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Abstract—Deep learning techniques have been studied exten-
sively in the last years due to their good results related to essential
tasks on a large range of applications, such as speech and face
recognition, as well as object classification. Restrict Boltzmann
Machines (RBMs) are among the most employed techniques,
which are energy-based stochastic neural networks composed of
two layers of neurons whose objective is to estimate the connec-
tion weights between them. Recently, the scientific community
spent much effort on sampling methods since the effectiveness
of RBMs is directly related to the success of such a process.
Thereby, this work contributes to studies concerning different
training algorithms for RBMs, as well as its variants Deep Belief
Networks and Deep Boltzmann Machines. Further, the work
covers the application of meta-heuristic methods concerning a
proper fine-tune of these techniques. Moreover, the validation of
the model is presented in the context of image reconstruction and
unsupervised feature learning. In general, we present different
approaches to training these techniques, as well as the evaluation
of meta-heuristic methods for fine-tuning parameters, and its
main contributions are: (i) temperature parameter introduction
in DBM formulation, (ii) DBM using adaptive temperature,
(iii) DBM meta-parameter optimization through meta-heuristic
techniques, and (iv) infinity Restricted Boltzmann Machine
(iRBM) meta-parameters optimization through meta-heuristic
techniques.

Index Terms—Machine Learning; Restricted Boltzmann Ma-
chine; Optimization

I. INTRODUCTION

In the last decades, machine learning techniques have grown
exponentially in a wide range of applications, mainly the
ones regarding decision-making procedures. Such tasks are of
extreme interest in environments that involve large amounts of
data, such as automated diagnosis, image and video process-
ing, and data mining, to cite a few.

Usually, the traditional data flow employed to “solve”
machine learning-related problems tend to follow four main
steps: (i) data processing, (ii) feature extraction, (iii) feature se-
lection/transformation, and (iv) pattern recognition. Although
each of the aforementioned steps had evolved in the last
decades, a new set of techniques based on deep learning (DL)
strategies provide an approach that mimics the brain-behavior
while processing visual information, where the data extraction
is performed on distinct layers, when each one is responsible
for extracting different types of information.
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Restricted Boltzmann Machines (RBMs) [1] are classified
as stochastic neural networks composed of a set of “hidden” or
latent units employed to encode a representation of input data.
Roughly speaking, RBMs are not considered a DL method,
though their “stacking” process is. In a nutshell, RBMs are
used as building blocks for deep learning models, such as the
well-known Deep Belief Network (DBNs) [2] and the Deep
Boltzmann Machines(DBMs) [3].

One of the major constraints regarding RBMs stands on
the training step, which can be interpreted as an optimiza-
tion problem where the minimization of the system’s energy
implies directly in an increase of the posterior probability of
activating a hidden neuron. Such assumption led many studies
towards a more efficient manner of solving this optimization
problem and to approximate the output to the log-likelihood,
which is considered the “perfect result”; however intractable
when the number of variables is relatively large. Since the
number of visible units generally stand for the number of
pixels when dealing with image problems, the number of
visible units tends to be large enough to convert such log-
likelihood approximation into a prohibitive task.

Recently, many works addressed the task of modeling such
log-likelihood approximation as a sampling over a Markov
chain [4]–[8], where the initial solution, i.e., the input model,
stands for some data sample, as well as the expected output
stands for the corresponding sample approximation. Such a
process is then repeated over the training dataset until some
stopping criterion is met.

The hypothesis and main contributions of the present
thesis concern answering the following question: which
strategies could one adopt towards enhancing the train-
ing process of RBM-based models? Two approaches are
proposed to accomplish such task: (i) the application of
meta-heuristic optimization algorithms to fine-tune hyper-
parameters, and (ii) the introduction of the temperature
parameter into the DBM-based formulation.

The works presented in the next sections aim towards the
optimization of Restricted Boltzmann Machines-based ma-
chine learning algorithms. The proposed approaches employ
meta-heuristic techniques for such tasks, as well as an ap-
proximation of the computational formulation to the original
Boltzmann formulation by introducing the temperature param-
eter in the DBM domain.



Section II presents a brief referential background regard-
ing RBMs, DBNs, DBMs, and infinity Restricted Boltzmann
Machines (iRBMs). The temperature meta-parameter is intro-
duced for the very first time into the DBM formulation in the
paper presented in Section III. A continuation of this work
is provided in Section IV. The paper presented in Section V
introduces the problem of DBMs meta-parameter fine-tuning
aided by meta-heuristic optimization techniques. Following the
same idea, the work presented in Section VI introduces a
similar approach for meta-parameter optimization regarding
the ordered Restricted Boltzmann Machines (oRBM) and
iRBM domains. Finally, Section VII presents a continuation of
the work presented in Section VI, applying iRBM for Barret’s
Esophagus lesions detection. Finally, Section VIII provides the
conclusions and the main contributions of this work.

II. THEORETICAL BACKGROUND

This chapter presents the theoretical background regarding
RBM-based models.

A. Restricted Boltzmann Machines

Invented under the name “Harmonium” by Paul Smolensky
in 1986, [9] and renamed in the mid-2000s by Geoffrey
Hinton, Restricted Boltzmann Machines are energy-based
stochastic neural networks composed of two layers of neurons
(visible and hidden), in which the learning phase is conducted
by means of an unsupervised fashion. A naı̈ve architecture of
a Restricted Boltzmann Machine comprises a visible layer v
with m units and a hidden layer h with n units. Additionally,
a real-valued matrix Wm×n models the weights between the
visible and hidden neurons, where wij stands for the weight
between the visible unit vi and the hidden unit hj . Figure 1
depicts the RBM architecture.

Fig. 1. The RBM architecture.

Let us assume both v and h as being binary-valued units. In
other words, v ∈ {0, 1}m e h ∈ {0, 1}n. The learning process
is conducted using the minimization of the systems energy,
analogous to the Maxwell-Boltzmann distribution law of ther-
modynamics. The energy function of a Restricted Boltzmann
Machine is given by:

E(v,h) = −
m∑
i=1

aivi −
n∑
j=1

bjhj −
m∑
i=1

n∑
j=1

vihjwij , (1)

where a e b stand for the biases of the visible and hidden
units, respectively.

Since the RBM is a bipartite graph, the probabilities of acti-
vating both visible and hidden units are mutually independent,
thus leading to the following conditional probabilities:

P (vi = 1|h) = φ

 n∑
j=1

wijhj + ai

 , (2)

and

P (hj = 1|v) = φ

(
m∑
i=1

wijvi + bj

)
. (3)

Note that φ(·) stands for the logistic-sigmoid function. One
can solve the aforementioned equation using Contrastive Di-
vergence [4], for instance.

B. Deep Belief Networks

Deep Belief Network [2] is a generative graphical model
composed of multiple layers of latent variables (“hidden
units”), with connections between the layers but not between
units within each layer. In a nutshell, DBNs are composed of
a set of stacked RBMs, being each of them trained using the
same learning algorithm of RBMs, but in a greedy fashion,
which means an RBM at a certain layer does not consider
others during its learning procedure. In this case, we have a
DBN composed of L layers, being Wi the weight matrix of the
RBM at layer i. Additionally, we can observe the hidden units
at layer i become the input units to the layer i+ 1. Figure 2
depicts the model.

Fig. 2. The DBN architecture.

C. Deep Boltzmann Machines

The DBM formulation is rather similar to the DBN one, but
with some slightly differences. Suppose we have a DBM with
two layers, where v stand for the visible units, as well as h1

and h2 stand for the hidden units at the first and second layer,
respectively. Figure 3 depicts the architecture of a standard
DBM, which formulation is slightly different from a DBN
one.

The energy of a DBM can be computed as follows:

E(v,h1,h2) = −
m1∑
i=1

n1∑
j=1

vih
1
jw

1
ij −

m2∑
i=1

n2∑
j=1

h1
ih

2
jw

2
ij , (4)

where m1 and m2 stand for the number of visible units in
the first and second layers, respectively, and n1 and n2 stand
for the number of hidden units in the first and second layers,



Fig. 3. The DBM architecture with two hidden layers.

respectively. In addition, we have the weight matrices W1
m1×n1

and W2
m2×n2 , which encode the weights of the connections

between vectors v and h1, and vectors h1 and h2, respectively.
For the sake of simplification, we dropped the bias terms out.

D. Infinity Restricted Boltzmann Machines

The Infinity Restricted Boltzmann Machine is a variant of
the RBM such that the hidden units are trained sequentially,
from the left to the right, where the maximum number of
hidden units is not specified. This number increases automat-
ically until its capacity is sufficiently high, which is possible
by taking the limit of n → ∞. The model is presented in
Figure 4.

Fig. 4. An iRBM with z = 2 trained units. There are some non-zero (dashed
lines) values connecting the third unit (l = 3) that is going to be used for
training. All remaining hidden units (i.e., l > 3) have zero-valued weights.

E. Sampling Methods

Initially, the strategy adopted to estimate E[hv]model, which
is the representation of the data learned by the system, is
basically to start the visible units with random values and run
alternating Gibbs chain until equilibrium, (i.e., convergence).
However, this approach is computationally expensive, since
a good model is obtained when the number of Gibbs steps
k →∞. Figure 5 depicts the model.

To tackle the aforementioned problem, some alternatives to
Gibbs sampling were presented in the following years. The
next sections discuss some of the most used techniques for
such purpose.

1) Contrastive Divergence: Basically, the idea is to ini-
tialize the visible units with a training sample, to compute
the states of the hidden units using Equation 3, and then to
compute the states of the visible unit (reconstruction step)

Fig. 5. Gibbs sampling.

using Equation 2. In short, this is equivalent to perform Gibbs
sampling using k = 1 and initializing the chain with the the
training samples.

Based on the above assumption, we can now compute
E[hv]model as follows:

E[hv]model = P (h̃|ṽ)ṽT , (5)

where ṽ stands for the reconstruction of the visible layer given
h, and h̃ denotes a estimation of the hidden vector h given ṽ.

Therefore, the equation below leads to a simple learning
rule for updating the weight matrix W, as follows:

Wt+1 = Wt + η(E[hv]data − E[hv]model)

= Wt + η(P (h|v)vT − P (h̃|ṽ)ṽT ), (6)

where Wt stands for the weight matrix at time step t, and
η corresponds to the learning rate. Additionally, we have the
following formulae to update the biases of the visible and
hidden units:

at+1 = at + η(v− E[v]model)

= at + η(v− ṽ), (7)

and

bt+1 = bt + η(E[h]data − E[h]model)

= bt + η(P (h|v)− P (h̃|ṽ)), (8)

where at and bt stand for the visible and hidden units biases
at time step t, respectively. In short, Equations 6, 7 and 8 are
the standard formulation for updating the RBM parameters.

Later on, Hinton [10] introduced a weight decay parameter
λ, which penalizes weights with large magnitude, as well as a
momentum parameter α to control possible oscillations during
the learning process. Therefore, we can rewrite Equations 6, 7
and 8 as follows:

Wt+1 = Wt+η(P (h|v)vT − P (h̃|ṽ)ṽT )− λWt + α∆Wt−1︸ ︷︷ ︸
=∆Wt

,

(9)

at+1 = at + η(v− ṽ) + α∆at−1︸ ︷︷ ︸
=∆at

(10)



and

bt+1 = bt + η(P (h|v)− P (h̃|ṽ)) + α∆bt−1︸ ︷︷ ︸
=∆bt

. (11)

2) Persistent Contrastive Divergence: Most of the issues
related to Contrastive Divergence approach are related to the
number of iterations employed to approximate the model to
the real data. Although the approach proposed by Hinton [4]
takes k = 1 and works well for real world problems, one can
settle different values for k [11]1.

Notwithstanding contrastive divergence provides a good
approximation to the likelihood gradient, i.e., it provides a
good approximation of the model to the data when k →
∞. However, its convergence might become poor when the
Markov chain has a “low mixing”. Furthermore, contrastive
divergence has a good convergence only in the early iterations,
getting slower as iterations go by, thus demanding the use of
a parameter decay term (as shown in equations 9, 10 and 11,
for instance).

Therefore, an interesting alternative for contrastive diver-
gence would be using higher values for k, usually named CD-
k. However, a major problem related to this approach is due to
its computational burden, since a greater number of iterations
are required to approximate the model to the data. Given
such premise, Tieleman [5] proposed the Persistent Contrastive
Divergence - PCD for short - which aims to approximate
the model to CD-k, but with a lower computational burden.
The idea is quite simple: on CD-1, each training sample
is employed to start an RBM and rebuilds a model after a
single Gibbs sampling iteration. Once every training sample
is presented to the RBM, we have a so-called “epoch”. The
process is repeated for each next epoch, i.e., the same training
samples are used to feed the RBM and the Markov chain
is restarted at each epoch. PCD aims to achieve an “ideal”
approximation of the model to the data given CD-k (when
k → ∞) by means of not restarting the Markov chain, but
using the model built in the former epoch to feed the RBM
in the current epoch. Therefore, as the number of epochs
increases, the model tends to be similar to the one obtained
through CD-k. The only problem related to this technique
concerns the number of epochs demanded for convergence,
but yet the reconstruction error rate is generally still lower
than CD.

III. TEMPERATURE-BASED DEEP BOLTZMANN MACHINES

This section presents the content published in the journal
Neural Processing Letters [12], and it introduces the concept
of temperature in DBMs, which play a key role in Boltzmann-
related distributions, but it has never been considered in this
context up to date. Therefore, the main contribution of this
work is to take into account this information, as well as the im-
pact of replacing a standard Sigmoid function by another one
and to evaluate their influence in DBMs considering the task of

1Usually, contrastive divergence with a single iteration is called CD-1.

binary image reconstruction. Its impact is evaluated through
the learning steps, and the results are compared even with
distinct activation functions, once such parameter added to the
energy function can be interpreted as a scalar multiplication
of the Sigmoid function input. Provided results confirm the
hypothesis suggested by Li et al. [13] that lower temperatures
tend to reach more accurate results, as presented in Table I.
Furthermore, one can observe that lower temperatures also
support sparseness representations of the hidden layer, which
leads to a dropout like regularization.

0.1 0.2 0.5 0.8 1.0 1.5 2.0 Gompertz
DBM-CD 0.18518 0.18503 0.18504 0.19087 0.19718 0.21495 0.21591 0.26833

DBM-PCD 0.18527 0.18606 0.18655 0.19154 0.19735 0.21423 0.21532 0.27248
DBN-CD 0.21613 0.21977 0.21814 0.21465 0.21352 0.21725 0.22455 0.22142

DBN-PCD 0.21051 0.21155 0.21660 0.21104 0.21012 0.21080 0.21431 0.21617

TABLE I
AVERAGE MSE OVER THE TEST SET CONSIDERING SEMEION

HANDWRITTEN DIGIT DATASET.

IV. DEEP BOLTZMANN MACHINES USING ADAPTIVE
TEMPERATURES

Section IV is continuity of the work started in Section III.
Here, one can observe the behavior of DBMs under adaptive
temperatures. The work was presented in the 17th International
Conference on Computer Analysis of Images and Patterns [14]
and proposes an adaptive temperature that increases smoothly
while the training progresses. Such approach can be compared
to the behavior observed in meta-heuristic algorithms, where
each agent initially explores the search space in the quest for
better solutions, and later converges to the points whose results
are more promising as training advances. In a nutshell, the
training procedure of such models concerns the minimization
of the energy of each training sample in order to increase
its probability. Therefore, such an optimization process needs
to be regularized in order to reach the best trade-off be-
tween exploitation and exploration. The idea is to provide an
adaptive regularization approach based on temperatures which
implies advantages considering Deep Belief Networks and
Deep Boltzmann Machines. The main contribution of the work
is the exemption of the task of fine-tuning the temperature
parameter, providing a friendly interface for less experienced
users. Additionally, it presents results at least competitive with
the ones where the temperature is fine-tuned in the context of
binary image reconstruction, thus outperforming temperature-
fixed DBNs and DBMs, as presented in Table II.

0.1 0.5 0.8 1.0 1.5 2.0 Linear Curve
DBM-CD 0.16048 0.16048 0.16049 0.16048 0.16049 0.15983 0.15822 0.16053

DBM-PCD 0.16049 0.16050 0.16048 0.16049 0.16049 0.15983 0.15929 0.16039
DBN-CD 0.16049 0.16049 0.16050 0.16049 0.16249 0.17040 0.15822 0.16523

DBN-PCD 0.16048 0.16049 0.16049 0.16048 0.16081 0.16120 0.15929 0.16321

TABLE II
AVERAGE DBM/DBN MSE OVER THE TEST SET CONSIDERING CALTECH

101 SILHOUETTES DATASET WITH 200 ITERATIONS.

The impact of adaptive temperatures during the convergence
process is depicted in Figure 6, where the MSE of the first
layer during the learning process converged faster during the



first 50 iterations, and they did not get stuck in local optima, as
one can observe in the experiment with the fixed temperature.
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Fig. 6. MSE during the learning step of the first layer considering Caltech
101 Silhouettes dataset for DBM.

V. A METAHEURISTIC-DRIVEN APPROACH TO FINE-TUNE
DEEP BOLTZMANN MACHINES

This section presents a paper accepted in the Applied Soft
Computing journal. It introduces the problem of DBMs meta-
parameter fine-tuning aided by meta-heuristic optimization
techniques, since one of the main shortcomings of these
techniques involves the choice of their hyperparameters, which
have a significant impact on the final results. The work
addresses the issue using metaheuristic optimization tech-
niques with different backgrounds, such as swarm intelligence
and memory- and evolutionary-based approaches, i.e., IHS,
AIWPSO, CS, FA, BSA, JADE, and CoBiDE, as well as a
random search. Experiments conducted in three public datasets
for binary image reconstruction showed that metaheuristic
techniques can obtain reasonable results. DBM’s performance
is compared against the DBN, outperforming the results of the
latter in two out of three datasets.

Table III presents the average values of the minimum
squared error over the MNIST dataset considering DBM,
being the values in bold the best results considering the
Wilcoxon signed-rank test. One can observe the metaheuristic
techniques obtained the best results, with special attention
to IHS, JADE, and CoBiDE. Also, one can not figure a
considerable difference between shallow and deep models.

1L 2L 3L
CD PCD CD PCD CD PCD

IHS 0.08744 0.08766 0.08761 0.08761 0.08760 0.08761
AIWPSO 0.08765 0.08771 0.08762 0.08761 0.08759 0.08760

CS 0.08767 0.08770 0.08760 0.08760 0.08762 0.08761
FA 0.08766 0.08762 0.08761 0.08763 0.08761 0.08761

BSA 0.08774 0.08766 0.08761 0.08762 0.08762 0.08762
JADE 0.08754 0.08749 0.08761 0.08761 0.08761 0.08761

CoBiDE 0.08757 0.08765 0.08762 0.08760 0.08761 0.08760
RS 0.08780 0.08782 0.08761 0.08760 0.08761 0.08761

TABLE III
AVERAGE MSE VALUES CONSIDERING MNIST DATASET.

VI. FINE-TUNING INFINITE RESTRICTED BOLTZMANN
MACHINES

One of the main concerns about RBMs is related to the
number of hidden units, which is application-dependent. In-
finite RBM was proposed as an alternative to the regular
RBM, where the number of units in the hidden layer grows as
long as it is necessary, dropping out the need for selecting a
proper number of hidden units [15]. However, a less sensitive
regularization parameter is introduced as well.

The paper proposed in this section was published in the
30th Conference on Graphics, Patterns, and Images [16], and
it follows the idea developed in Section V, now applied in the
infinite Restricted Boltzmann Machine domain. It proposes to
fine-tune iRBM hyper-parameters using meta-heuristic tech-
niques such as Particle Swarm Optimization, Bat Algorithm,
Cuckoo Search, and the Firefly Algorithm. The main objective
of iRBM is to ease the proper selection of its meta-parameters,
setting automatically the number of hidden units that best fit
the model. The proposed approach is validated in the context
of binary image reconstruction over two well-known datasets,
i.e., MNIST and Silhouettes Datasets. Furthermore, the experi-
mental results compare the robustness of the iRBM against the
RBM and Ordered RBM (oRBM) using two different learning
algorithms, showing the suitability in using meta-heuristics for
hyper-parameter fine-tuning in RBM-based models. Table IV
presents the average NLL results concerning Caltech 101
Silhouettes dataset. The iRBM achieved the best results with
all meta-heuristic techniques using CD for learning, except for
CS. Additionally, oRBM obtained the best results with the FA
algorithm. Actually, iRBM trained with CD and optimized by
FA achieved the best result so far.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 384.30±29.94 432.38±140.15 267.42±28.39 386.03±94.26 274.36±33.99 424.30±187.62
BA 292.08±77.24 609.27±170.72 243.72±24.93 458.95±216.99 229.32±32.14 593.33±229.98
CS 349.60±47.13 455.83±104.28 267.82±29.60 448.20±126.03 255.15±18.67 579.29±254.97
FA 279.88±57.13 629.06±170.37 237.85±23.63 420.77±163.16 218.36±28.54 486.86±110.73

PSO 315.42±85.29 599.11±140.47 240.40±26.29 411.74±66.69 237.83±37.83 554.60±254.15

TABLE IV
AVERAGE NLL VALUES CONSIDERING CALTECH 101 SILHOUETTES

DATASET.

VII. BARRETT’S ESOPHAGUS ANALYSIS USING INFINITY
RESTRICTED BOLTZMANN MACHINES

This chapter presents the paper entitled “Barretts Esopha-
gus Analysis Using Infinity Restricted Boltzmann Machines”,
accepted in the Journal of Visual Communication and Image
Representation as an extension from the idea presented in [16]
applied to medical issues.

Since the number of patients with Barret’s esophagus (BE)
has increased in the last decades, and considering the danger-
ousness of the disease and its evolution to adenocarcinoma, an
early diagnosis of BE may provide a high probability of cancer
remission. However, limitations regarding traditional meth-
ods of detection and management of BE demand alternative
solutions. As such, computer-aided tools have been recently
used to assist in this problem, but the challenge still persists.



To manage the problem, we introduce the infinity Restricted
Boltzmann Machines to the task of automatic identification
of Barrett’s esophagus from endoscopic images of the lower
esophagus. Moreover, since iRBM requires a proper selection
of its meta-parameters, we also present a discriminative iRBM
fine-tuning using six meta-heuristic optimization techniques.
We showed that iRBMs are suitable for the context since it
provides competitive results, as well as the meta-heuristic tech-
niques showed to be appropriate for such a task. Considering
the very best results obtained for all the techniques, Table VI
presents the sensitivity (SE) and the specificity (SP) results.
Notice the best values are in bold. values are in bold.

Accuracy Sensitivity Specificity
iRBM-FA 66.35% 0.644 0.687
SVM-RBF 65.60% 0.612 0.706

SVM-Linear 58.60% 0.582 0.593
Bayes 59.98% 0.593 0.605

TABLE VI
MEAN SE AND SP VALUES FOR THE SELECTED BEST RESULTS OBTAINED

USING DICTIONARIES OF 500 WORDS.

VIII. CONCLUSIONS

The present thesis was organized into eight sections, de-
scribed as follows: the introduction exposed the context of
the research, as well as the motivation and main contribution
to the proposed subject, while Section II briefly presented the
theoretical background regarding the objective of the research.
Section III and IV presented works published in the journal
Neural Processing Letters (NPL) [12] entitled “Temperature-
Based Deep Boltzmann Machines”, as well as the paper
“Deep Boltzmann Machines Using Adaptive Temperatures”,
presented at the 17th International Conference on Computer
Analysis of Images and Patterns (CAIP) [14], respectively. The
former introduced the temperature parameter into the DBM
formulation, while the latter proposed to use the previously
mentioned parameter in an adaptive fashion.

Section V presented the work accepted in the journal
Applied Soft Computing (ASoC), which introduced the con-
cepts of meta-heuristic parameters optimization into the DBM

domain. Similarly, Section VI employed the idea to the Infinity
Restricted Boltzmann Machine (iRBM) context on a paper
presented at the 30th Conference on Graphics, Patterns and
Images (SIBGRAPI) [16]. Moreover, Section VII applied
iRBM for Barret’s Esophagus lesions detection. The latter was
published in the Journal of Visual Communication and Image
Representation (JVCIR) as an invited extension from [16].

The results obtained in the aforementioned sections con-
firm the hypothesis of this works, evidencing that both the
application of meta-heuristic optimization algorithms to fine-
tune the hyper-parameters, as well as the introduction of the
temperature parameter into the RBM-based formulation are
suitable strategies concerning the enhancement of RBM-based
models training process.

A. Publications

Table V presents a complete list of the works produced
during the study period, which is composed of 5 journals,
9 conferences, and one book chapter, denoting a total of 15
papers. Further, Figure 7 depicts the distribution of journals
and conferences published in the period distributed by their
‘Qualis’ status.

A1
40%

A2
60%

A1

22%

B1

67%

B2

11%

(a) (b)
Fig. 7. Distribution of the publications by Qualis: (a) journals and (b)
conferences.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, and FAPESP/Microsoft grant
#2017/25908-6.

Name Type Qualis Year Status

Learning Parameters in Deep Belief Networks Through Firefly Algorithm [17] Conference B2 2016 Published
Deep Boltzmann Machines Using Adaptive Temperatures [14] Conference B1 2017 Published
Parkinsons Disease Identification Using Restricted Boltzmann Machines [18] Conference B1 2017 Published
Fine-Tuning Infinity Restricted Boltzmann Machines [16] Conference B1 2017 Published
A Metaheuristic-Driven Approach to Fine-Tune Deep Boltzmann Machines [19] Journal A1 2017 Published
Temperature-based Deep Boltzmann Machines [12] Journal A2 2018 Published
Parkinson Disease Identification Using Residual Networks and Optimum-Path Forest [20] Conference B1 2018 Published
Enhancing Brain Storm Optimization Through Optimum-Path Forest [21] Conference B1 2018 Published
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches [22] Conference B1 2018 Published
Intelligent Network Security Monitoring based on Optimum-Path Forest Clustering [23] Journal A1 2018 Published
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TABLE V
WORKS DEVELOPED DURING THE STUDY PERIOD
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