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Abstract—Most of the techniques available nowadays for crowd
simulation are focused on a specific situation, e.g. evacuation in
hazardous events. Very few of them consider the cultural and
personality aspects present in a society to determine the behavior
of agents. Therefore, this work aims to build a framework able
to deal with different cultural and personality traits as input,
and translate them into a group parametrization, which is going
to determine the behavior of groups and crowds in virtual
environments. Also, we include in BioCrowds a comfort response
for agents, in terms of density and thermal characteristics of
the environment. Results indicate that the cultural/psychological
mappings seem promising, since agents were able to perform
as intended. Additionally, agents were able to react due to
thermal and density comfort, improving their ability to react
to environmental changes.

I. INTRODUCTION

The area of crowd simulation has been the studying focus
for several researchers through many years because of its
numerous and varied applications in diverse fields. Although
the existence of a large number of techniques in literature [1]–
[5], very few of them take into account the cultural aspects
of a nation or society [6]. These aspects can be very useful
in providing specific information about a crowd, which can
be translated into different behaviors such as desired speed,
group cohesion, gesturing, eye gazing, among others. It can
be useful to simulate different crowds from all around the
world, like an urban simulation running with Chinese agents
or a game where the history is set in Germany and, therefore,
has Germanic agents.

The goal of this work is to extend the Biocrowds [1] model,
making the agent’s navigation more realistic using cultural
and psychological aspects of people. Therefore, to provide
such diversity, it is proposed to use two different methodolo-
gies as input to this framework, namely Hofstede’s Cultural
Dimensions (HCD) [7] and Durupinar [8]. HCD is a very
consolidated methodology to evaluate the cultural dimensions
of Countries, while Durupinar model states for a computational
method to simulate virtual humans based on their personalities.
While HCD is not a simulation methodology, we use it as a
way to map characteristics in crowds, as will be discussed in
this work. Indeed, our framework should be able to receive
one of these two cultural/personalities aspects as input, and
use them to define group parameters to control virtual agents
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in BioCrowds. In addition, we included in BioCrowds the
comfort response in terms of density and the thermal char-
acteristics of the space. Our goal is to be able to simulate
agents avoiding uncomfortable places in the environment and
seek for cozy locations. It is important to notice that cultural,
personality aspects and response to comfort relies on more
realistic agents reactions w.r.t. environments and groups in the
crowd. Our goal is to include various possibilities to simulate
behavioral diversity in BioCrowds.

II. RELATED WORK

Several ways to simulate crowds were developed in
last years. The origin of crowd simulation goes back to
Reynolds [9] and Helbing [2] papers. Reynolds [9] simulated
flocks of bird-like entities which he called ”boids”, obtaining
a realistic animation using only simple local rules. In its turn,
Helbing et al. [2] proposed a psychosocial forces based model
to reproduce the pedestrian dynamic. This concept is defined
based on the assumption that pedestrians adopt behavioral
strategies according stimulus from routine situations. Nowa-
days, one of the state-of-the-art methods for crowd simulation
is ORCA (Optimal Reciprocal Collision Avoidance), proposed
by Van der Berg et al. [5]. It is a velocity-based method
for collision avoidance between multiple agents, where the
main idea is to find the velocity obstacle (VO) between two
agents, which defines the zones where a collision should occur
between them. Concerning cultural and psychological aspects,
the works of Hofstede [7] and Durupinar et al. [8] are worth
mentioning. Geert Hofstede proposed the Hofstede’s Cultural
Dimensions (HCD) [7]. as a framework for cross-cultural
communication. It aims to describe the effects of a society’s
culture based on the values of its individuals, as well how
these values can influence on how people behave. For this, six
cultural dimensions were defined as percentages values: Power
Distance Index (PDI), Masculinity vs. Femininity (MAS),
Long-term orientation (LTO), Indulgence vs. restraint (ING),
Uncertainty Avoidance (UNC) and Individualism (IND). Du-
rupinar et al. [8] developed a simulation model based on
psychological traits which aims to represent emotions and
emotion contagion between agents in an effective way. To this
end, the OCEAN (Openness, Conscientiousness, Extroversion,
Agreeableness, Neuroticism) psychological traits model, pro-
posed by Goldberg [10] is used.



III. PROPOSED METHOD

The main proposal of this work is to extend Biocrowds [1]
model, by implementing new features and new parameteriza-
tion, in order to achieve the behavioral diversity aspects, pro-
viding more realistic simulation in the virtual world. Figure 1
presents an overview of the method. At the image, it can be
seen the three major crowd simulation entities that are going
to be tackled in this work: Environment, Groups and Agents.

Fig. 1. Overview of the method.

When we think about providing models to endow virtual
agents with characteristics that allow the behavioral diversity,
we also consider the virtual environment and the way people
evolve in such spaces. BioCrowds, as the major part of existent
crowd simulators, is a goal based method. It means that virtual
agents should ”appear” in the simulation knowing their goals
and their coordinates in the environment. Having in mind that
we wanted to provide diversity of behaviors, we decided to
include also an exploratory behavior in the space where agents
can be ”influenced” by the space and then, even with the same
goals, behave in a different way.

Firstly, to achieve the exploratory navigation, we propose to
make some changes concerning the goal seeking behavior. In
short, instead to have just one goal to achieve, each agent
should have a list of desired goals and an intention value
for each one of them, representing its willingness to reach
them (this factor could be connected with agent personality
in a future work). Yet, the exploratory behavior should mimic

situations where people do not know where places are located
(for example, an agent may be hungry and willing to go to
a restaurant, but does not know where it is). Still considering
the environment, thermal cells are added in the environment in
order to calculate the thermal comfort of the agents, following
the proposals of Cheng et al. [11] and Fanger [12].

Regarding the goal to provide behavioral diversity in agents
according to cultural and personality aspects, we propose to
re-parametrize BioCrowds as follows: i) to define some group
parameters (for example, cohesion and desired speed) which
will guide agents behaviors. These parameters are defined
following mentioned models/theories, like Hofstede cultural
dimensions [7]; ii) to consider as input the OCEAN [10] of
each agent and compute individual and groups characteriza-
tion, as well as motion parameters (goals, speed, etc). To do
so, we use Durupinar model [8], which work mapped OCEAN
factors into agent’s behavior.

In our method, a cohesion value ζg is set to define how
much a group g tends to stay together, in the interval [0,3],
where 0 is the lowest cohesion value and 3 is the highest.
This interval is defined according to the work of Favaretto
et al. [13]. Further, a cohesion distance value µg is defined
to represent the maximum distance an agent can be away
from the rest of the group g, without leaving it. This cohesion
distance is calculated as follows in Equation 1:

µg = Hs− (ζg(
Hs−Hp

MC
)), (1)

where Hp is the Hall’s personal space and Hs is the Hall’s
social space. This distance spaces are described by Hall [14]
which defines regions, called by the author ”proxemics”, that
a person tends to maintain to feel comfortable. The MC value
stands for Maximum Cohesion and represents the maximum
cohesion value a group can achieve (in this work it was used
3 for this value). For instance, if ζg = 0 for a certain group
g then µg = 3.6, i.e. this group with low cohesion value can
have the members more spread. On the other hand, if ζg = 3
then µg = 1.2, meaning that members stay close to each other
in order to be a group, since they have a strong connection
and are more attracted.

If an agent gets farther from the rest of the group than
the cohesion distance µg , it is removed from such group and
creates a new group for itself. It is defined as follows: Di,g =
d(pi, pg), where d is the Euclidean distance between the agent
i position and the center of its group g. If it surpasses the value
µg , i.e. Di,g > µg , this agent leaves the group. In a similar
way, if another agent j has its distance to the center of any
group g lower or equal than µg , i.e Dj,g <= µg , and the same
immediate goal, it can enter to this group.

Groups of agents have a desired speed to be distributed
among the members. Again, we propose to connect this
concept with the group parameter. We defined the desired
speed initial value of group g as ψg = 1.2 m/s. Besides desired
speed, it is defined maximum and minimum standard deviation
to imply in group members speeds, varying from σmin = 0
to σmax = 0.2. So, the individual speed of an agent A is



determined as a function of group speed sg and a standard
variation σg which is computed as follows:

σg = σmax − ((σmax − σmin).
ζg
ζmax

), (2)

where ζmax stands for higher possible value for cohesion
(ζmax = 3). Indeed, the speed deviation σg represents a
percentage of the desired speed of the group to be randomized
for the desired speed of agents of this group. For example, if a
group has a desired speed ψg = 1.0 m/s and a speed deviation
σg = 0.1, all agents of this group are going to have a desired
speed randomized with 10% of variation (since σg = 0.1)
from the group desired speed. Therefore, all agents would
have a desired speed which lies in the interval [0.9, 1.1] m/s,
randomly generated.

Besides desired speed and speed deviation, other two param-
eters are used in order to achieve group behavior: cohesion ζ
and angular variation φ. Just as desired speed, these parameters
values can be statically set and are defined, for default, as
ζ = 3 and φ = 0. With all defined, our default groups show
high cohesiveness (ζ = 3), no angular variation (φ = 0) and
desire to move at a high speed (s = 1.2). Since cohesion is
maximum, the speed deviation is minimum (σ = 0);

Now, we can define some group parameters based on
cultural and psychological aspects. As discussed by Favaretto
et al. [13], we propose that group cohesion ζg is a function
of (100 − MASg). Our assumption is that more feminine
population can be referred to more cohesive population, as
in Equation 3:

ζg = (((100−MASg)× 3)/100), (3)

where (100 −MASg) gives the feminism percentage aspect
of the dimension for group g. This value is normalized to lie
between 0 and 3, which explains the multiplication by 3 and
the posterior division by 100.

The group desired speed ψg , as described in [13], is
calculated as a function of dimension ING. The idea behind
is to refer an ”indulgent” group as people who are in control
of their lives, so it was related to the group speed. If a group
is very indulgent (100% for instance), the group will try to
achieve the desired speed. The value of ψg decreases as the
value of INGg , as stated in Equation 4:

ψg = (INGg × 1.2/100), (4)

where the value 1.2 represents the maximum speed that an
agent can achieve in the simulator. Therefore, this value must
lie between 0 and 1.2.

The angular variation present in the group motion φg was
related to (1 − LTO). Indeed, the assumption is that more
angular variation is achieved in groups with lower value of
LTOg , which states for ”Long Term orientation”:

φg = ((100− LTOg)/100), (5)

where φg actually represents a percentage of a maximum
angle, which was defined as 90 degrees.

We can also define such parameters as a function of Du-
rupinar’s features. The cohesion value ζ of a certain group g
is calculated as presented in Equation 6:

ζg = (1− ImpgD)× 3, (6)

where ImpgD represents the Durupinar’s impatience (which
can be the leader impatience or the average impatience of the
group, as explained above). The value is multiplied by 3 in
order to keep this parameter between 0 and 3, as used in this
model.

The desired speed value ψ of g is calculated as in Equa-
tion 7:

ψg = 1.2× (ψgD − 1), (7)

where ψgD represents the Durupinar’s walking speed (which
can be the leader walking speed or the average walking speed
of the group, as explained above) and (ψgD − 1) actually
represents a percentage of a defined maximum speed (i.e.
1.2). Since Durupinar’s speeds lie between 1 and 2, a simple
normalization can give this value.

The angular variation value φ is described as in Equation 8:

φg = 1− (EegD/10), (8)

where EegD represents the Durupinar’s exploring environment
(which can be the leader exploring environment or the average
exploring environment of the group, as explained above) and
φg actually represents a percentage of a maximum angle,
which was defined as 90 degrees. The value is divided by
ten in order to normalize EegD.

IV. EXPERIMENTAL RESULTS

This section aims to present the experimental results
achieved by this work and it is divided in three majors parts.
Firstly, we show the achieved results in terms of the navi-
gation method developed as an extension to BioCrowds [1],
like the state Looking For (LF) and the intention/signs. Then,
we discuss obtained results concerning the cultural and
psychological aspects of the simulated crowds, not only for
Hofstede, but also for Durupinar approach. Finally, the results
achieved with the thermal comfort model are presented.

A. Results obtained with the New Navigation Method

In order to proceed with the simulations, a 30x20 meters
scenario is modeled, with two obstacles (gray shapes) and four
goals (in red), illustrated in Figure 2. For each instantiated
goal, a sign pointing to it is placed in its exact position. This
is done to avoid a non-ending simulation. Otherwise, it would
be possible to simulate a scenario with no signs, where agents
would never find any goal, since they start the simulation with
no knowledge about goal’s location. Two signs (in yellow) are
placed in the scene: ”Sign1” pointing to ”Goal1” and ”Sign2”
pointing to ”Goal2”. The green selection at the right shows the
schedule of the agent, properly ordered by the intention values



(blue selection). Therefore, the agent starts the simulation in
the state LF and wants to achieve Goal3, Goal2, Goal1 and
Goal4, respectively.

Fig. 2. Two agents following their scheduled goals.

Tests show that interaction with signs works exactly as
expected, it means, the two new instantiated signs truly
impacts the agent’s schedule. The agent starts the simulation
looking for a sign, following the schedule which can be
seen in Figure 2-1. However, when it perceives ”Sign1” (S1),
the intention to go to ”Goal1” (G1) rises, surpassing the
intention to go to ”Goal3” (G3) (Figure 2-2). Consequently,
the agents status changes from LF to TG , i.e. towards ”Goal1”
(G1). Also, it is possible to see that the agent starts the
simulation with the intention to go to a random location (state
Looking For). Thus, the exploratory behavior is also working
as intended.

In order to verify if the quantity of signs truly impact in the
simulation time (i.e. the agents arrival time), ten simulations
were run with exactly the same parameters, only changing the
number of signs. The first simulation had no signs and each
subsequent simulation had a new sign added (i.e. 1, 2, ...,
9). A random goal was defined for each sign and its appeal
value is set to 1. It was expected that the more signs, the
shorter the simulation time would be. Table I shows simulation
mean time and quantity of signs from all ten simulations. It
happened in some of the analysis, however, as can be seen
from simulations 6 to 10, it seems that this expected behavior
is not true. Some hypothesis are raised here. It can be the result
of the random process to place new signs and their positions,
but it can also show that there is an optimal number of signs
in such simulation. Plus, it can just be the effect of the random
nature of the state LF. Further analysis are needed in order to
properly conclude that.

B. Results Obtained with Cultural Method

In order to proceed with the subject of cultural simulations,
a 30x30 meters scenario is modeled with four goals. The
exploratory behavior is deactivated, since it is not necessary
here. For all cultural simulations, ten agents are instantiated
inside the same group. They have a fixed list of goals to
follow, which is Goal2, Goal1, Goal4 and Goal3. Eight test

TABLE I
SIMULATIONS MEAN TIMES WITH QUANTITY OF SIGNS

Frame Time Qnt Signs
Sim 1 8946.8 0
Sim 2 6471.5 1
Sim 3 4327.1 2
Sim 4 4015.7 3
Sim 5 4040.1 4
Sim 6 4777.9 5
Sim 7 2877.7 6
Sim 8 2458 7
Sim 9 3014.2 8

Sim 10 3294.7 9

simulations were made, varying the input values. The idea is
to check how different input values affect the crowd behavior,
both from cultural aspects and psychological traits. Table II
shows the achieved results for Hofstede’s mapping. After
all eight simulations, it is possible to notice that the result
expected at the beginning was achieved, it means, groups with
higher cohesion values (i.e. Simulations number 1, 2, 5 and
6) presented closest agents and vice-versa. Yet, the desired
speed and angular variation seemed to had influence in group
behavior, specially to keep the group together, it means, no
agents leaving the group.

TABLE II
RESULTS FOR HOFSTEDE’S MAPPING

Sim Time Max Groups Avg Speed Avg Ang Avg Dist
1 126 1 0,61 16,7 1,25
2 595 1 0,13 17,77 1,19
3 89 1 0,81 11,9 2,19
4 628 3 0,14 12,05 2,19
5 178 2 0,55 34,8 1,32
6 780 2 0,13 38,08 1,22
7 122 1 0,67 27,13 2,3
8 732 1 0,12 31,13 2,2

Figure 3 shows a comparison between the metrics found
for both mappings (Hofstede and Durupinar) and the original
BioCrowds method, without psychological parameters, illus-
trated as a constant line. It indicates that both methods, when
mapped to BioCrowds, present a similar correspondence. Also,
the influence of cultural input on the original behavior of
BioCrowds algorithm is clearly observed among all metrics
and shown the main goal of this work.

C. Results Obtained with the Comfort Method

In order to proceed with the subject comfort simulations,
a 22x40 meters scenario is modeled, with eight rooms. Each
room has an identifier tag associated, which defines its space
functionality. Agents are spawned at the center bottom of
the environment, with a random general goal to achieve (i.e.
restaurant, shop or theater) which matches one of the possible
room’s identifier tags. The room’s colors denote its actual
thermal comfort. Green means it is cozy (ta = 18), blue means
it is cold (ta = 12) and yellow means it is hot (ta = 26),
where ta represents the air temperature in Celsius. All comfort
simulations keep spawning agents until a max defined value is



Fig. 3. Comparisons between Method F and Method D. X axis is the
simulation identifier (i.e. 1-8) and Y axis is the value for metrics. On the
top/left: time, top/right: the average speed, on the bottom/left: average angular
variation and bottom/right: average distance.

achieved (i.e. 100). Agents start the simulation with a random
general goal to achieve and medium clothing insulation (i.e.
Icl = 1.2). It was ran three test simulations, one with solely
thermal comfort, other only with density comfort and a last one
with both. The idea is to check if agents avoid uncomfortable
places, moving themselves to cozier locations. It is expected
that uncomfortable agents search for another place with the
same identifier tag, therefore, incommodious rooms should be
almost or totally empty.

(a) Thermal
Comfort

(b) Density Com-
fort

(c) Thermal +
Density Comforts

(d) No Comfort

Fig. 4. All three comfort simulation, plus the simulation with no comfort.
In (a), no agents were observed inside the hot rooms (yellow rooms). Agents
inside the cold room (blue one) are wearing a heavy piece of clothing. In (b),
it is possible to notice that agents spread out across all rooms, independent
of the temperature. Blue agents are feeling a bit cold and yellow agents are
feeling a bit hot. In (c), Blue agents are feeling a bit cold and yellow agents
are feeling a bit hot. In (d), simulation with comfort deactivated. Blue agents
are feeling a bit cold and yellow agents are feeling a bit hot.

The first simulation was ran using only the thermal comfort.
Figure 4(a) shows the final positioning of agents. It is possible
to notice that no agents were placed inside the bottom Restau-
rant, neither inside the first shop from the right (yellow rooms),
which were the rooms with an elevated temperature. Some
agents were comfortable inside the bottom Theater, which
had a low temperature. This can be explained by the clothing
insulation of these agents, which were self altered to 2 during
the simulation, it means, they are wearing a heavy piece of
clothing and feel comfortable inside this room. The second
simulation was ran using only the density comfort. Figure 4(b)
shows the final positioning of agents. It is possible to notice

that agents spread out across all rooms, independent of the
temperature. The third simulation was ran using both thermal
and density comfort, setting the bias α = 0.5. Figure 4(c)
shows the final positioning of agents. It is possible to notice
that, as expected, it seems to be a halfway between only
thermal and density methods. The two ”hot rooms” (yellow
ones) have agents inside, but in a lower number than it can be
seen in the density method. At the end, a final simulation was
run with the comfort behavior deactivated. The idea was to
check if the proposed comfort method is being useful in order
to deliver better results than a random choice. Figure 4(d)
shows the final positioning of the agents. It can be noticed that
agents are just randomly distributed across the eight rooms,
according their respective goals.

V. CONCLUSION

This work proposes an extension for Biocrowds model [1]
to make its agent’s navigation more realistic, while providing
agents endowed with characteristics that can generate diversity
of behaviors. We propose to re-parametrize BioCrowds based
on cultural and psychological dimensions, providing a frame-
work able to simulate cultural crowds. The achieved results
seem to be consistent with what was expected. It is interesting
to mention about this work validation. All results presented
in Section IV show that the framework works as intended, it
means, it delivers the expected output, both for the cultural
and comfort cases. However, this quantitative evaluation may
not be enough to truly answer the question if the crowd
is behaving according to its defined cultural parameters or
the environment defined thermal/density values. Therefore, a
qualitative evaluation could be done in order to complement
the results already achieved.

As for future work, there are many things to be done.
As already commented, an evaluation with subjects could
be conducted with different cultural simulations in order to
validate our method. Other cultural and psychological models
could be added in our framework (for example, Favaretto
dimensions [13]). In fact, following the interactive interface
idea implemented in this work, it could be extended to accept
any cultural/psychological model. As our framework is, if a
new cultural model need to be added, all the formulation need
to be hard-coded for it to work properly. One idea is to be
able to insert any model, along with its formulation, and the
framework would be able to run such cultural/psychological
simulations. Finally, the cultural/psychological aspects of the
crowd could also be applied to define the willingness of agents
to achieve a given goal, as well its susceptibility to react due
interaction with signs along the way.
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[8] F. Durupınar, U. Güdükbay, A. Aman, and N. I. Badler, “Psychological
parameters for crowd simulation: From audiences to mobs,” IEEE
Transactions on Visualization and Computer Graphics, vol. 22, no. 9,
pp. 2145–2159, Sep 2016.

[9] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the ACM Special Interest Group on Computer
Graphics and Interactive Techniques. ACM, 1987, pp. 25–34.

[10] L. R. Goldberg, “An alternative description of personality: the big-five
factor structure.” Journal of Personality and Social Psychology, vol. 59,
no. 6, pp. 1216–1229, Jun 1990.

[11] L. Chen, C. R. Jung, S. R. Musse, M. Moneimne, C. Wang, R. Fruchter,
V. Bazjanac, G. Chen, and N. I. Badler, “Crowd simulation incorporating
thermal environments and responsive behaviors,” Presence Journal, in
press.

[12] P. O. Fanger et al., Thermal comfort. Analysis and applications in
environmental engineering. DK: Danish Technical Press, 1970, 244p.

[13] R. M. Favaretto, L. Dihl, R. Barreto, and S. R. Musse, “Using group
behaviors to detect hofstede cultural dimensions,” in Proceedings of the
2016 IEEE International Conference on Image Processing. IEEE, 2016,
pp. 2936–2940.

[14] E. Hall, “The hidden dimension, vol. 1990,” USA: Anchor Books, 1969,
240p.

VI. PUBLICATIONS DURING THE MASTER THESIS

[1] L. Dihl, E. S. Testa, P. Knob, G. L. da Silva, R. M.
Favaretto, M. F. de Alcantara, and S. R. Musse, Generating
cultural characters based on hofstede dimensions, in 2017
IEEE Virtual Humans and Crowds for Immersive Envi-
ronments (VHCIE). IEEE, 2017, pp. 1-5.

[2] P. Knob, M. Alcantara, E. Testa, R. Favaretto, G.
Lima, L. Dihl, and S. R. Musse, Generating background npcs
motion and grouping behavior based on real video sequences,
Entertainment Computing, vol. 27, pp. 179-187, 2018.

[3] P. Knob, V. F. de Andrade Araujo, R. M. Favaretto, and
S. R. Musse, Visualization of interactions in crowd simulation
and video sequences, in 2018 17th Brazilian Symposium on
Computer Games and Digital Entertainment (SBGames).
IEEE, 2018, pp. 250-259.

[4] P. Knob, M. Balotin, and S. R. Musse, Simulating
crowds with ocean personality traits, in Proceedings of
the 18th International Conference on Intelligent Virtual
Agents. ACM SIGGRAPH Conference, 2018, pp. 233-238.

[5] C. T. Mathew, P. R. Knob, S. R. Musse, and D. G.
Aliaga, Urban walkability design using virtual population
simulation, in Computer Graphics Forum, vol. 38, no. 1.
Wiley Online Library, 2019, pp. 455-469.

[6] R. M. Favaretto, P. Knob, S. R. Musse, F. Vilanova, and
A. B. Costa, Detecting personality and emotion traits in crowds
from video sequences, Machine Vision and Applications, pp.
1-14, 2018.

[7] V. Araujo, R. M. Favaretto, P. Knob, S. R. Musse, F.
Vilanova, and A. B. Costa, How much do you perceive this?

an analysis on perceptions of geometric features, personalities
and emotions in virtual humans (extended version), arXiv
preprint arXiv:1904.11084, 2019.

[8] Andre Da Silva Antonitsch, Diogo Hartmann Muller
Schaffer, Gabriel WetzelRockenbach, Paulo Knob, and Soraia
Raupp Musse. ”BioClouds: A Multi-Level Model to Simulate
and Visualize Large Crowds”. In: Computer Graphics Inter-
national (CGI) 2019. Calgary, CA (2019).

[9] Paulo Knob, Gabriel Wetzel Rockenbach, Claudio Ros-
ito Jung and Soraia Raupp Musse. Optimal Group Distribution
based on Thermal andPsycho-Social Aspects. In: Computer
Animation and Social Agents (CASA) 2019. Paris, FR
(2019).

[10] Victor Araujo, Rodolfo Migon Favaretto, Paulo Knob
and Soraia Raupp Musse, Felipe Vilanova, Angelo Brandelli
Costa. In:Intelligent Virtual Agents (IVA 2019) (Poster).
Paris (FR). (Short paper at IVA 2019)

[11] R. M. Favaretto, S. R. Musse, F. Vilanova, and A.
B. Costa. (2019). Emotion, Personality and Cultural Aspects
in Crowds: Towards a Geometrical Mind. Springer. Contri-
butions in Chapters: Simulating Personality and Cultural
Aspects in Crowds; and Generating NPCs Motion Based
on Crowd Videos.


