defects are easy to classify, such as soft
weft, which is noticeable visually. On the other hand, further
defects, such as double thread and cut weft, require more effort
to identify. To minimize these differences, a segmentation
method that highlights these defects can significantly enhance
the performance of computer vision systems, making it easier
to detect and classify the various kinds of defects accurately.

This paper addresses the challenges of background normal-
ization and defect segmentation in denim fabric images for use
in the textile industry. We divided our proposed preprocessing
pipeline into two parts: one part reduces background impact
by normalizing colors through a combination of filters, and
the other part segments and highlights fabric defects and
features. To evaluate the impact of the preprocessing step on
denim fabric images, we conduct a comparative study using



image classification based on feature engineering. The findings
show an improvement of 7% accuracy when applying our
preprocessing step.

The main contribution of this paper is the presentation of a
robust preprocessing method based on a two-stage approach.
This method can be deployed as part of a vision system to
detect defects in factories producing denim fabric, enabling
the minimization of waste and increased profits.

II. RELATED PAPERS

In 1994, researchers presented the Fabric Defect Identifica-
tion and Classification System (FDICS), a vision-based system
for identifying and classifying fabric defects, as a solution for
the industry [6]. The problem of fabric defects is so recurring
that 30 years later, researchers are still proposing solutions
to improve detection systems. In their paper, the authors
identified the need for preprocessing images through feature
extraction, including mean, variance, skewness, kurtosis, and
entropy. They used the spatial gray-level dependence method
(SGLDM) for the algorithm. For classification, the system
employs traditional algorithms such as Bayesian classification.

Later, in 2013 and 2014, researchers started exploring
artificial neural networks to develop a real-time fabric defect
detection [7], [8]. For instance, in Çelik et al. [7], the authors
developed an automatic machine vision system containing
image acquisition hardware and image processing software.
The software incorporates a defect detection algorithm based
on wavelet transform, double thresholding binarization, and
morphological operations. In the classification stage, they
utilize an algorithm based on gray level co-occurrence matrix
(GLCM) with a feed-forward neural network. This approach
achieved an accuracy of 93.4% in classifying defect and
defect-free images of fabrics and 96.3% in identifying five
defect classes.

Similarly, Song et al. [8] introduced a non-visual surface
texture sensor design that mimics human touch-active texture
perception. After data collection, they applied the Fourier
Transform and classified the signals using a radial basis
function (RBF) neural network based on an unsupervised k-
means clustering algorithm.

Recently, in 2021, convolution neural networks (CNN)
became more popular in solving the problem of fabric defect
identification [9]–[13]. Specifically, Talu, Hanbay & Varjov
[9] developed a CNN architecture for this purpose and im-
plemented it in a real-time production on a loom. Further-
more, they applied a Fast Fourier Transform defective patch
capture (DPC) algorithm to enhance and suppress defect-free
areas. With this methodology, they obtained 96,5% accuracy.
Whereas Zheng et al. [10] introduce a novel model for
YOLOv5 called SE-YOLOv5, which contains in its structure
an attention mechanism and a different activation function
(ACON-CSP).

III. DENIM DATASET DESCRIPTION

We use a dataset from the “Workshop on Mathematical
Solutions for Industrial Problems” (Workshop de Soluções

Matemáticas para Problemas Industriais) promoted by the
Center for Mathematics Science Applied to Industry (Ce-
MEAI) of the University of São Paulo. A Brazilian textile com-
pany specializing in denim production provided the dataset,
which includes images of three distinct types of defects in
denim fabric (cut weft, soft weft, and double thread) as well
as images without any defects, as shown in Fig. 1.

(a) No Defects (b) Double Thread

(c) Cut Weft (d) Soft Weft

Fig. 1. Examples from the dataset.

We organized and balanced the dataset for binary classifi-
cation by categorizing the classes into defect and non-defect.
The dataset comprises 1165 patches extracted from 25 distinct
fabric rolls, with 583 patches containing defects and 583
patches representing defect-free fabric.

IV. TWO-STAGE PREPROCESSING APPROACH

Denim fabric exhibits distinctive characteristics. Its pattern
typically features threads arranged diagonally. While some
defects, like soft weft, are easily detectable, others, such as cut
weft and double thread, are less visible. Additionally, denim
fabrics can be manufactured in various colors but mostly in
blue, which can confuse the machine, as it might expect certain
colors to indicate defects.

Therefore, we propose a two-step pipeline to reduce back-
ground influence in denim fabric, which consists of stan-
dardizing it and highlighting defects and details using a
segmentation process. The pipeline, illustrated in Figure 2,
starts by receiving the image and extracting the green channel.
Then, two paths are followed to achieve the preprocessing
goal.

First, to normalize the background, we apply the bilateral
filter followed by the top-hat filter. Meanwhile, we segment
the region of interest containing defects and other details. This
segmentation involves applying thresholding and an opening
morphology operation. We improve the segmentation quality



Fig. 2. An overview of the two-stage preprocessing approach for background normalization and defect segmentation.

by removing small connected components. In the end, we
combine these operations to produce a unified output.

The resulting image has its background normalized, reduc-
ing the impact of denim fabric color. Defects and potential
detailed points are highlighted. In the remainder of this section,
we describe this pipeline in detail, justifying each technique.

A. Diving Into the Detailed Process

Right at the beginning of the process, we load the denim
patch and extract its green channel to use it in grayscale.
We choose to extract the green channel instead of simply
converting it to grayscale to preserve details and contrast that
would be lost with traditional grayscale conversion and other
histogram equalization methods.

Besides, the green channel is known to provide a good
balance between luminance information and intensity varia-
tion, which is particularly relevant in denim fabric analysis,
where color differences can indicate defects. Also, denim
fabric often contains a significant amount of blue components,
which can interfere with defect detection when using grayscale
conversion alone. By focusing on the green channel, we
can reduce the influence of these potentially misleading blue
components. Figure 3 illustrates the difference between the
green channel and the traditional grayscale conversion.

(a) Original (b) Grayscale (c) Green Channel

Fig. 3. Differences between the grayscale and the green channel conversion
on denim fabric.

After extracting the green channel, we proceed with back-
ground normalization to reduce the impact of fabric color on
defect detection. To achieve this, we first apply the bilateral
filter (Fig. 4b). We chose this filter based on its ability to

smooth the image while preserving edges, which is important
for maintaining the sharpness of defect boundaries while
reducing the background texture variation.

Along with the bilateral filter, we apply the Top-Hat Filter
(Fig. 4c). This filter is particularly effective in highlighting
small, subtle details in the image, such as defects in the denim
fabric. Its operation helps to enhance the contrast between the
fabric details and the background, normalizing across various
types of denim colors and making them more prominent and
easier to detect in the subsequent steps of the analysis.

(a) Green (b) Bilateral (c) Top Hat

Fig. 4. Stacking the bilateral filter and top hat filter over the green channel.

The top hat filter washes away defective regions in the
image, leaving an empty space there. Therefore, another
pipeline running in parallel is necessary to highlight the defects
themselves. To achieve this, we developed a second pipeline
running exclusively for this purpose.

The second pipeline part receives the green channel and
applies thresholding, using a threshold of 127 (Fig. 5a). This
step produces an image where pixel values above the threshold
are set to white, indicating potential defect regions, while pixel
values below the threshold are set to black.

In the binary image, we observed not only the regions
with defects but also many other white spots corresponding to
denim fabric threads. To remove these white spots, we utilized
the opening morphology operation (Fig. 5b). This operation
involved applying erosion twice, which removed most of the
uninteresting information, followed by two applications of
dilation, restoring the defective areas to their original size.

Some small noise was still present in the image. We avoided



using a stronger erosion to prevent the loss of important
information and the correct shape of the defect. Therefore, we
included an improvement step that involved removing small
connected components (Fig. 5c). In this step, we measured
the mass of each small component in the image, and any
component with a density of less than 44 pixels was removed.
This threshold was determined empirically to eliminate noisy
components while retaining important information in the im-
age.

(a) Threshold (b) Morphology (c) Small Connected
Components

Fig. 5. Stacking the bilateral filter and top hat filter over the green channel.

Finally, after the two processes, we merge the segmentation
mask with the normalized background. This merging step
combines the enhanced defect regions from the segmentation
process with the background-normalized image, resulting in a
final image where defects are highlighted against a uniform
background. Figure 6 illustrates the two-stage preprocessing
applied to both defective (Fig. 6a - 6b) and non-defective
fabrics (Fig. 6c - 6d).

V. FEATURE EXTRACTION AND BENCHMARK
METHODOLOGY

Following the preprocessing of the images, we evaluated
their performance against the unmodified images. Our goal
was to determine which features worked best for each dataset
and assess the impact of the preprocessing pipeline on training
with both traditional and deep learning methods.

First, we extract a large number of features, such as
texture and shape, from both datasets. For this purpose,
we utilized the Python frameworks PyRadiomics [14] and
Mahotas [15] to extract 217 features. These features include
18 first-order features, nine shape features, 24 gray-level co-
occurrence matrix (GLCM) features, 16 gray-level run length
matrix (GLRLM) features, 16 gray-level size zone matrix
(GLSZM) features, five neighborhood gray-tone difference
matrix (NGTDM) features, 14 gray-level dependence matrix
(GLDM) features, 25 Zernike moments features, 36 local
binary pattern (LBP) features, and 54 thresholding adjacency
statistics (TAS) features.

After extracting the features, we applied standard scaler
normalization to scale each feature to a similar range. This step
is important for ensuring that each feature contributes equally
to the classification process and prevents features with larger
scales from negatively impacting the training process.

Additionally, we used the SelectKBest algorithm to detect
and select the best 100 features (k = 100). This algorithm

(a) Original Defective Fabric (b) Preprocessed

(c) Original Non-Defective Fabric (d) Preprocessed

Fig. 6. Example of defective and non-defective denim fabrics after prepro-
cessing.

utilizes the chi-squared (χ2) statistical test to evaluate the
independence between each feature and the class labels.

We evaluated two approaches to detect patterns in the
feature dataset: traditional machine learning algorithms and a
deep fully-connected neural network (FCNN). Our goal was to
identify the best classifier for the problem. The traditional ma-
chine learning benchmark used nine algorithms: support vector
machine (SVM) with linear, radial, and polynomial kernels;
decision tree (DT); k-nearest neighbors (KNN); stochastic
gradient descent (SGD); random forest (RF); extreme gradient
boost (XGBoost); and multilayer perceptron (MLP). These
algorithms were developed using the Scikit-Learn framework
with their default parameter values, except for the KNN, where
the k value was set to 86, and the max iteration parameter of
the MLP was set to 1000.

The FCNN was developed using 12 layers: one input layer,
ten hidden layers, and one output layer. The input layer
had 100 neurons corresponding to the number of features
selected previously. These neurons were fully connected to
the subsequent hidden layers, each containing 86 neurons
and using the rectifier linear unit (ReLU) activation function.
After each hidden layer, a dropout layer was attached with a
probability of 20% to turn off neurons, preventing overfitting.
Finally, the output layer had two neurons representing the two
classes, utilizing the softmax activation function.

The other hyperparameters used in the FCNN included the
Adam optimizer for efficient gradient-based optimization and
the categorical cross-entropy loss function for measuring the



performance of the classification model. We ran the model
for 500 epochs, as this was sufficient for convergence, and
used a batch size of 128 to balance the training stability and
computational efficiency. Figure 7 illustrates the customized
FCNN architecture developed for this work.

VI. EXPERIMENTAL DESIGN AND RESULTS

The development and experiments for this work were con-
ducted using a dedicated workstation running the Ubuntu
Server 22.04 operating system. The workstation was equipped
with two Intel Xeon Silver processors, 128 GB of DDR4 mem-
ory, and one NVIDIA Tesla T4 graphics card. We utilized the
Python programming language, specifically version 3.10.12,
along with the TensorFlow 2.10, Scikit-Learn 1.3.2, OpenCV
4.9, Mahotas 1.4.15, and PyRadiomics 3.1.0 frameworks.

The experiments followed the 10-fold cross-validation pro-
tocol, which involved separating the dataset into ten parts.
Each iteration used one part for validation, while the remaining
k − 1 parts were used for training. To ensure consistent
separability across all folds, we defined a random seed of 1337.

We used five evaluation metrics to measure the performance
of each algorithm over the two classification strategies: accu-
racy (Acc), sensitivity (Sens.), specificity (Spec.), area under
the curve (AUC), and precision (Prec.). The accuracy and the
AUC provide us with the overall performance of the method,
while the sensitivity measures the ability of the model to
identify defective instances correctly. On the other hand, the
specificity indicates the model’s ability to identify the non-
defective instances correctly. Finally, precision measures the
proportion of correctly identified defective instances among all
instances classified as defective by the model.

A. Results

The FCNN for the processed dataset obtained the best
results in our experiments. Table I contains a detailed report
of the per-fold performance of the network. Among the folds,
the FCNN achieved the highest accuracy of 98.28% on fold
nine, 97.41% on fold ten, and 96% on folds two, four, and six.
The lowest results were 92.24% on fold seven and 93.16% on
folds one and three. The FCNN achieves an overall accuracy
of 95.53%, with an overall sensitivity of 95.53% and an AUC
of 98.31%.

TABLE I
RESULTS OBTAINED FROM THE FCNN FOR THE PROCESSED DATASET.

Fold Acc Sens Spec AUC Prec
1 93.16% 93.13% 93.13% 96.04% 93.39%
2 96.58% 96.57% 96.57% 98.89% 96.65%
3 93.16% 93.15% 93.15% 98.36% 93.22%
4 96.55% 96.55% 96.55% 98.84% 96.77%
5 95.69% 95.69% 95.69% 97.90% 95.81%
6 96.55% 96.55% 96.55% 99.70% 96.55%
7 92.24% 92.24% 92.24% 95.82% 92.56%
8 95.69% 95.69% 95.69% 99.11% 95.70%
9 98.28% 98.28% 98.28% 99.97% 98.28%
10 97.41% 97.41% 97.41% 98.44% 97.43%

Mean 95.53% 95.53% 95.53% 98.31% 95.64%

In our benchmark of traditional machine learning algorithms
(Table II), four methods achieved results exceeding 90%
aside from the FCNN: SVM with radial basis, random forest,
XGBoost, and MLP. The MLP scored only 1% lower than
the FCNN, suggesting that with more data, deeper networks
may discern superior patterns, potentially allowing the FCNN
approach to attain even higher results without the constraints
of the MLP.

DT and KNN reached the lowest results of only 82.45%
and 74.46%, respectively, indicating that these algorithms may
face difficulties in effectively capturing the complex patterns
present in the dataset. This lower performance suggests that
DT and KNN may struggle with the inherent complexity of the
data, potentially resulting in suboptimal predictive capabilities.

TABLE II
BENCHMARK WITH TRADITIONAL MACHINE LEARNING ALGORITHMS FOR

PROCESSED DATASET.

Classifier Acc Sens Spec AUC Prec
KNN 74.46% 74.48% 74.48% 74.48% 76.68%
DT 82.45% 82.45% 82.45% 82.50% 82.45%

SVM P. 85.81% 85.81% 85.81% 86.07% 85.81%
SVM L. 88.21% 88.21% 88.21% 88.53% 88.21%

SGB 89.94% 89.94% 89.94% 90.05% 89.94%
SVM R. 90.11% 90.11% 90.11% 90.52% 90.11%

RF 91.06% 91.06% 91.06% 91.12% 91.06%
XGBoost 92.34% 92.34% 92.34% 92.42% 92.34%

MLP 94.50% 94.49% 94.49% 94.49% 94.49%
FCNN 95.53% 95.53% 95.53% 98.31% 95.64%

While testing on the unprocessed dataset, FCNN obtained
considerably lower results, as illustrated in Table III. The
highest performance was observed in folds one and two,
which achieved 92.31% accuracy and AUC values of 98.19%
and 97.37%, respectively. However, the majority of the folds
yielded results below 90%, with fold seven achieving 84.48%
and fold three achieving 86.32%. The average performance of
the FCNN for this experiment was 88.82%.

TABLE III
RESULTS OBTAINED FROM THE FCNN FOR THE UNPROCESSED DATASET.

Fold Acc Sens Spec AUC Prec
1 92.31% 92.31% 92.31% 98.19% 92.31%
2 92.31% 92.29% 92.29% 97.37% 92.43%
3 86.32% 86.35% 86.35% 95.06% 86.48%
4 87.93% 87.93% 87.93% 92.15% 87.98%
5 87.93% 87.93% 87.93% 95.72% 88.11%
6 88.79% 88.79% 88.79% 96.22% 88.80%
7 84.48% 84.48% 84.48% 89.88% 84.86%
8 89.66% 89.66% 89.66% 94.31% 89.70%
9 90.52% 90.52% 90.52% 96.65% 90.63%

10 87.93% 87.93% 87.93% 96.05% 87.98%
Mean 88.82% 88.82% 88.82% 95.16% 88.93%

The benchmark for the unprocessed dataset yielded the best
performance from the MLP, achieving an overall accuracy
of 90.03%. In contrast to previous experiments where more
complex algorithms achieved the best results, SVM with a
linear kernel, along with FCNN and XGBoost, achieved results
above 85%. Conversely, other algorithms, such as DT and
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Fig. 7. Proposed FCNN architecture for feature classification.

SVM with a polynomial kernel, reached the lowest results of
75.93% and 79.37%, respectively.

TABLE IV
BENCHMARK WITH TRADITIONAL MACHINE LEARNING ALGORITHMS FOR

UNPROCESSED DATASET.

Classifier Acc Sens Spec AUC Prec
DT 75.93% 75.94% 75.94% 75.94% 76.08%

SVM P. 79.37% 79.37% 79.37% 79.37% 79.90%
KNN 83.66% 83.66% 83.66% 83.66% 83.85%

SVM R. 83.75% 83.75% 83.75% 83.75% 84.07%
SGB 84.27% 84.27% 84.27% 84.27% 84.40%
RF 84.87% 84.87% 84.87% 84.87% 85.05%

XGBoost 86.67% 86.67% 86.67% 86.67% 86.75%
SVM L. 86.85% 86.85% 86.85% 86.85% 87.03%
FCNN 88.82% 88.82% 88.82% 95.16% 88.93%
MLP 90.03% 90.03% 90.03% 90.03% 90.20%

VII. DISCUSSION

Throughout the results obtained in the experiments, the
proposed approach for background normalization and defect
segmentation significantly enhanced the differentiation be-
tween defective and non-defective fabric. We observed an
increase of 7% in accuracy when employing deep neural
networks compared to experiments using unprocessed images.

Additionally, deep neural networks achieved superior results
compared to traditional machine learning approaches, such as
XGBoost and support vector machines. Although the differ-
ence was not substantial, both FCNN and MLP demonstrated
excellent performance. With the inclusion of more data, we
can further expand our analysis using deeper networks, thereby
enhancing performance and quality in detecting fabric defects.

Unlike previous works, we propose a preprocessing pipeline
based on a two-stage approach and measure its impact on final
classification efficiency through a benchmark with traditional
and deep machine learning models. Additionally, we approach
the classification model using robust feature extraction and
a fully connected neural network that achieves competitive
results while using fewer computational resources.

A limitation of this study is the need to work with patches
of the entire image. The process involves obtaining the entire

image, dividing it into patches, extracting features patch-by-
patch, and then classifying each patch. This approach can be
computationally expensive, particularly when analyzing fabric
production in either pre- or post-production settings, where the
speed of fabric production may vary.

In addition to this limitation, the patch-based approach
offers another perspective on the problem: the detection of
error regions within the entire image. By employing the patch
approach, we can precisely identify the location of errors
and subsequently suggest the type of error, aiding operators
in decision-making regarding how to address the issue. This
fine-grained analysis enables targeted interventions, potentially
streamlining the defect correction process and improving over-
all efficiency.

The ability to process and detect fabric defects during pro-
duction, thereby inspecting the fabric’s quality, can facilitate
real-time corrections while the denim is still being produced.
This enables quick intervention, allowing for swift defect
rectification and enhancing the overall product quality. Conse-
quently, this approach can contribute to increased company
revenue and cost savings by minimizing the production of
defective units and optimizing resources.

VIII. CONCLUSION

This paper introduced a novel two-stage preprocessing
pipeline for background normalization, feature enhancement,
and defect segmentation for denim fabric images. In industrial
settings, quality inspection typically occurs during the later
stages of product development. However, by integrating it
into early processes, our approach enables cost reduction
through early intervention and fabric correction. The proposed
preprocessing pipeline resulted in an improvement of over 7%
in accuracy compared to the analysis of unprocessed datasets
using deep neural networks.
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