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Abstract—The evaluation of histological images is a key step
in cancer diagnosis, but it is a time-consuming and subjective
process. To overcome these challenges, computer-aided diagnosis
systems have emerged to offer a faster and more accurate
analysis. Among the steps of these systems, image segmentation
plays a crucial role by isolating regions of interest for further
examination. In this context, this systematic review investigates
the use of publicly available datasets in histological image
segmentation analysis using Hematoxylin-Eosin (H&E) staining.
The review addresses 15 guiding questions, covering various
aspects, including the most common segmentation techniques,
evaluation metrics, and existing limitations in the literature.

I. INTRODUCTION

Cancer diagnosis involves the analysis of tissue samples.
However, this manual process can be time-consuming and
prone to subjective interpretation by pathologists [1]. The
development of computer-aided diagnosis (CAD) systems rep-
resents a powerful alternative to deal with these challenges.
Among the CAD systems processing steps, image segmenta-
tion and detection are crucial techniques, aiming to identify
regions of interest (ROIs) [2], [3]. However, these algorithms
require a significant number of annotated images, especially
for training deep learning (DL) methods [4]. An alternative
to having this kind of image volume is to use public images,
which can help develop more robust algorithms for different
tissue preparation protocols.

Visualization and analyses of tissue structures are possible
through different staining, such as Periodic Acid-Schiff (PAS),
Periodic Acid-Methenamine Silver (PAMS), Trichrome (TRI),
and Hematoxylin-Eosin (H&E). Among them, cancer diag-
noses can be confirmed by H&E histological images, which
is a research topic of studies, including segmentation and
detection of ROIs by computational methods [5], [6].

In this context, this systematic review presents different
aspects of publicly available datasets and the methods used
to process H&E histological images. Our contributions include
insights about the segmentation and detection algorithms, their
quantitative results and analyses, and the image datasets used
to validate them. This is valuable for two key aspects: the de-
velopment and dissemination of existing and new datasets, and
the identification of future research directions by recognizing
the most widely used segmentation and detection techniques
applied to public images—a challenging validation context.

II. MATERIALS AND METHODS

This systematic review consists of articles dealing with
the segmentation of publicly available H&E histological im-
ages of cancer and precancerous lesions. The articles’ search
considered the following keywords, combined into queries
in digital libraries (Scopus, Web of Science, and PubMed):
CAD systems, deep learning, image processing, classification,
segmentation, machine learning, image analysis, algorithms,
computer-aided diagnosis, H&E, histo* images, tissue, medi-
cal imaging, digital pathology, cancer* images, cancer diagno-
sis, cancer detection, data availability, available datasets, pub-
lic datasets, challenge, contest, available images, benchmark.

The search stage was filtered using inclusion criteria and
the following exclusion criteria: (i) removal of duplicates, (ii)
articles with fewer than four pages, (iii) retracted papers, and
(iv) use of regression techniques, prediction of survival and
recurrence, treatment, and diagnosis. A total of 590 articles
were initially identified, from which only 70 studies were
selected to address the proposed research questions1. They
were formulated by Computer Scientists, experts in H&E
histological image processing, since the main topic of this
review is the application of computational techniques on these
images.

III. RESULTS AND DISCUSSION

GQ1 What are the main future works identified in
the literature regarding the segmentation of public H&E
histological images? The most cited future research included
investigation of different tissues and datasets [2]–[4], [7]–
[23], in addition to the use of segmented ROIs in other
computational pathology tasks [14], [15], [19], [24]–[35],
such as the analysis of morphological features for cancer
progression prediction [36]. It was also proposed to inves-
tigate methods robust to color and scale [21], [37]–[39],
tissue preparations protocols [3], [4], ROIs [9], [33], [40],
[41], histopathology images staining (such as IHC) [9], [35],
[41], [42], and magnifications [12]. Overlapped nuclei and
false positives were observed limitations [35], which promote
algorithms for border detection [43], investigation of loss
functions [44], models incorporated with nuclei shapes [18],

1GQ stands for general questions, and SQ corresponds to specific questions.



[45], and instance segmentation [21], [46]. Barriers by the
limited amount of images [1], [25], [47], [48] or specific
ROIs [27], with unbalance [17], [38], reduce models general-
ization and increase overfitting, with possible use of scalable
crowdsourcing for data annotation, generation of additional
images by GANs [42], [47] and investigation of data augmen-
tation [7], [13], [25], [38]. Open issues include optimizations
to reduce inference and training time [3], [38], [39], [46],
such as pruned models [49], and investigations of paralel
processing [2], [34], [48]. More precise annotations [9], [35],
by more than one pathologist [25], [30] or just datasets
with more annotations [3], [50] were recognized as future
demands. Methodologies investigations encompass individual
model analyses in comparison to ensemble [51], integration
with fuzzy segmentation [48], [52], transformers [44] or 3D
models [20], [40]. Investigating structural similarities and
boundary displacement [52], multi-scale features to deal with
nuclei with different sizes [3], [38], in addition to other ROIs
features [35], [42], [53] are also research possibilities, as
well as application of pre- [10], [17], [21], [22] or post-
processing [54]. Analyses of SSL training [46], [55], or
backbones for DL [3], [20] can also be performed. Finally,
new evaluation metrics can be proposed for the representation
of shape, size, and proximity between nuclei [3].

GQ2 Are there published studies proposing public
images for segmentation analyses? Among the analyzed
articles, four of the proposed datasets are still available for
download: CryoNuSeg [4], KMC-liver [21], LynSeC [56], and
MthH [57].

GQ3 What is the most commonly used image processing
technique for the segmentation of ROIs in histological
images? This answer required the identification of the ROIs
segmented in each study. Only DL techniques were investi-
gated for segmentation of benign and malignant epithelium,
breast tubules, cell detection, cell types, duct detection, epithe-
lial and stromal nuclei, glandular epithelium, hepatocellular
carcinoma, invasive breast cancer region, oral squamous cell
carcinoma tumor regions, tumor-infiltrating lymphocytes, and
tissue regions. Modifications of U-Net were explored [10],
[13], [18], [23], [25], as well as transformers [23], [38]
and various CNNs [9], [14], [24], [39]–[41], [51], [55]. For
malignant nuclei segmentation, DL [58] and Otsu [59] were
investigated. Considering mitoses (by cells, instances and
nuclei), DL was widely used [15], [17], [19], [30], [33], [60],
[61], in addition to neutrosophic sets [62], thresholding [31],
[60], [61] and SVM [31], [60]. Glands were segmented by
DL [10], [16], [26], [28], [51], [53], [54], Otsu [63], symbol
pressure function-level set [26] and triangle membership [26].
Nuclei segmentation had a predominant use of DL [1], [3],
[4], [7], [8], [11], [12], [20], [21], [27], [32], [35]–[37], [42]–
[44], [46], [47], [49], [56], [57], [64]–[71], also including
canny edge detection [50], [72], fuzzy clustering [2], Gaussian
mixture models [45], graphcut [45], K-means [46], [50], [69],
MLP [22], Otsu [29], [34], [50] and superpixels [34], [48],
[52].

SQ1 Which segmentation techniques obtained the best

quantitative results? This answer required a joint analysis
of ROIs and evaluation metrics, disregarding the evaluated
datasets. For cell type detection, the best AUC (0.99) was
reached by [14]. In gland segmentation, the best Dice (0.923),
F1-score (0.901), and Hausdorff distance (44.125) were ob-
tained by [51], [26], and [26], respectively. Glandular epithe-
lium had the best Dice (0.9119) in [23]. Mitoses obtained
the highest values of F-score (0.767), precision (0.828), and
recall (0.728), all in [33]. In mitosis cells, [30] reached the best
precision (0.912) and recall (0.893). In nuclei segmentation,
the best results are presented in the following: accuracy
(0.9669) [3], Dice (0.914) [27], DQ (0.784) [71], F1-score
(0.9579) [35], FN (4.4) [48], [52], FP (10.2) [48], [52], IoU
(0.8911) [36], Jaccard index (0.963) [34], multi-class PQ
(0.5290) [65], PQ (0.755) [56], precision (0.992) [27], recall
(0.934) [27], SQ (0.768) [71] and TP (38.5) [52]. Mitotic
nuclei obtained the best accuracy (88.43), sensitivity (90.13),
and specificity (86.74) in [61]. Finally, the best Dice (0.84)
for tumor-infiltrating lymphocytes was reached in [13].

SQ2 Where are the segmentation-based databases from?
Most of the segmentation datasets came from unspecified
regions, and three are from multiple centers. The UK and
France have three datasets each. China, Germany, Italy, the
Netherlands, and the USA have two datasets each. The ones
that contributed to only one dataset each were Brazil, Canada,
India, Japan, Portugal, and South Korea.

SQ3 What was the year in which most databases were
released for segmentation? In 2021, the KMC [73] and
CryoNuSeg [74] datasets were introduced. The most recent
ones are MthH [75], proposed in 2022, and LyNSeC [76],
proposed in 2024.

SQ4 How many databases are available for download?
Among the analyzed studies, 35 datasets are still available for
download (summarized in Table I).

SQ5 Which ROI has more public images available for
segmentation analyses? The ROI with the largest number
of publicly available images is the nuclei, with over 200,000
images from different tissues.

SQ6 Which cancer type offers the most public images
available for segmentation? Considering that we couldn’t
take into account the types of images (i.e. WSIs vs patches, for
instance), the cancer type with the highest number of images
is the renal clear cell adenocarcinoma, with 192,581 publicly
available images from TCGA-KIRC [97].

SQ7 What available public database has more ROIs
or images? The criterion used in SQ6 was also applied to
this question. Therefore, the highest number of images is in
TCGA-KIRC. In terms of ROIs, the dataset with the highest
quantity is PanNuke (with over 200,000 labeled nuclei) [96].
It is important to note that some articles did not specify the
number of ROIs available.

SQ8 What were the evaluation metrics used for perfor-
mance analyses of segmentation algorithms? This answer
considered the different segmented ROIs. Although IoU is
equivalent to the Jaccard index, and the Dice score can also
be referred to as F1-score [108], we used the exact terms



TABLE I
PUBLICLY AVAILABLE DATASETS USED IN THE REVIEWED STUDIES, IN 2025.

ROIs Datasets Lesions Number of
images Magnifications Origin of

samples
Duct detection TCGA-BRCA [77] Breast cancer 1,126 slides 20× Unspecified
Glands MICCAI GlaS [78] Colorectal cancer 165 images 20× UK
Hepatocellular carcinoma PAIP [79] Hepatocellular carcinoma 100 images 20× South Korea
Invasive breast
cancer regions UHCMC&CWRU [80] Breast cancer 110 imagens 20× USA

Malignant cells BreastPathQ [81] Breast cancer 96 WSIs 20× Canada
Mitotic cells AMIDA 13 [82] Breast cancer 606 HPFs 40× The Netherlands
Mitotic cells ICPR12 [83] Breast cancer 50 HPFs 40× France
Mitotic cells MITOS & ATYPIA [84] Breast cancer 1,420 frames 40× France
Mitotic cells TUPAC [85] Breast cancer 500 images 40× Unspecified

Mitosis CCMCT-MEL [86] Canine cutaneous
mast cell tumor 32 WSIs 40× Germany

Mitosis MIDOG [87] Breast cancer 150 samples 40× Germany
The Netherlands

Nuclei BACH [88] Breast cancer 40 images - Portugal
Nuclei CoNIC [89] Colorectal cancer 4,981 patches 20× UK
Nuclei CoNSep [90] Colorectal adenocarcinoma 41 WSIs 40× UK
Nuclei CPM-17 [91] Diverse tissues 32 images 20× and 40× Unspecified
Nuclei CryoNuSeg [74] Diverse tissues 30 images 40× Multiple centers
Nuclei KMC [73] Liver cancer 80 images 40× India
Nuclei LyNSeC [76] Lymphoma 320 images 40× Unspecified
Nuclei MoNuSAC [92] Diverse tissues - 40× Multiple centers

Nuclei MoNuSeg [93] Diverse tissues 30 images 40×
18 hospitals

(USA, Canada, Germany,
Australia)

Nuclei MthH [75] Thymic carcinoma 36,000 images 20× and 40× China and Japan
Nuclei NuCLS [94] Breast cancer 1,744 FOVs 40× Unspecified
Nuclei NulnsSeg [95] Diverse tissues 665 images 40× Italy
Nuclei PanNuke [96] Diverse tissues - 20× and 40× Unspecified
Nuclei TCGA-KIRC [97] Renal cell carcinoma 192,581 images 40× Unspecified
Nuclei TNBC [98] Diverse tissues 50 images 40× France
Nuclei UCSB [99] Breast cancer 58 images - USA
Nuclei [100] Breast cancer 143 images 40× Unspecified
Nuclei [101] Colorectal cancer 19 images 40× Italy
Oral squamous
cell carcinoma
tumor regions

OCDC [102] Oral cancer 15 WSIs 20× Brazil

Oral squamous
cell carcinoma
tumor regions

ORCA [103] Oral carcinoma 200 TMA 20× and 40× Unspecified

Tumor infiltrating
lymphocytes BCa-lym [104] Breast cancer 100 images 20× Unspecified

Tumor infiltrating
lymphocytes Post-NAT-BRCA [105] Breast cancer 96 images 20× Unspecified

Tumor, stroma,
lymphocytic infiltrate,

necrosis, other
BCSS [106] Breast cancer 151 WSIs - Unspecified

Tumor, stroma
normal Tissue LUAD-HistSeg [107] Lung adenocarcinoma 54 WSIs 10× China

of the authors to avoid any bias. For benign and malignant
epithelium segmentation, only the Dice score was used [10].
Dice score, F1-score, mean IoU, precision, and recall evalu-
ated breast tubules segmentation [39]. Cell detection and its
types were most analyzed by AUC [14], [24], precision and
recall [24], [40], in addition to accuracy [24], F1-score [24],
[40], MAE [14], mean and standard deviation of the couting
error and detection distance error [40], and SCC [14]. FROC,
maximum sensitivity, and mAP were applied for duct detec-
tion [55]. Segmented glands were mostly evaluated through the
Dice [10], [16], [23], [26], [28], [41], [51], [54], but also by
accuracy [28], F1-score [16], [26], [41], [53], [54], Hausdorff

distance [16], [26], [41], [54], IoU [23], Jaccard index [51],
overlap [28], PPV [28], precision [23], recall/sensitivity [23],
[28], specificity [28], and even with no quantitative eval-
uation [63]. Hepatocellular carcinoma and invasive breast
cancer regions were both evaluated by Dice score and Jaccard
index [51]. Segmentation of mitoses (by cells or instances)
widely used F-score, precision, and recall [17], [19], [30], [33],
[60], [62]. AUC [33], [62], accuracy [33], DMR and FDR [60]
were also applied. The most widely used metrics to evaluate
nuclei segmentation, including epitelial, stromal, mitotic, and
malignant, were F1-score [1], [3], [7], [8], [11], [12], [15],
[20]–[22], [29], [35], [42], [44], [46], [47], [50], [56], [59],



[61], [64], [66], [67], [71], [72], Jaccard index [4], [8], [12],
[21], [29], [34], [35], [42]–[44], [47], [56], [57], [64], [66],
[68]–[70], precision [1], [3], [7], [8], [11], [15], [20], [22],
[27], [29], [34], [45], [47], [61], [67], [68], [71], accuracy [1]–
[3], [11], [12], [29], [31], [36], [44], [46], [47], [50], [57], [61],
[68], [72], recall [1], [3], [7], [8], [11], [15], [20], [22], [27],
[29], [34], [45], [47], [67], [71] and the Dice score [2]–[4],
[18], [27], [46], [48], [49], [56], [57], [64], [69], [70]. Other
metrics for nuclei segmentation evaluation were AUC [18],
aHD [42], binary PQ [71], boundary F1 [36], DQ [46], [71], F-
measure [68], FN [48], [52], FP [48], [52], IGD [52], IoU [3],
[7], [36], [44], [50], [68], HD [18], Kappa score [50], MS [52],
MAE [57], MOS [72], MSE [50], multi-class PQ [65], [71],
nuclei class evaluation [70], ODI [37], OHD [37], PQ [4],
[46], [49], [56], [65], [70], [71], RMSE [50], SQ [46], [71],
sensitivity [31], [59], [61], SP [52], specificity [11], [31],
[61], SSIM [50], and TP [48], [52], [59]. The study [32]
did not quantitatively evaluate this segmentation. Different
tumor regions were also segmented, but mostly evaluated by
Dice [9], [13], [38], F1-score [9], [25], IoU [25], [38] and
precision [25], [38], allied to accuracy [25], PQ [9], recall [38],
sensitivity [25] and specificity [25].

SQ9 What was the most-used segmentation database?
The MoNuSeg dataset, used by 21 studies [3], [4], [8], [12],
[18], [21], [27], [34]–[36], [42]–[44], [46], [47], [49], [57],
[64], [69]–[71].

SQ10 What are the magnifications of the available
images? The majority of the images are available at a
magnification of 40×, in 22 databases [73]–[76], [82]–[87],
[90]–[98], [100], [101], [103]. There are 13 datasets with
images at 20× [75], [77]–[81], [89], [91], [96], [102]–[105]
and one with images at 10× [107].

SQ11 Have preprocessing techniques been used with
segmentation algorithms? Not every analyzed study ap-
plied a preprocessing technique, which opens a new re-
search field for this investigation. In contrast, images used
for gland segmentations were preprocessed by histogram
equalization [63], U-Net for stain separation [26], [28], a
statistical color detection model with a maximum likelihood
ratio, dilation and histogram enhancement [53], and color
deconvolution [41]. Mitoses used color normalization [15],
[17], [19], [60] and CNN [60]. Nuclei segmentation, includ-
ing malignant and mitotic, was preprocessed by anisotropic
diffusion filter with K-SVD and Batch-OMP [1], using the b
channel from CIELAB [34], color deconvolution [12], [20]
also with smoothing median filter [59], color transforma-
tion [45], DL [57], intensity normalization [43], [49], Log-
Base2-G Kernel with Gaussian blur filter [72], power law
transformation with bilateral filtering [22], spectral [42] and
stain normalization [36], [44], [46], [64], and HSV conversion
with median filtering for noise removal [31]. Tumor regions
only used color normalization [13] and DL [9].

SQ12 Are there databases with evaluations by more
than one pathologist? The datasets of MIDOG and
UHCMC&CWRU were reviewed by three specialists, while
BACH, BreastPathQ, CCMCT-MEL, CryoNuSeg, ICPR12,

and LynSeC were annotated by two. KMC-liver and OCDC
were annotated by a single expert, and PAIP was reviewed by
more than one. According to [18], [42]–[44], the MoNuSeg
dataset was annotated by a single pathologist. The TNBC
dataset contains annotations by one expert [47] and by four [7],
[37], in divergence of information. The same was observed
for MITOS&ATYPIA14, with annotations performed by three
pathologists in [33], two in [30] and one in [62]. The stud-
ies [60] and [27] mention that annotations on TUPAC and
NuCLS, respectively, were carried out by more than one
pathologist.

IV. CONCLUSIONS

Advances in CAD systems are possible due to large vol-
umes of H&E histological images, especially in the current
context of DL methodologies. To this end, the use of public
images represents an opportunity for the development of
new algorithms, exposing them to wide variations in image
characteristics, such as colors and magnifications, and different
cancer types. This scenario becomes even more relevant when
considering segmentation and detection methods, which must
be robust to such variations. Thus, this systematic review
presents an analysis of public H&E histological image datasets
for the evaluation of segmentation and detection techniques
applied to different ROIs. It is worth noting that this review
does not include an experimental or critical analysis of the
computational techniques investigated; however, the collected
information is expected to serve as a foundation for the
proposal of new image datasets and new techniques for these
processing steps.

Through this review, it was notable that the currently
available public images have limited magnifications, with no
100×, 200×, or 400×. Considering the specified origins of
the samples, we have samples from Asia (∼19%), Europe
(∼54%), North America (∼19%), South America (∼4%),
and Oceania (∼4%), with clear underrepresentation that can
impact the image quality and application of the algorithms.
Considering the best quantitative results, DL was observed in
almost 85% of scenarios, in addition to superpixels. Despite
the diverse tissues, breast lesions (∼54%) had predominance,
followed by colorectal (∼14%) cases.

Although these insights are valuable, this review is limited
to studies that clearly cited the use of public datasets and
publications up to May 2024. In addition to that, it was
not possible to present the correlation between segmentation
methods and datasets. Even though different studies investi-
gated the same dataset, they did not always use the same
images. Therefore, it was not possible to perform a fair
comparison from this perspective without the reproduction
and implementation of the segmentation techniques. Other
limitations include inconsistent information about the datasets,
and a rare definition of the number of pathologists involved in
the annotations, except for the information available in SQ12.
Finally, some public images were segmented but not made
available after this process.
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