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Abstract—Glomeruli are central to the analysis of whole slide
images (WSIs) in kidney biopsies, as they are affected by a wide
range of lesions that reflect both causes and consequences of renal
diseases. In automated WSI analysis using machine learning,
glomeruli are typically the first regions to be segmented or
detected, enabling subsequent diagnostic tasks. The Bowman’s
capsule (BC) usually serves as the primary anatomical marker,
delineating the glomerulus from the surrounding interstitium.
While this boundary is preserved in normal and partially
sclerotic glomeruli, globally sclerotic glomeruli often lose the
BC, appearing visually borderless and posing a major challenge
for automatic detection. In recent years, several studies have
addressed glomerulus segmentation; however, few have focused
on the specific challenge of globally sclerotic glomeruli, often
analyzing them only in isolated per-cropped images. In this work,
we present a comparative evaluation of four few-shot semantic
segmentation (FSS) methods: DMACA, VAT, HSNet, and PMNet.
These approaches aim to learn from only a few labeled examples,
addressing the data scarcity of globally sclerotic glomeruli. These
methods were applied to three classes of glomeruli: those with
well-defined borders, partially borderless glomeruli, and globally
sclerotic borderless glomeruli, using the Dice metric. Our results
highlight the intrinsic difficulty of segmenting globally sclerotic
glomeruli from WSIs, with a mean Dice score across all the
evaluated methods of only 0.02 when evaluated at the whole-
slide level. In contrast, per-crop evaluations yielded markedly
higher performance, with mean Dice scores reaching 0.93 for
globally sclerotic glomeruli.

I. INTRODUCTION

A kidney biopsy is a medical procedure in which a small
specimen of kidney tissue is obtained from a human for micro-
scopic investigation. This procedure is typically performed to
diagnose and evaluate several kidney diseases (e.g., nephritis
syndrome and nephrotic syndrome). This procedure allows
nephrologists and pathologists to examine the structure of
kidney tissue under a microscope or scanned samples, allowing

the display of gigapixel whole slide images (WSIs) [1]–[3].
Among the structures present in the human kidney biopsy,
the glomerulus – situated within each kidney nephron – is
responsible for the blood filtration process to form urine.

Fig. 1 illustrates representative glomeruli in WSIs: (a) a
healthy glomerulus (normal), (b) a partially sclerotic glomeru-
lus (segmental sclerosis), and (c) a global sclerotic glomerulus.
While normal and segmentally sclerotic glomeruli preserve the
Bowman’s capsule to some extent and retain key histological
primitives, globally sclerotic glomeruli are completely fibrotic,
with indistinct boundaries and severe structural degradation
[4]. Notably, in this last case, even visual identification is
challenging due to the lack of clear contours separating the
glomerulus from surrounding tissue.

Glomerulus segmentation has emerged as one of the first
tasks addressed by machine learning-based expert systems
in computational nephropathology [5]. The primary target is
to provide specialists with a decision-making tool for pre-
screening WSIs (e.g., glomerulus counting), thereby stream-
lining subsequent automated tasks (e.g., glomerular lesion
classification). To understand how segmentation has been
explored in renal pathology, we reviewed related works using
three main criteria: (i) Whether the work addressed glomerulus
segmentation, (ii) whether it relied on whole-slide images,
even if analysis was performed on cropped regions, and (iii)
whether it was indexed in PubMed1, the main repository of
peer-reviewed medical literature. Many of these studies do
not distinguish between different types of glomeruli, focus-
ing instead on developing robust segmenters for a canonical
glomerular structure [6]–[11]. With the exception of [10],
which introduces a tailored deep learning network for a

1https://pubmed.ncbi.nlm.nih.gov
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Fig. 1. Examples of glomeruli from the WSI data sets. (a) Normal, (b)
segmental sclerosis, and (c) global sclerosis.

more complex segmentation task, most approaches report
Dice scores above 0.90 by applying off-the-shelf (or slightly
modified) methods, typically on WSIs stained with HE, PAS,
or PAMS.

Despite these advances, the literature remains limited when
it comes to pathological variability. In particular, segmentation
is often simplified by targeting glomeruli with clear borders,
while the more complex cases of partially or globally sclerotic
glomeruli are overlooked. Some studies address the binary
classification of normal versus sclerotic glomeruli [12]–[18],
yet they seldom report performance separately for each class.
As a result, the apparent high scores are likely inflated by
dataset imbalance, since normal glomeruli vastly outnumber
sclerotic ones.

Only a handful of works have specifically investigated
global glomerulosclerosis [5], [19], [20], but relevant lim-
itations persist. Jiang et al. [5] compare globally sclerotic
glomeruli with normal and other types, relying on large,
manually curated patches, which naturally facilitates segmen-
tation accuracy. Yu et al. [19] develop a framework for multi-
structure segmentation in WSIs, but it remains unclear whether
globally sclerotic glomeruli are explicitly targeted, despite
their results suggesting unexpectedly high performance. More
recently, Wang et al. [20] propose Glo-Net, a dual-task net-
work evaluated on multiple datasets, reporting strong perfor-
mance (mIoU > 0.8) even for globally sclerotic glomeruli.
However, such results raise questions about preprocessing
strategies and whether the true difficulty of segmenting these
borderless structures is being fully captured.

While previous works have advanced the segmentation of
well-defined glomeruli, globally sclerotic glomeruli remain an
open challenge. This paper addresses this gap by applying
few-shot semantic segmentation (FSS) methods to investigate
the problem at both the WSI and per-crop levels, considering
limited data availability, time-consuming annotation workload,
and severe class imbalance.

II. MATERIALS AND METHODS

A. General approach for glomerulus segmentation

A general pipeline for the automated segmentation of
glomeruli in WSIs is illustrated in Fig. 2. Designed to mirror
a real clinical diagnostic workflow, the process is fully auto-
mated and requires no manual intervention. The method begins
by processing each WSI using a sliding-window approach,

Fig. 2. General pipeline of prominent few-shot segmentation models for
processing WSIs.

TABLE I
SUMMARY OF THE CHARACTERISTICS OF THE DATASETS.

Data set Stain # WSI # Glom. # Classes
Train Test Train Test Normal Segmental Global

HE 12 3 181 38 219 - -
Normal PAS 12 3 180 31 211 - -

PAMS 12 3 180 33 213 - -
ALL 36 9 541 102 643 - -
HE - 19 - 72 - 48 24

Sclerosis PAS - 18 - 76 - 56 20
ALL - 37 - 148 - 104 44

Mixed HE 1 - 12 - 4 4 4

which extracts patches of 1024 × 1024 pixels. To mitigate
border effects and preserve contextual information, each patch
includes a padding of 256×256 pixels. These patches are then
resized to 384× 384 pixels to reduce computational cost.

Subsequently, each patch is fed into a frozen backbone
network to generate dense feature maps. To ensure represen-
tation consistency, the same backbone is used for both query
and support images. These feature maps are then processed
by the few-shot segmentation models to produce a prelimi-
nary prediction for each patch. Finally, the individual patch-
level predictions are aggregated and stitched together to form
the high-resolution segmentation mask for the entire WSI,
enabling the comprehensive and automated identification of
glomeruli.

B. Datasets

The dataset compilation used in this paper originates from
two sets named Normal and Sclerosis. The Normal dataset
extends the prior ANONYMOUS dataset, now featuring 45
kidney WSIs collected from 5 patients. The Sclerosis dataset
contains 37 kidney sections from 33 patients. The Mixed
dataset contains a single WSI from 1 patient, in which
glomeruli were annotated into three classes (normal, segmental
sclerosis, and global sclerosis). This slide was used exclusively
for training the FSS models and for per-crop evaluation
through 12 manually extracted patches (4 per class). The renal
biopsies used to build the dataset were fixed in formalin-acetic
acid-alcohol to preserve their histological structure, later in-



TABLE II
COMPARISON OF RESULTS (µDICE SCORE) OBTAINED FROM FOUR SEGMENTATION NETWORKS ON WSI-LEVEL AND CROPPED GLOMERULI, ACROSS

THE THREE CLASSES: NORMAL, SEGMENTAL SCLEROSIS, AND GLOBAL SCLEROSIS.

Models Normal Segmental Global
WSI HE PAS PAMS ALL HE PAS ALL HE PAS ALL

DMACA 0.79 ± 0.00 0.87 ± 0.01 0.84 ± 0.02 0.86 ± 0.03 0.16 ± 0.11 0.23 ± 0.14 0.23 ± 0.15 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01
VAT 0.80 ± 0.02 0.84 ± 0.04 0.91 ± 0.03 0.86 ± 0.03 0.17 ± 0.12 0.24 ± 0.14 0.26 ± 0.17 0.02 ± 0.04 0.02 ± 0.04 0.00 ± 0.01
HSNet 0.62 ± 0.02 0.55 ± 0.04 0.53 ± 0.01 0.75 ± 0.07 0.09 ± 0.08 0.10 ± 0.07 0.18 ± 0.12 0.02 ± 0.05 0.00 ± 0.00 0.02 ± 0.05
PMNet 0.77 ± 0.01 0.88 ± 0.03 0.90 ± 0.01 0.86 ± 0.05 0.09 ± 0.07 0.13 ± 0.10 0.15 ± 0.11 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00
Models Normal Segmental Global
Crop HE PAS PAMS ALL HE PAS ALL HE PAS ALL

DMACA 0.94 ± 0.04 0.96 ± 0.02 0.96 ± 0.03 0.96 ± 0.03 0.91 ± 0.04 0.88 ± 0.06 0.92 ± 0.04 0.85 ± 0.05 0.84 ± 0.07 0.88 ± 0.05
VAT 0.95 ± 0.04 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.03 0.92 ± 0.06 0.94 ± 0.05 0.94 ± 0.04 0.91 ± 0.04 0.92 ± 0.03 0.93 ± 0.03
HSNet 0.94 ± 0.05 0.96 ± 0.02 0.96 ± 0.03 0.96 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.95 ± 0.03 0.92 ± 0.04 0.91 ± 0.04 0.92 ± 0.04
PMNet 0.95 ± 0.04 0.97 ± 0.02 0.97 ± 0.03 0.96 ± 0.02 0.92 ± 0.04 0.87 ± 0.07 0.89 ± 0.06 0.84 ± 0.07 0.79 ± 0.09 0.77 ± 0.13

cluded in paraffin, and sectioned at 2 µm. WSIs were digitized
using a VS 110 Olympus scanner with 40× magnification for
the Normal dataset, and a Zeiss Imager Z2 scanner with 20×
magnification for the Sclerosis and Mixed datasets. The main
characteristics of these datasets are summarized in Table I.

C. Evaluated FSS Methods

Few-shot semantic segmentation (FSS) aims to segment
objects of previously unseen classes using a query image along
with a small set of annotated examples. This capability is
particularly valuable in our case, where annotated data of glob-
ally sclerotic glomeruli in WSIs is scarce. In a k-shot setting,
given a query image Iq and a support set S = {(Iis,M i

s)}ki=1,
where each pair (Iis,M

i
s) consists of a support image and its

corresponding ground-truth mask, the objective is to predict
the segmentation mask Mq of the query image Iq .

Despite architectural differences, FSS models follow a con-
sistent pipeline (see Fig. 2): Feature extraction using pre-
trained backbones, cross-image correspondence establishment,
and mask generation via learnable decoders. For our evalua-
tion, we selected four representative FSS approaches that ex-
emplify different paradigms in correspondence modeling and
mask refinement. HSNet [21] captures dense pixel-wise rela-
tionships through multi-level 4D correlations; DCAMA [22]
employs an attention mechanism incorporating foreground and
background support information; PMNet [23] refines pixel-to-
patch affinities and enhances coarse masks via spatial filtering;
and VAT [24] combines local and global context using volu-
metric convolutional and transformer modules. Together, these
methods exemplify diverse state-of-the-art FSS strategies.

D. Implementation Details

We used official model implementations with default pa-
rameters, employing ResNet-101 (ImageNet-1K pretrained)
for HSNet and VAT, and Swin Transformer (SwinB) with
ImageNet pretraining for DCAMA and PMNet. All models
were trained for 300 epochs on NVIDIA RTX 4090 GPU
with AMD Ryzen 9 7900X3D CPU using batch size 8,
a warm-up learning rate scheduler peaking at 1 × 10−4,
and frozen backbone weights to preserve pretrained features,
with online augmentations applied to improve generalization.
Training followed an episodic paradigm, in which each episode

E = (S,Q) consisted of a support set S = {(Is,Ms)} and
a query pair Q = (Iq,Mq) sampled from the training subset
of the Normal dataset. For evaluation, we employed a 12-
shot setting with support sets comprising 12 Mixed dataset
crops (4 normal, 4 segmental sclerosis, and 4 global sclerosis),
maintaining this configuration for both whole slide image
patches and individual cropped glomeruli experiments.

Fig. 3. Comparison of visual results produced by the FSS models on a WSI
exhibiting global sclerosis glomeruli. The yellow mask is false-positive pixels,
the red mask is false-negative pixels, and the green mask is true-positive pixels

III. RESULTS

Our experimental evaluation highlights substantial perfor-
mance gaps between WSI-level and per-crop segmentation,
with notable variation across glomerular pathology types.
Table II reports the quantitative results for models trained
both per-stain and across all stains, evaluated using the Dice
coefficient. Dice was selected as the primary metric due to its
sensitivity to small and morphologically ambiguous structures.
By prioritizing true positives and penalizing false negatives,
it provides a more reliable measure for sclerotic glomeruli
compared to IoU, which is more influenced by false positives.

A. WSI-Level Segmentation Performance

For normal glomeruli, the models achieved moderate to
good results, with mean Dice scores between 0.75 and 0.86
across all stain types. DMACA, VAT, and PMNet performed
similarly (0.86 ± 0.03 each), while HSNet lagged slightly
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Fig. 4. From left to right: Input image, ground truth, and results from DMACA, VAT, HSNET and PMNET considering per-crop segmentation using HE
stain for global glomeruli. The yellow mask is false-positive pixels, the red mask is false-negative pixels, and the green mask is true-positive pixels (best view
in colors).

(0.75± 0.07). Performance varied notably with staining, with
PAMS consistently yielding the best results, followed by PAS
and HE. In contrast, segmentally sclerotic glomeruli were far
more challenging to segment, with Dice scores dropping to
0.15–0.26. VAT reached the highest performance (0.26±0.17),
followed by DMACA (0.23±0.15), HSNet (0.18±0.12), and
PMNet (0.15 ± 0.11). The large standard deviations indicate
high variability in segmentation quality across different cases.

Global sclerotic glomeruli segmentation at the WSI level
proved extremely challenging for all evaluated methods. Per-
formance was near-zero across all approaches, with Dice
scores effectively at 0.00 ± 0.01 for most method-stain com-
binations. These results underscore the fundamental difficulty
of segmenting borderless, globally sclerotic structures in the
complex context of whole slide images.

B. Per-Crop Segmentation Performance and Clinical Implica-
tions

While per-crop evaluation revealed substantially improved
performance across all glomerular types and methods, these
results must be interpreted with caution regarding clinical
applicability. For normal glomeruli, all four methods achieved
excellent performance, with mean Dice scores consistently
above 0.94. Similarly high performance was observed for seg-
mentally sclerotic glomeruli, with mean Dice scores ranging
from 0.89 to 0.95, led by HSNet (0.95± 0.03).

Most notably, globally sclerotic glomeruli showed high
performance in per-crop evaluation, with VAT achieving 0.93±
0.03, followed by HSNet (0.92±0.04), DMACA (0.88±0.05),
and PMNet (0.77± 0.13). These results sharply contrast with
the near-zero performance observed in realistic WSI-level eval-
uation. This disparity highlights a critical limitation of current
methods in practical scenarios where glomerular regions must
be automatically identified within complex tissue structures.
Although the per-crop results demonstrate technical merit,
they offer little scope for meaningful improvement and, more
importantly, do not translate into clinically viable solutions for
automated global glomerulosclerosis segmentation.

C. Qualitative Analysis

In Figure 3, the visual comparison of FSS model outputs
on a zoomed region of a WSI containing three globally
sclerotic glomeruli illustrates the difficulty of segmenting these
structures at the WSI level. Only HSNet produced meaningful
segmentation, successfully identifying and partially segment-
ing two of the three glomeruli. In contrast, DMACA, VAT,

and PMNet failed to generate usable masks, producing only
minimal noise-like artifacts indicative of false positives. This
qualitative assessment is consistent with the near-zero quanti-
tative performance reported in Table II.

On the other hand, the per-crop analysis of a globally
sclerotic glomerulus with HE staining reveals clear differences
in segmentation behavior among the four models, as shown in
Fig. 4. PMNet produced irregular masks with extensive false
negatives, while DMACA achieved more complete coverage
but missed pixels mainly along the glomerular borders. VAT
further reduced these errors, leaving only scattered omissions,
and HSNet showed similarly limited false negatives but intro-
duced small false positives at the boundaries. This segmenta-
tion behavior is consistent with the quantitative results, where
VAT (0.93 ± 0.03) and HSNet (0.92 ± 0.04) exhibited the
best performance, whereas PMNet displayed the lowest and
most variable results (0.77 ± 0.13).

IV. DISCUSSION AND CONCLUDING REMARKS

In this study, we tackled the challenging task of segmenting
global glomerulosclerosis. We investigated glomerulus seg-
mentation in WSIs of human kidneys using a FSS approach,
evaluating four models: DMACA, VAT, HSNet, and PMNet.
Experiments were conducted on three datasets: One containing
glomeruli without lesions, another with glomeruli exhibiting
segmental and global sclerosis, and a third with glomeruli
classified as normal, segmental, or global.

A stark performance gap was observed, particularly for
globally sclerotic glomeruli. While models excelled in per-
crop analysis, their WSI-level performance collapsed entirely,
yielding a Dice score of nearly zero. This failure is attributed
to the fundamental challenge of segmenting borderless struc-
tures; the absence of a defined Bowman’s capsule in globally
sclerotic glomeruli renders them indistinguishable from the
surrounding interstitial tissue, making automated segmentation
an ill-posed problem for current methodologies.

These findings have significant implications for compu-
tational nephropathology, demonstrating that common eval-
uation protocols can severely overestimate a model’s real-
world utility and misguide clinical deployment decisions. The
variability in staining protocols and inherent class imbalance in
our datasets further reflects the challenges of clinical practice.
Consequently, segmenting globally sclerotic glomeruli remains
an open problem. Future work will focus on evaluating
foundation models for unsupervised segmentation, enhancing



predictions on human data, and expanding annotated WSI
collections to include diverse stains and lesions, ultimately
providing a more comprehensive resource for the scientific
community.
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Márcio dos Santos is sponsored by CNPQ under the grant
no. 51803. Angelo Duarte is sponsored by FAPESB and UEFS,
under the grants PET 0017/2024 and FINAPESQ 074/2021.
Luciano Oliveira and Washington LC dos-Santos are spon-
sored by CNPq under grants 301789/2025-8 and 406141/2023,
respectively.

REFERENCES

[1] M. K. K. Niazi, A. V. Parwani, and M. N. Gurcan, “Digital pathology
and artificial intelligence,” The lancet oncology, vol. 20, no. 5, pp. e253–
e261, 2019.

[2] V. Della Mea, F. Demichelis, F. Viel, P. Dalla Palma, and C. A. Beltrami,
“User attitudes in analyzing digital slides in a quality control test bed:
A preliminary study,” Computer Methods and Programs in Biomedicine,
vol. 82, no. 2, pp. 177–186, 2006.

[3] N. Bayramoglu, J. Kannala, and J. Heikkilä, “Deep learning for magni-
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