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Abstract—This dissertation presents an overview of the exten-
sion of the classical signal processing theory to graph domains.
Furthermore, we introduce in this dissertation a novel method for
visual analysis of dynamic networks, which relies on the graph
wavelet theory. Our method enables the automatic analysis of
a signal defined on the nodes of a network. We use a fast
approximation of the graph wavelet transform to derive a set
of wavelet coefficients, which are then used to identify activity
patterns on large networks, including their temporal recurrence.
The wavelet coefficients naturally encode spatial and temporal
variations of the signal, leading to an efficient and meaningful
representation. This method allows for the exploration of the
structural evolution of the network and their patterns over time.
The effectiveness of our approach is demonstrated using different
scenarios and comparisons involving real dynamic networks.1

I. INTRODUCTION

The emerging field of signal processing on graphs has
been growing substantially in the last years. The theory is
based on irregular structures called graphs. Any data whose
elements have relations with each other can be modeled as
a graph. Elements are named graph nodes and relations are
edges. The ability to analyze a signal defined on such an
irregular environment is a remarkable characteristic of this
theory, extending the classical signal processing on regular
domains to a more complex scenario.

Graph signal processing has a well-established theoreti-
cal and computational framework. The theory formulation is
strongly based on mathematical principles with the concern
of being computationally efficient, which is of unprecedented
importance today since we are living the advent of new
technologies. When working with the tools of graph signal
processing, the construction of the graph and choice of an
appropriate signal is of paramount importance.

Within the universe of graph signal processing, we focus
on spectral graph wavelets. The concept of graph wavelets is
strongly related to the classical version on regular domains.
However, some operations quite simple on that domain, such
as the shift operation, are harder to define precisely on the
graph scenario. Thus, the definition of the graph wavelets is
based on the graph spectral theory, where, for instance, the
shift operation can be interpreted as a multiplication.

The use of graph wavelets is still incipient with few applica-
tions [1]–[3]. In this sense, we contribute to the visual analysis
of dynamic networks. The spectral graph wavelets are in the
background of an interface that helps users to gain knowledge
about behavior of elements forming a dynamic network.

1This work relates to a Ph. D. thesis

II. SPECTRAL GRAPH THEORY

Spectral graph theory refers to the analysis of graphs by
means of linear algebra concepts. In this section, we review
the spectral graph theory and spectral graph wavelet transform.

A. Basic Definitions

A graph G is a structure composed of a set of nodes and
a set of edges connecting pairs of nodes. Consider a graph
G = (V,E) with a node set V = {τ1, . . . , τn} and an edge
set E, where n is the number of nodes. A weight wij ∈ R+

is associated to each pair of nodes τi and τj in V , encoding
how strong the relationship between them is. Since we do not
consider self-loops wii = 0, i = 1, . . . , n. We set wij = 0 if
there is no edge connecting nodes τi and τj , i 6= j. Assigning
weights to the relations between nodes makes the graph G a
weighted graph.

The adjacency matrix of a graph G is a n × n matrix
W = (wij) with entries wij . We assume that the relation
between two nodes is always symmetric, then wij = wji
and the graph G is called undirected graph. The graph
Laplacian, or combinatorial graph Laplacian, is a matrix
given by L = D − W , where W is the adjacency matrix
and D = (dij) is the degree matrix, a diagonal matrix with
entries dii =

∑
k wik (sum of the weights of all edges incident

to node τi). Since we consider only undirected graphs, both
adjacency matrix and graph Laplacian are symmetrical.

The graph Laplacian L is real, symmetric, and semi-positive
definite, then L has a complete set of orthonormal eigenvec-
tors u`, ` = 1, . . . , n, with corresponding non-negative real
eigenvalues λ`, ` = 1, . . . , n, which we assume ordered in
non-decreasing order 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Additional information can be integrated into the graph
through a real-valued function f : V → R. The function
f assigns a real value f(τ) to each node τ ∈ G. We
term the function f as signal, or graph signal. The set
f(V ) = {f(τ) | τ ∈ V } can be interpreted as a vector in Rn,
where the i-th entry of the vector corresponds to the value
of the function in node τi. The graph Laplacian eigenvectors
u` : V → R, ` = 1, . . . , n can also be seen as signals on G
since they are defined on the node set V .

Let f : V → R be a signal defined on a graph G, the
set of zero crossings of f on G is ZG(f) = {(τi, τj) ∈
E | f(τi)f(τj) < 0}. In other words, ZG(f) is the set of edges
connecting nodes where f has different signs (positive and
negative). The larger the number of zero crossings |ZG(f)|,
the more f changes its sign across the graph.



The eigenvectors associated with larger eigenvalues oscillate
more throughout the graph. Therefore, the eigenvalues and
eigenvectors of the graph Laplacian can be interpreted as fre-
quencies and Fourier modes, that is, the larger the eigenvalue,
the more oscillatory the corresponding eigenvector.

B. Graph Fourier Transform

Given a signal f : V → R defined on the nodes of G,
the graph Fourier transform of f is a function f̂ defined
by f̂(λ`) = 〈f, u`〉 =

∑n
i=1 f(τi)u`(τi). The inverse graph

Fourier transform reconstructs the initial signal f with the
linear combination of the eigenvectors u` weighted by f̂(λ`),
that is, f =

∑n
`=1 f̂(λ`)u`.

Similar to the classical Fourier transform, the graph Fourier
transform reveals frequencies present in a signal f . The
presence of high frequency Fourier coefficients indicates that
a signal varies abruptly in some region(s) of the graph, while
the presence of low frequency Fourier coefficients suggests
smooth signal variation.

C. Spectral Graph Wavelet Transform

The graph wavelet in node τ at scale s can be obtained
by ψs,τ =

∑n
`=1 u`(τ)ĝ(sλ`)u`. The graph wavelet coeffi-

cients are formally given by the inner product between the
signal and the graph wavelets Wf (s, τ) = 〈f, ψs,τ 〉. The
wavelet coefficient in node τ at scale s can be calculated by
Wf (s, τ) =

∑n
`=1 ĝ(sλ`)f̂(λ`)u`(τ), The function ĝ(sλ) is

called wavelet kernel. The graph wavelet transform is then
determined by the kernel ĝ : R+ → R+, which is selected as

ĝ(x) =

 x2 for 0 ≤ x < 1
−5 + 11x− 6x2 + x3 for 1 ≤ x ≤ 2

4x−2 for 2 < x
. (1)

The scales used to generate the wavelet kernels are logarith-
mically sampled between s1 and sr (s1, s2, . . . , sr), where r
is the number of scales, s1 = 2/λn, and sr = 40/λn.
Scaling function: It is introduced an additional function to sta-
bly represent low frequency eigenvectors, the scaling function.
This waveform is constructed by a real-valued function ĥ that

acts as a low-pass kernel with ĥ(x) = γ exp

(
−
(

10x
0.3λn

)4)
.

The parameter γ is chosen such that ĥ(0) is equal to the
maximum value of ĝ. The scaling function coefficient is then
given by Sf (τ) =

∑n
`=1 ĥ(λ`)f̂(λ`)u`(τ).

For each node τ ∈ V , the spectral graph wavelet trans-
form produces a scaling function coefficient Sf (τ) and a
sequence of wavelet coefficients Wf (s1, τ), . . . ,Wf (sr, τ).
We assumed the wavelet coefficients ordered from lowest to
highest wavelet frequency (Sf (τ),Wf (sr, τ), . . . ,Wf (s1, τ)).
In our implementation, we considered the scaling function and
seven wavelet kernels (Figure 1).

III. ILLUSTRATIVE INTERPRETATION OF GRAPH
WAVELETS

A graph spectral filter, or kernel, ĝ : Λ → R is a function
defined on the spectral domain (Λ = {λ1, λ2, . . . , λn}), which
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Fig. 1. Scaling function and wavelet kernels.

associates a scalar ĝ(λ`) with each eigenvalue λ` ∈ Λ. The
graph Fourier transform f̂ : Λ→ R can be seen as a particular
instance of graph spectral filter. A dictionary of graph spectral
filters {ĝm |m = 1, 2, . . . ,M} is a set of graph spectral filters
ĝm : Λ → R, m = 1, 2, . . . ,M , where M is the number of
graph spectral filters in the dictionary.

Given f and a dictionary {ĝm |m = 1, 2, . . . ,M}, a spectral
graph wavelet transform Wf : {1, 2, . . . ,M}×V → R can be
defined by Wf (m, τ) =

∑n
`=1 ĝm(λ`)f̂(λ`)u`(τ). By varying

m while keeping τ fixed, we obtain M wavelet coefficients
associated with node τ , Wf (1, τ),Wf (2, τ), . . . ,Wf (M, τ).
Selecting the graph spectral filter ĝm as a band-pass filter,
where small values of m correspond to low-pass filters and
large values to high-pass filters, makes the coefficients en-
code the behavior of the signal on each node. For instance,
choosing the dictionary of graph spectral filters equal to
{ĥ(λ), ĝ(srλ), . . . , ĝ(s1λ)}, where the kernel ĝ, scaling func-
tion ĥ, and scales s1, . . . , sr are defined as in Section II,
produces exactly the spectral graph wavelets (SGW) [4].
This dictionary is called spectral graph wavelet dictionary, or
succinctly SGW dictionary.

A. Spectrum-Adapted Graph Wavelet Transform

The uniform translates are translated versions of each
other uniformly distributed on the spectral domain. In more
mathematical terms, there are a function ĝU and a constant
a such that the graph spectral filters ĝm can be written by
ĝm(λ) = ĝU (λ−ma),∀λ ∈ [0,λn], for m = 1, 2, . . . ,M .

The uniform translates are then modified to adapt itself
to the spectrum of a given graph. The density of the graph
Laplacian eigenvalues is estimated using a fast approximation
mechanism, and the larger the number of eigenvalues in a
certain region of the spectral domain, the narrower the graph
spectral filters are in that region (Figure 2).

The dictionary of uniform translates adaptable to the spec-
trum of a specific graph forms the spectrum-adapted graph
wavelets (SAGW) [5]. This dictionary is called spectrum-
adapted graph wavelet dictionary, or briefly SAGW dictionary.

B. Practical Differences between the Spectral Graph Wavelet
Transforms

A comet graph is a graph formed combining a path graph
and a star graph, the latter centered in one of the extremities
of the path graph (Figure 3). The graph Laplacian eigenvalues
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Fig. 2. Uniform translates adapting to graph Laplacian spectra. The graph
Laplacian eigenvalues are indicated by x markers on the horizontal axes.
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Fig. 3. Comet graph and corresponding spectral distribution.

of a comet graph have a peculiar distribution, as the difference
between the two largest eigenvalues is much larger than the
difference between the other eigenvalues. Although the second
largest eigenvalue is distant from the largest eigenvalue, it
corresponds to the second highest frequency in the spectrum
of the comet graph.

Figure 4 depicts the spectral graph wavelet and spectrum-
adapted graph wavelet dictionaries, both defined in the same
spectral domain, the spectrum of the comet graph. The graph
wavelet transform derived from each dictionary are quite
different, since the SGW dictionary is designed to evenly cover
the spectral domain and the SAGW dictionary adapts to the
spectral distribution. As one can clearly see in Figure 4, when
eigenvalues are not evenly distributed on the spectral domain,
as is the case of the comet graph, the SAGW dictionary better
fits the frequency bands.

We create a comet graph with 64 nodes whose star extrem-
ity contains 30 nodes. The signal is defined as the second
largest graph Laplacian eigenvector (signal panel in Figure 5).
Figure 5 depicts the wavelet coefficients of the specified
node computed using both graph wavelet transforms. The
SGW dictionary led to wavelet coefficients with dominant
frequencies in the central frequencies (4 and 5), not properly
characterizing the high frequency nature of the signal under
analysis. In contrast, the SAGW dictionary generated wavelet
coefficients with larger intensity in the coefficients related to
high frequencies, better capturing the pattern of variation of
the signal.

IV. VISUAL ANALYSIS OF DYNAMIC NETWORKS

This section explores data modeled as dynamic network,
where the network topology can change over time [6]–[12].
Our exploration is guided by a signal associated with the
nodes of the network. By analyzing the wavelet coefficients
in specific frequencies, our visual analytics method is able to
characterize the behavior of the network over time.
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Fig. 4. Graph spectral filters of the SGW and SAGW dictionaries
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Fig. 6. Dynamic network model.

A. Dynamic Network Model

We model a dynamic network as a sequence of N undirected
weighted graphs G1, . . . , GN , where N is the number of
time slices. For each time slice k ∈ Z = {1, . . . , N},
Gk = (V × {k}, Ek) is a graph with nodes (τ, k) ∈ V × {k}
and edge set Ek ⊆ (V × {k}) × (V × {k}). A weight
wkij is associated with each edge in Ek connecting nodes
(τi, k) and (τj , k). In order to apply the graph wavelet theory,
as described in Section II, we add temporal edges between
corresponding nodes in adjacent time slices (blue lines in
Figure 6), resulting in a graph G = (V × Z,E) with node set
V × Z = (V × {1})∪(V × {2})∪· · ·∪(V × {N}), and edge
set E = (E1∪E2∪· · ·∪EN )∪ (E1,2∪E2,3∪· · ·∪EN−1,N ),
where Ek,k+1 is the set of edges connecting nodes (τ, k) and
(τ, k + 1) in consecutive time slices.

Since consecutive time slices are connected by temporal
edges in G, the graph wavelet theory can be applied to analyze
a signal defined on the nodes of G, allowing the detection
of spatio-temporal variations of the signal as well as the
identification of important phenomena in the dynamic network.

B. Edge Weights & Node Signal

The weight of the edges dictates how strongly the graph
wavelet transform considers each connection between nodes.



Larger values correspond to stronger connections, with more
impact on the coefficients. An edge weight equal to zero
corresponds to an edge that is not present on the graph.
The weight of the temporal edges can also be handled to
control the effect of temporal variation on the resulting wavelet
coefficients.

To explore interpersonal contact networks in Section IV-E,
we correspond people to graph nodes, with associated signal
defined by the number of interpersonal contacts over a period
of time. Since each edge represents contact as well, this signal
is equivalent to the degree of the node in the corresponding
time slice, which is a purely topological measure. This ap-
proach enables the analysis of the topological evolution of
dynamic networks.

C. Node Classification

Each node τ of G can be classified using its wavelet coef-
ficient feature vector, a feature vector containing the wavelet
coefficients of node τ ordered from lowest to highest wavelet
frequency, FVτ = (Sf (τ),Wf (sr, τ), . . . ,Wf (s1, τ)). Each
scale is normalized independently, dividing by the standard
deviation and applying a log scale, dividing then by the log
of the maximum coefficient. Such transformation brings each
coefficient to the range [0,1], while making the classification
less sensitive to the amplitudes of the original signal.

Isolated nodes in each time slice are assigned to a specific
class, denoted as Zero class and represented by the white color.
The other nodes are then separated into five classes using
a simple analogy to mechanical torque. The torque indicates
whether the feature vector FVτ has predominantly low or high
frequency.

The torque values are normalized into the interval [−1,1]
by simply dividing by the maximum possible torque. Nodes
with torque values below −0.3 are classified as low frequency
nodes (dark blue), between −0.3 and −0.05 are considered
medium-low (light blue), between −0.05 and 0.05 are indef-
inite (yellow), between 0.05 and 0.3 correspond to medium-
high (orange), and above 0.3 are high frequency nodes (red).
Albeit empirically defined, these limits are robust enough to
provide reliable results without fine tuning. The classification
step is performed using five classes, where the yellow class
corresponds to a balance between low and high frequencies.

The classification leads to a straightforward interpretation,
considerably easier than interpreting the wavelet coefficients
directly, where a red node indicates an abrupt change in
the signal and a blue node a smooth change in the signal,
considering both spatial and temporal neighborhood.

D. From Wavelet Coefficients to Visualization

The proposed visualization aims to provide analytical re-
sources to identify patterns in the dynamics of the network
and show how these patterns evolve over time. Specifically,
the visualization should enable:

Goal 1. The analysis of the network as a whole.

Goal 2. The analysis of each node.
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Fig. 7. Proposed interface for dynamic network exploration.

Goal 3. The identification of prominent nodes.

Goal 4. The identification of similar nodes.

The proposed visualization is composed of four linked
views: network analyzer, node ranking, node time series, and
time slice view, as illustrated in Figure 7.
Network analyzer: This panel summarizes the general be-
havior of the network over time via a time series. Each time
slice is represented as a circle, whose vertical position is
given by the sum of signal of all nodes in that time slice.
The coloration of the circle corresponds to the color of the
node class with more nodes in that time slice, relative to the
maximum number of nodes of that class considering all time
slices. This scheme highlights differences in the classification
of the network, directing the user to pattern changes.
Time Slice View: The main motivation of this panel is
to visually represent the relationships of a node at a given
time slice. The nodes are positioned using Fruchterman-
Reingold force-directed algorithm. The user is allowed to
choose between signal and node classification visualizations.
By positioning the mouse over a node its contact partners
and edges connecting them are highlighted. Further, additional
information is revealed, such as node identification and class.
Synthetic Dynamic Network Exploration: We generated a
synthetic dynamic network containing 250 nodes and 13 time
slices. The signal associated with a node (τ, k) is the number
of edges in Gk incident on the node. The weights of the
edges are all equal to one. There are two large spatial events
(leftmost panel in Figure 8) in the network, corresponding to
an activity peak (many edges) at time slice 4, which decrease
in size until time slice 6. At time slice 7, several small spatial
events (central panel in Figure 8) appear, with some of them
disappearing on the next time slices. At time slice 10, another
two large spatial events (rightmost panel in Figure 8) are
created, which reach an activity peak at time slice 11 and
decrease at time slice 12.

Figure 7 depicts the network analyzer for the synthetic
dynamic network. It shows that the activity level (number
of edges) of the synthetic dynamic network increases and
decreases, with three peaks, at time slices 4, 7, and 11. Most
time slices are classified as light blue, which indicates the
predominance of nodes facing smooth signal variation. A high
concentration of this kind of node suggests a large event
happening on the dynamic network, which is the case for time
slices 4 and 10, as illustrated in the leftmost and rightmost
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Fig. 8. Node classification for the synthetic dynamic network.

panels of Figure 8. Time slice 10 has height similar to time
slice 7 in the network analyzer, indicating similar activity level,
but these two time slices differ in their classification. In fact,
time slice 7 is classified as red and time slice 10 is classified
as light blue. This change in the classification indicates a
difference in the current behavior of the network, albeit with
almost the same level of activity. A red time slice indicates
the predominance of high frequency nodes. Therefore time
slice 7 contains nodes facing abrupt signal variation, revealing
small events probably with central nodes since the signal
corresponds to the degree of the nodes. As illustrated in the
middle panel of Figure 8, this is indeed the case, corresponding
to several small events that suddenly appeared at time slice 7.
Node ranking: This panel depicts the nodes ordered according
to their relevance. Since relevance is application dependent, we
adopted a simple mechanism to rank nodes, where relevance
is related to the higher frequencies. Therefore, we consider a
node as relevant in a time slice if it is classified as orange
or red, and we rank a node according to the total number of
time slices in which the node is considered relevant, on a given
time frame. Considering the whole synthetic dynamic network,
the most relevant entity corresponds to the node identified by
the number six, which was classified as orange/red in four
time slices (middle left of Figure 7). Indeed, this node was
involved in one of the large events in the early time slices,
near the border of the event, which led to a higher frequency,
and was the center of a small event later.

By clicking on a node in the node ranking, the order
changes to organize the nodes according to their similarity
to the selected node. Similarity is defined as the intersection
between the two corresponding relevance arrays, displayed in
the node ranking. Considering the synthetic dynamic network,
this option would quickly reveal nodes similar to node six,
namely, nodes that were center of small events.

This panel acts as a visual index of the relevant nodes,
allowing users to quickly identify nodes and time slices of
most relevant changes. This is a new and important feature
for the visualization of dynamic networks, bridging the gap
between exploring the network as a whole and specific nodes,
reducing the amount of direct inspections required to find
relevant information.
Node time series: Once an entity is selected in one of the
panels, the corresponding time series is depicted below the

(a) Time slice 3 (b) Time slice 4

Fig. 9. Neighborhood of node six in the synthetic dynamic network

node ranking panel. The height of the circles represents the
signal and the coloration indicates the node classification in
each time slice, as illustrated on the bottom left of Figure 7.

Figure 7 depicts the node time series of node six in the
synthetic dynamic network. The time series indicates two
periods of activity, from time slice 3 to 5 and from time
slice 7 to 8. The first one may seem curious to the reader,
since the node has the same number of contacts with different
classifications, but the pattern hidden in the first period reveals
the strength of the graph wavelets. Indeed, Figure 9 shows
the neighborhood of node six in time slices 3 and 4. The
way node six interacts with its neighbors does not change
over time, however some neighbors of this node expand their
contact beyond node six, making node six a member of a
slightly larger contact network and no longer a central node
of a small group.

The panels comprising our visual analytics tool are interac-
tive and linked, allowing users to explore the information in
several ways. The network analyzer guides the user through
the temporal evolution of the network (Goal 1), including
consistent network states. The node time series and time slice
view, combined, allow for the exploration of the signal and
classification of each node (Goal 2). The node ranking panel
summarizes which entities are more prominent (Goal 3), and
allows for the identification of entities with similar patterns of
relevance over time (Goal 4).

Further, the use of graph wavelet transform, enabled by
these panels, creates a visualization tool whose performance
surpasses the current state-of-the-art, allowing users to explore
and discover gist information and patterns efficiently, with less
interaction and mental effort.

E. Usage Scenario: High School Dynamic Contact Network

The high school dataset contains face-to-face contact infor-
mation between 180 students from a school in France, during
nine days in November of 2012 (http://www.sociopatterns.
org). Each student belongs to one of five different classes. The
original data provides contact information between students
in intervals of 20 seconds, which we aggregated further by
creating a time slice every 6 minutes, for a total of 2,027
time slices. The resulting dynamic network has 14,788 edges,
not counting the temporal edges. The signal associated with
each node is the number of face-to-face contacts made by the
corresponding person in the corresponding time slice, and the
weight of each edge corresponds to the number of face-to-face
contacts between the two involved people. The calculation of
the wavelet coefficients took approximately 7 seconds, and the
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whole preprocessing step took approximately 20 seconds on a
regular i7 computer, using around 1 Gb of memory.

We start the exploration of the high school dynamic network
using the network analyzer, which shows the total number
of contacts made by students (Figure 10). There are seven
periods of activity, corresponding to the seven weekdays where
the students interacted. Wednesday has a much lower level of
activity than the other weekdays, which indicates a lower level
of interactions between the subjects. Indeed, on this day, the
students had exams, which lessen the level of interaction.

The predominance of light blue nodes indicates that in
most of the time slices the signal faces smooth variation,
meaning that children interact primarily in balanced contact
groups. Some time slices, however, they are classified as
orange, mostly on Monday, suggesting sudden changes in the
number of contacts and directing our attention to a pattern
different from the one mentioned above. The network analyzer
allows for zooming particular time-intervals, in particular the
zoomed-in view at the bottom in Figure 10 shows a view of
activities on the first Monday. To demonstrate the usefulness
of the classification scheme used in the network analyzer,
we selected, in the zoomed Monday, three time slices with
different classification, corresponding to times 9:24 (orange),
10:24 (yellow), and 14:30 (light blue), illustrated in Figure 11.

The 9:24 time slice is the first to be classified as orange on
the dynamic network. From the network analyzer only, one
can infer that this time slice does not contain much activity.
The 9:24 time slice is part of a consistent level of activity that
covers the morning period. While most of the neighboring

time slices are classified as light or dark blue, the 9:24 time
slice was classified as orange. This classification implies a
difference in the contact pattern. Since the graph nodes are
predominantly low frequency, the presence of a few higher
frequency nodes would be sufficient to lead the time slice to
a higher frequency classification.

By inspecting the 9:24 time slice, as illustrated in Figure 11,
it is clear that this time slice mostly contains pairs of contacts,
with low signal. The nodes are mostly light blue with a
few yellows. However, three connected nodes on the leftmost
student class present a higher signal, leading to a orange
classification, which leads to the classification of this time slice
as orange as well. In more practical terms, this phenomenon
probably represents a transmission of a large amount of
information, where the center node corresponds to the child
who transmitted the information.

The activity peak for Monday happened at 10:24, where
the sum of the signal surpassed a thousand. Since the sum of
the signal corresponds to the total number of contacts and the
time slice is classified as yellow, this time slice contains a large
event, with some moderated signal differences. As illustrated
in Figure 11, this is clearly the case.

The 14:30 time slice also contains a considerable amount
of activity, indicated by the height in the network analyzer,
and beyond that this time slice is classified as light blue. The
combination of increased height and light blue classification
means that this time slice contains a large event, without signal
peaks. Indeed, as illustrated in Figure 11, the signal varies
smoothly across a large event, with some nodes classified as
yellow, but with the relative majority of light blue nodes. This
large event is harder to notice when compared to the synthetic
dynamic network where we had a controlled environment,
highlighting the potential of the graph wavelet transform in
the exploration of dynamic networks with the aid of visual
analysis.

These analyses highlight the potential of the network ana-
lyzer, greatly reducing the necessity for inspection of individ-
ual time slices. While the proposed interface allows for closer
inspection of each time slice and node, the network analyzer
efficiently provides overall information about the evolution of
the dynamic network.

The interface and source codes are available on a GitHub
page located at https://github.com/AlcebiadesDalColJunior/.

V. PUBLICATIONS

As a result of the Ph.D. thesis, we have two articles [13],
[14] and a book chapter [15].
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