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Abstract—Spatiotemporal description is a research field with
applications in various areas such as video indexing, surveillance,
human-computer interfaces, among others. Big Data problems
in large databases are now being treated with Deep Learning
tools, however we still have room for improvement in spatiotem-
poral handcraft description. Moreover, we still have problems
that involve small data in which data augmentation and other
techniques are not valid. The main contribution of this Ph.D.
Thesis' is the development of a framework for spatiotemporal
representation using orientation tensors enabling dimension re-
duction and invariance. This is a multipurpose framework called
Features As Spatiotemporal Tensors (FASTensor). We evaluate
this framework in three different applications: Human Action
recognition, Video Pornography classification and Cancer Cell
classification. The latter one is also a contribution of this work,
since we introduce a new dataset called Melanoma Cancer Cell
dataset (MCC). It is a small data that cannot be artificially
augmented due the difficulty of extraction and the nature of
motion. The results were competitive, while also being fast and
simple to implement. Finally, our results in the MCC dataset can
be used in other cancer cell treatment analysis.

I. INTRODUCTION

Spatiotemporal data usually contains the states of an object,
an event or a position in space over a period of time. This
data can be created from videos or multitemporal images
(sequences of images that are combined depending on the
purpose). An event in a spatiotemporal dataset describes a
spatial and temporal phenomenon that may happen at a certain
time and location.

In order to learn useful information regarding these events,
computational systems generally use combinations of different
features representing visual elements from the scene, such
as color, texture, salient points, apparent motion, trajectories,
etc. Those visual patterns provide information on the two-
dimensional and/or three-dimensional structure of the scene,
shape and trajectory of objects and the activity that is going on.
Therefore, this visual information of still and moving images
is the key for tasks such as: video compression [1], object
tracking [2], video segmentation [3], video surveillance [4],
video and multitemporal image classification [5], cell shape
classification [6].

All those tasks that work with moving pictures need to
be represented using not only spatial characteristics, but spa-
tiotemporal description. It is a challenging application as we
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have continuous and discrete changes on the scene being
influenced locally and globally, both in time and space. Let
us take as an example two actions from the video dataset
KTH [7]: Jogging and Walking. For both, we have a person
doing the action in a homogeneous background that involves
moving their feet. However, those actions are slightly different
according to their velocities. So, we have to take into account
the shape of the movement, the coherence through time, the
velocity between frames. This exemplifies the challenges of
extracting semantic information from elements in a scene that
do not intrinsically possess semantic meaning, but instead
are encoded as sequential numerical matrices with temporal
variations.

In this thesis, we address the spatiotemporal feature repre-
sentation problem applied to video and multitemporal image
classification. Many works tackle this problem following three
steps: handcrafted feature extraction, descriptor creation, and
classification. We are mainly interested in the first two steps:
feature extraction and descriptor creation.

We classify the existing methods based on the type of
features: Shallow and Deep Learning (DL) methods. Shal-
low methods are categorized into the following classes: 1.
Low-level approaches with handcrafted features; 2. Bag-of-
feature (BOF) representations or middle-level approaches.
Deep Learning-based approaches share similar procedures:
patch sampling, feature description/learning and classification
[8]. Nowadays, image and video classification problems in
large databases are being treated with Deep Learning tools
[91, [10].

However, deep architecture models suffer from over-fitting
problems when there is a small amount of training data.
There are methods to overcome this problem, such as data
augmentation, transfer learning, data generation, among oth-
ers. But coherent approaches for moving pictures are still in
their infancy as well as adding the temporal information on a
deep architecture [9]. Hence, this is still an open problem in
literature.

For the shallow methods, the handcrafted feature extraction
starts by a preliminary dimension reduction since some point
based motion indicator, usually intensity gradient, is coded
in a compact form. Feature examples include Histogram of
Gradients (HOG),Histogram of Optical Flow (HOF), basis
projections, and other Optical Flow (OF) based features. In



most works of the literature, these features are associated with
Scale-Invariant Feature Transform (SIFT), Speeded Up Robust
Feature (SURF) or Spatio Temporal Interest Points (STIP)
descriptors [11].

The description creation step uses the extracted features
to provide the video signature, using a single type or a
combination of features. The most used method for shallow
methods is the canonical BOF. We discuss other methods to
create the video signature. Using the idea of coding features
into orientation tensors, we are able to aggregate them in order
to represent the temporal evolution.

Different from the shallow methods, Deep Learning-based
approaches do not usually work with handcrafted feature
extraction. A deep feature is the consistent response of a
unit within a hierarchical model to an input, where this
response contributes to the model decision. A feature could
be considered deeper than another depending on where the
unit is positioned alongside the hierarchical structure of the
model [9].

In this thesis, we work with handcrafted and deep feature
extraction, thus the classification method follows a shallow
approach. The video classification step is used to evaluate
the descriptors created. We work with three spatiotempo-
ral representation tasks: Human Action Recognition, Video
Pornography classification and Cancer Cell classification.

The main contribution of this work is the development
of a novel spatiotemporal description framework (Features
As Spatiotemporal Tensors — FASTensor) using orientation
tensors, enabling dimensionality reduction and invariance ac-
cording to the feature. In order to evaluate the framework in
other distinct and challenging scenarios than the traditional
computer vision tasks, we also present a new open labeled
dataset for melanoma cancer cell classification. It is a small
dataset, called Melanoma Cancer Cell dataset (MCC)?, that
cannot be artificially augmented due the inherent difficulties in
the acquisition process and its particular nature. Furthermore,
there are no similar open datasets in the literature, to the
best of our knowledge. This opens the discussion on how we
can we learn with small datasets. Our proposed method and
experiments show that the method can be used in other cancer
cell treatment analysis.

II. FASTENSOR: FEATURES AS SPATIOTEMPORAL
TENSORS

An Orientation Tensor Framework for spatiotemporal de-
scription can be modeled as shown in Figure 1.

This framework can be used in videos or multi-temporal
images with temporal dimension n. The orientation tensor
T, created from each feature vector v with mean p will be
accumulated for each image/frame ¢ in order to represent the
covariance of it, as in:

T=>T,=> (Vi—pE—-p" (1)
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Fig. 1. An orientation tensor framework for temporal description created from
the feature vector v extracted with grid or dense sampling.

The features can be extracted with dense sampling or grid.
Then, the accumulation through time will provide the temporal
description for the video or for multi-temporal images. It is
important to note that in each step, a normalization of the
orientation tensor may be needed as the number of feature
vectors from each image or frame could vary along time.

Figure 2 shows a two-dimensional example for the frame-
work to better explain how the orientation tensor carries more
information than the feature vector. Visually, instead of just
having a vector representing the trend, we have the ellipsoid,
carrying all the uncertainties and covariance measures of the
features. Figure 2 shows an example of a movement tendency
using a HOG feature of a person walking on a homogeneous
background. With the orientation tensor, we can capture not
only what happens in this scene, but how we begin to deform
the ellipsoid so that it carries the whole tendency of the HOG.
The geometric representation is made in three dimensions to
facilitate the understanding of the problem. We will show in
the following applications how this change can significantly
improve video classification.
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Fig. 2. Geometric example of the FASTensor framework for temporal
description created from a feature vector v (handcrafted) extracted with grid
sampling. The final descriptor is a matrix n X n, where n is the dimension
of the feature, that carries the covariance and uncertainties from the features.
The image is an example of walking action from KTH dataset [7].

Therefore, orientation tensors can be used as compact
spatiotemporal representations, enabling dimension reduction
and invariance according to the feature used to create them.
They will capture the covariance information from the feature
vector adding more information to the descriptor.



Given the mathematical framework and the FASTensor de-
picted in Figure 2, we can describe our proposed method with
the following pseudo-algorithm:

(1) Input: Video or Multi—temporal images
(2) for each image i in Input:

(3) // m features with dimension n
(4) v[m] = feature_extraction ();

(5) for each feature vector j in v[m]:

(6) T_j = matrix_multiplication(v[j]);
(7) T_i=T_.1i+ T_j;
(8) normalize (T_i);

9) T_input = T_input + T_i;
(10) Output: T_input, a matrix of n x n

Fig. 3. Pseudo-algorithm for the FASTensor framework.

The core of FASTensor is the computation of orientation
tensor for each feature vector V. This is achieved with a
matrix multiplication (line 6 of Figure 3), therefore, we have
a complexity of O(n?), where n is the dimension of the
feature vector v. In one frame we can have m feature vectors
depending on the type of extraction. In the worst case, m is
the number of pixels of the frame (dense sampling in lines 4
and 5 of Figure 3). Finally, the input has f frames (line 2 of
Figure 3). Again, in the worst case, we use all frames from
input.

The final complexity in the worst case for the FASTensor is
O(f x m x n3), where f is the number of frames, m is the
number of feature vector per frame and n is the dimension of
the feature vector. In terms of time, as our method is feature
dependent, we need to add the complexity of the feature
extraction in O(f x m x n?).

Therefore, we have a complexity cubic growth in relation
to the size of the feature, but a linear growth in relation to
the number of features per frame and number of frames. So,
we can reduce the computation time just by using less frames
and other feature sampling instead of dense sampling.

The limitations of this framework are that it carries only
global information from each image and it is very dependable
of the used feature. Thus, for describing several information
from the same image sequences the method may not be
eligible. For example, the ellipse depicted in Figure 2 can
become a circle (or sphere in three dimensions), not carrying
any main tendency information. That is, the tensor becomes
isotropic.

III. EXPERIMENTS

We work with three spatiotemporal representation tasks: Hu-
man Action Recognition (Section III-A), Video Pornography
classification (Section III-B) and Cancer Cell classification
(Section III-C).

Setup: The experiments used three handcrafted features:
HOG; HOF; and, the concatenation of both of these features
(HOGHOF).

Transfer Learning using pretrained DNNs has also become
a common practice for Computer Vision applications with the
dawn of very large labeled datasets such as ImageNet [12] and

Pascal VOC [13]. Therefore we also tested the performance of
tensors on the task of adding temporal consistency on feature
vectors generated by activations in pretrained Convolutional
Neural Networks (CNNs) [14], as these models are originally
suited only for static images. Activations at the end of four
distinct residual blocks in a pretrained ResNet were used as
both raw features for classification and as inputs for FASTen-
sors and compared at Section III-B and will be henceforth
named as follows: ResNet-50 (1); ResNet-50 (2); ResNet-50
(3); and, ResNet-50 (4).

The pretrained DNNs were acquired and implemented using
the PyTorch framework and the torchvision pretrained model
for the ResNet-50 [15].

We used Support Vector Machines (SVMs) as inference
models for the classification tasks and compared the accuracy
metric of baselines. Feature extraction modules in this work
were implemented using the skimage framework, while SVM
and validation procedure were coded using the sklearn library.
The core of the FASTensor approach uses the NumPy and
SciPy libraries. We present the experimental protocol in the
following sections for pornography and cancer cell datasets.

A. Human Action Recognition

Our experiments used three benchmark datasets: KTH [7],
UCF11 [16] and Hollywood2 [17]. Table I shows the com-
parison of our works in those datasets. Table II summarizes
the results for KTH dataset for global appearance and motion
based descriptors.

TABLE I
A COMPARISON OF ALL WORKS IN THREE BENCHMARK DATASETS: KTH,
UCF11 AND HOLLYWOOD2. RECOGNITION RATE IN PERCENTAGE FOR
EACH OF OUR WORKS.

KTH UCF11 Hollywood2
[18] 933 [19] 754 [19] 40.3
[20] 932 [20] 727 [20] 40.3
[19] 925 [21] 689 [21]  34.0
[21] 920 [22] 578 [22] 15.0
[22] 878
[23] 86.6
TABLE II

RECOGNITION RATES IN PERCENTAGE FOR KTH DATASET USING
BAG-OF-FEATURE BASED METHODS AND OUR APPROACHES. *INDICATES
LEAVE-ONE-OUT PROTOCOL.

Local descriptors Trajectories Relationship Modeling
[24] 95.6 [25] 97.4 [26] 98.2
[27] 94.8* [28] 95.3 [29] 94.5
[30] 93.9 [31] 94.2 [32] 94.5
[33] 93.8

Tensor
[34] 94.2
Our approaches
[18] 93.3
[20] 93.2
[19] 92.5
[21] 92.0
[22] 87.8
[23] 86.6

For UCF11, the best results are by [28] with 85.4% and
by [30] achieving 75.8%. We see that for more challenging



datasets, the best results are still with [26] and [28]. Note
that our best result in UCF11 is 75.4% for [19] which models
the temporal evolution of HOG with orientation tensors. Thus,
using only one type of feature, we achieved a recognition rate
very close to a bag-of-feature technique.

A similar result is achieved for Hollywood2 dataset. Holly-
wood2 dataset is the most challenging, and has been collected
from Hollywood movies. Table III summarizes the recognition
rates for Hollywood2 dataset.

TABLE III
RECOGNITION RATES IN PERCENTAGE FOR HOLLYWOOD?2 DATASET USING
BAG-OF-FEATURES BASED METHODS AND OUR APPROACHES.

Local descriptors Trajectories Relationship Modeling
[30] 533 [35] 62.5 [29] 50.9
[24] 47.7 [28] 59.9

Tensor
[36] 59.5
[34] 57.6
Our approaches
[19] 40.3
[20] 40.3
[21] 34.0
[22] 15.0

All those results were achieved with other shallow ap-
proaches. When compared to Deep Learning-based techniques,
those three datasets are already deprecated. Table IV shows the
best results for KTH, UCF11 and Hollywood?2 using state-of-
the-art deep learning-based approaches.

TABLE IV
BEST RESULTS FOR KTH, UCF11 AND HOLLYWOOD2 USING
STATE-OF-THE-ART DEEP LEARNING-BASED APPROACHES.

Dataset Recognition Rate
KTH [37] 98.67%
UCF11 [38] 93.77%
Hollywood2 [39] 78.50%

Literature in Human Action Recognition has moved to more
difficult datasets as HMDBS51 [40] and Sports-1million [9].
Those datasets have more heterogeneous actions, more videos
and even semantic context as smiling and laugh. Thus, for
human action recognition we found a barrier and we are not
able to compete with deep learning methods.

B. Video Pornography Classification

The Pornography-800 Dataset created by Avila et al. [41],
contains nearly 80h of 400 pornographic and 400 non-
pornographic videos. Concerning the pornographic material,
the dataset is very assorted, including both professional and
amateur content’. Moreover, it depicts several genres of
pornography, from cartoon to live action, with diverse behavior
and ethnicity. With respect to non-pornographic content, they
are general-purpose video networks, with difficult cases like
sumo, swimming, beach scenarios (i.e., words associated to
skin exposure).

3https://sites.google.com/site/pornographydatabase/

The baseline results for this dataset are presented in Table
V extracted from [41]. They preprocessed the dataset by seg-
menting videos into shots. On average there are 20 shots per
video. A key frame (middle frame) is selected to summarize
the content of the shot into a static image. As low-level
local descriptor, they employed HueSIFT [42], a SIFT variant
including color information. The 165-dimensional HueSIFT
descriptors are extracted densely every six pixels. The same
vocabulary M constructed by k-means clustering algorithm,
with M fixed as 256, is used for the standard BoF and the
BossaNova method [41].

For classification, they used a 5-fold cross-validation to tune
the best C parameter for a SVM classifier. They reported the
image classification performance by using the mean Average
Precision (mAP), and the video classification by accuracy rate,
where the final video label is obtained by majority voting over
the images. It is interesting to note that for both reported
methods, the video classification scores are inferior to the
image classification scores. That can be explained by the fact
that some pornographic videos have the additional difficulty
of having very few shots with pornographic content (typically
one or two takes among several dialog shots or cut scenes).

TABLE V
BASELINE FOR THE PORNOGRAPHY-800 DATASET USING STANDARD
BAG-OF-FEATURES AND BOSSANOVA. COMPARED RESULTS FROM
HANDCRAFTED FEATURES AND THE FASTENSOR FOR THE
PORNOGRAPHY-800 DATASET. WE USED A DENSE SAMPLING
EXTRACTION WITH FIXED NUMBER OF BINS, HOG WITH SIXTEEN BINS
(EIGHT FOR EACH FRAME IN A PAIR), HOF WITH EIGHT BINS, AND
HOGHOF WITH TWENTY-FOUR BINS. RESULTS FOR THE FASTENSORS
FOLLOWED BY  REPRESENT ACCURACIES THAT WERE SIGNIFICANTLY
IMPROVED BY THE PROPOSED APPROACHES IN COMPARISON WITH USING
RAW FEATURES.

Method Accuracy (%)
BoF 83 +3
BossaNova [41] 89.5 £ 1
Baselines Caetano et al. [43] 924 + 1
TRoF [44] 95 + **
ACORDE-50* [10] 948 £ 2
ACORDE-101* [10] 95.6 £ 1

HOG 82.16 + 0.54

HOF 77.20 £ 0.31

HOGHOF 88.12 + 0.56

Raw Features ResNet-50 (1) 91.34 + 0.28

ResNet-50 (2) 92.25 £ 0.14

ResNet-50 (3) 94.73 £ 0.73

ResNet-50 (4) 94.75 £+ 0.38

HOG 8532 £ 031 ¢}

HOF 84.18 £ 0.18 }

HOGHOF 93.28 4+ 0.36 T

FASTensors ResNet-50 (1) 93.50 £+ 0.12

ResNet-50 (2) 93.49 + 0.14

ResNet-50 (3) 96.45 + 0.24

ResNet-50 (4) 96.25 + 0.25

We compared our results with the accuracy from the base-
line. We used the same division protocol from the baseline as
SVM protocol. We compared three handcrafted features vastly
used in video description: HOG, HOF and the combination of
both HOGHOF. We used a dense sampling extraction with
the fixed number of bins, HOG with sixteen bins, HOF with
eight bins, and the HOGHOF with twenty-four bins. The



results comparing the baseline, handcrafted features and the
FASTensor are depicted in Table V.

C. Cancer Cell Classification

One of the contributions of this work is a new open mul-
titemporal image dataset: The Melanoma Cancer Cell dataset
(MCC)*. This dataset was created in colaboration with the
Biology Insitute of Universidade Federal de Minas Gerais.
It provides better understanding of the cancer cell migration
and anti-migration promoted by specific drugs [45], classifying
in treated and untreated cell, being possible to characterize
phenotypic and morphologic drug effects [46]. Therefore,
allowing to elucidate some intrinsic biological mechanisms of
cancer cell, particularly understanding the tissue invasion and
metastases formation.

Fig. 4. Example of cells from the melanoma cancer cell dataset. Two example
cells are marked with a black bold square around its nucleoid. On the right
we have a zoom on one of them.

First frame Last frame

Control Cells §

Cancer Cells
treated with
Hydroxyurea

Fig. 5. The melanoma cancer cell dataset composed by 69 image sequences
of control melanoma cells and 69 image sequences for cells treated with
hydroxyurea. On the left, we see the evolution of melanoma cancer cells
through time. On the right, we see the cells treated with hydroxyurea. It is
easy to see how the number of cells increases without any treatment.

This dataset has two conditions of long-term culture of
metastatic murine melanoma B16F10 cells in Roswell Park
Memorial Institute (RPMI) medium (supplemented with 10%
Fetal Bovine Serum, Streptomycin 10 mg/mL and Penicillin
10,000 Units/mL). First of all, BI6F10 was plated (5x104
cells/mL) in a 35mm polystyrene dish and, after 24h, exposed
to hydroxyurea (30mM) or only medium (control group).
Then, cells were placed in BioStation IM-Q inverted micro-
scope (Nikon) and images from 69 fields were acquired over
24 hours by a high sensitivity cooled charge-coupled device
(CCD) camera (40x objective). At the end, the final database
resulted in 69 image sequences with 95 frames with a spatial

“https://tiny.cc/mcc-dataset

resolution of 640x480 pixels and duration of one minute.
Figure 4 presents a frame example with two marked cells to
show what is the subject of this dataset. For this dataset, image
sequences are multitemporal images.

Hydroxyurea is a non-alkylating antineoplastic that selec-
tively inhibits ribonucleoside diphosphate reductase, an en-
zyme required to convert ribonucleoside diphosphates into
deoxyribonucleoside diphosphates, thereby preventing cells
from leaving the G1/S phase of the cell cycle. In B16F10
cells, inhibition of migration by hydroxyurea starts from 1uM
reaching maximum effect at 30uM without increasing cell
death [45].

In the control cell image sequences we see that cells increase
the number and the velocity. When hydroxyurea is applied, the
number of cells and the velocity decrease over time. Thus, it is
interesting to analyze how a spatiotemporal descriptor can be
used to discriminate the treated cells from the control cells in
order to automate the process and help us better understand the
phenomena. Figure 5 shows an example of a sequence from the
dataset. On the left we see the evolution of melanoma cancer
cells through time. On the right we see the cells treated with
hydroxyurea. With the last frame, it is easy to see how the
number of cells increases without any treatment.

To evaluate the results of our experiments, we applied a 5x2-
fold protocol. It consists of randomly splitting the MCC video
dataset five times into two folds, balanced by class. In each
time, training and testing sets were switched and consequently
five analysis for every model employed were conducted.

The baseline was computed with a dense extraction of the
three handcrafted features HOG, HOF and HOGHOF. The
results are depicted in Table VI. It can be observed that
our assumption that a video descriptor could discriminate the
control cells from the cancer cells is a fact, for all handcrafted
features we achieved an accuracy greater than 80%.

TABLE VI
BASELINE HANDCRAFTED FEATURES FOR THE MELANOMA CANCER CELL
DATASET. WE USE A DENSE SAMPLING EXTRACTION WITH THE FIXED
NUMBER OF BINS, HOG WITH SIXTEEN BINS, HOF WITH EIGHT BINS,
AND THE HOGHOF WITH TWENTY-FOUR BINS.

Method Accuracy (%)
HOG 16 bins 81.22 £ 0.14
HOF 8 bins 92.2 4+ 0.62
HOGHOF 24 bins 96.9 + 0.24
TABLE VII

FASTENSOR RESULTS FOR THE MELANOMA CANCER CELL VIDEO
DATASET. ALL RESULTS ARE STATISTICALLY SIGNIFICANT BETTER THAN
THE BASELINE.

Method Accuracy (%)
HOG 16 bins 89.58 £ 0.30
HOF 8 bins 95.69 £ 0.15
HOGHOF 24 bins  99.78 + 0.34

IV. CONCLUSION

In this thesis, we proposed an orientation tensor framework
for video description called Features As Spatiotemporal Ten-
sors (FASTensor). The orientation tensor created from each



feature vector is accumulated for each image/frame. The
accumulation through time provides the temporal description
for the video or for multi-temporal images. We showed the
mathematical fundamentals and the proof of context for the
framework.

We evaluated the FASTensor in three different video classi-
fication tasks: Human Action Recognition, Video Pornography
classification and Melanoma Cancer Cell classification, to
which we contribute with a new dataset.

Our experiments confirmed that the incorporation of covari-
ance information from the features led to more effective video
classification in different applications. This was shown with
raw features HOG, HOF and HOGHOF, and deep features
pretrained on a ResNet-50. In comparison with the state-of-
the-art, our framework yielded better results.

For the Human Action Recognition task, it was possible
to create a simple descriptor using orientation tensors that
could maintain balance between size, computer complexity
and recognition rate. However, the big limitation of our method
is the number of actions that can be performed in one scene.
Thus, for more complex video datasets we were not able to
achieve competitive results, as the orientation tensor has a
bigger tendency to become isotropic, that is, not have main
direction information.

For the Video Pornography classification task, the FASTen-
sor achieved the best results for the Pornography-800 and
a competitive result for the Pornography-2k. In fact, this
application is more suitable to work with orientation tensor,
as the probability to become isotropic is inferior.

The Melanoma Cancer Cell (MCC) dataset provides better
understanding of the cancer cell migration and anti-migration
promoted by specific drugs, classifying in treated and untreated
cell, being possible to characterize phenotypic and morpho-
logic drug effects. This dataset showed that FASTensor can be
used in very different applications. Moreover, the framework
can be used in other cancer cells treatment analysis.

With our results we can, therefore, confidently assert that
FASTensor comprise the new state-of-the-art for video classi-
fication in the Pornography-800 dataset and for the Melanoma
Cancer Cells dataset. For Human Action Recognition, we
could also achieve competitive results. Therefore, orientation
tensors carry more discriminative information than the feature
vector itself, showing how robust is our method.

This thesis established the theoretical fundamentals for the
orientation tensor framework, furnished a statistical analysis
and was able to test the FASTensor in different applications.

As future work, we want to test other drugs in cancer cells
and automate the analysis. We will investigate what more can
be extracted with orientation tensors for this application, like
motion tendency, cell density, among others. We also want to
analyze other applications that are suitable for FASTensor in
medical imaging, remote sensing, surveillance, among other
spatiotemporal tasks.

Furthermore, we will analyze the FASTensor as a descriptor
creator not only for handcrafted features and deep learning
features. We already saw the improvement for Pornography

classification. We believe that we can improve the results
adding temporal information without the overhead of a very
deep architecture for video classification with more studies
in other spatiotemporal applications. One idea is to add a
layer in a CNN approach that creates tensors to add temporal
information to the neural network.

A. Publications

This research produced the following published papers as
contribution to the literature in spatiotemporal representation:

o Journals: [47] (Under Review), [20]
o Book Chapters: [48]
o Conferences: [49], [19]

This thesis also contributed to:

e Journals: [50], [23]

o Conferences: [51], [52], [53], [54] (Best Paper of Work-
shop on Vision-based Human Activity Recognition), [55],
(18]

e Summer School Participation: ENS/INRIA Visual
Recognition and Machine Learning Summer School.
Paris,France, 22-26 July 2013. Poster presentation based
on [21].
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