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Abstract—We proposed a novel efficient seed-based method
for the multiple region segmentation of images based on graphs,
named Hierarchical Layered Oriented Image Foresting Transform
(HLOIFT). It uses a tree of the relations between the image
objects, represented by a node. Each tree node may contain
different individual high-level priors and defines a weighted
digraph, named as layer. The layer graphs are then integrated
into a hierarchical graph, considering the hierarchical relations
of inclusion and exclusion. A single energy optimization is
performed in the hierarchical layered weighted digraph leading
to globally optimal results satisfying all the high-level priors.
The experimental evaluations of HLOIFT and its extensions, on
medical, natural and synthetic images, indicate promising results
comparable to the state-of-the-art methods, but with lower com-
putational complexity. Compared to hierarchical segmentation by
the min-cut/max-flow algorithm, our approach is less restrictive,
leading to globally optimal results in more general scenarios, and
has a better running time.

I. INTRODUCTION

The image segmentation task is not only one of the most
fundamental and challenging problems in image process-
ing and computer vision, but also has impact in different
research areas such as Medicine, Neurology and Artificial
Intelligence [1]–[3]. For example, in medical imaging, image
segmentation can be used to isolate the regions corresponding
to different organs in Magnetic Resonance Images (MRI),
helping to analyze their forms, volumes and textures for the
diagnostic of pathologies [4]. In this case, we usually have
critical obstacles to face such as noise, low contrast and
regions complexity. The incorporation of prior knowledge is
useful for more accurate results.

Currently, graph-based methods are commonly used, where
the image is modeled as a connected graph, because graphs
can naturally represent image parts and their relationships [5].
Then, the image segmentation task can be interpreted as a
graph partition problem subject to hard constraints, such as
seed pixels, given by an algorithm or a user, in the image
domain for the foreground regions and background (anywhere
outside the foreground). Examples of graph-based methods
are watershed from markers [6], random walks [7], fuzzy
connectedness [8], graph cuts (GC) [9], grow cut [10],
minimum barrier distance [11] and image foresting transform
(IFT) [12], [13].
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For the multiple region segmentation, each region may
present its own distinctive features, requiring different priors
to guide the segmentation process, e.g. shape constraints [14]–
[16], convexity prior [17], and boundary polarity [18], [19],
allowing the customization of the segmentation to a given
target region. Also, it is advantageous to explore the struc-
tural interaction between the different regions in the image,
whenever it is possible. However, many existing classical
approaches do not include any form of structural information
together into a single energy optimization.

Most of the methods for multi-region segmentation includ-
ing structural information, such as inclusion or exclusion inter-
actions between regions, are based on graph-cut optimization
and are performed by a min-cut/max-flow algorithm [20]–
[22]. However, their globally optimal results are restricted only
to some particular cases. For example, they cannot represent
the inclusion of a pair of adjacent regions in a third region
because it cannot be converted to a submodular energy. Also
they usually have a high computational cost. The methods
based in LOGISMOS [23], [24] require an approximated pre-
segmentation whenever the regions present complex shapes.
Then, the fast segmentation obtained by our proposed method
could also be used as a starting point for LOGISMOS.

In the context of segmentation by the Image Foresting
Transform (IFT) framework, in order to incorporate structural
information among regions, the methods usually employ Fuzzy
Object Models (FOMs) [25]–[31]. However, these approaches
are based on separate IFT executions per region, that do not
incorporate structural information and high-level priors into a
single energy optimization, limiting their potential.

A. Proposal

In this work, we circumvent the aforementioned problems,
by proposing a hierarchical layered graph-based approach for
the multiple region segmentation problem, named as Hierar-
chical Layered OIFT (HLOIFT). We formulate the integration
of individual region constraints such as boundary polarity
and shape constraint together with geometric priors such as
inclusion and exclusion constraints between regions, within a
single energy which is optimized by a new algorithm with
proof of correctness, overcoming the mentioned limitations
from previous works and conserving a low computational cost
of Oriented Image Foresting Transform (OIFT) [19].



B. Contributions

Therefore, our general main contributions are as follows.
• Theoretical: We propose a new method for multi-region

segmentation which may include high-level priors for
image regions and the hierarchical constraints between
them.

• Generality: Our approach is less restrictive than most
methods in use and leads to globally optimal results in
more general scenarios.

• Complexity: Our method has lower computational com-
plexity as compared to methods based on the min-
cut/max-flow algorithm.

These contributions are resumed in one conference paper
published in a international event [32], one journal paper
submitted to the Journal of Visual Communication and Image
Representation and which is still unpublished [33], one book
chapter [34] as part of the workshops proceedings of the
European Conference in Computer Vision (ECCV) and three
poster presentation [35]–[37] in international conferences.

C. Outline

For the sake of completeness in presentation, Section II
includes some required definitions and the relevant previous
work of image segmentation by OIFT with some used priors.
Section III presents our new algorithm HLOIFT and its
extension to work with 3D volumetric images and considering
superpixels instead of pixels. In Section IV are some experi-
mental evaluations of HLOIFT and its extensions, comparing it
against IFT and hierarchical segmentation by the min-cut/max-
flow algorithm, showing the HLOIFT potential. Finally, our
conclusions are stated in Section V.

II. BACKGROUND

An (2-dimensional) image can be interpreted as a weighted
digraph (i.e., directed graph) G = (N ,A, ω) whose nodes
(vertices) N are the pixels in the image domain I ⊂ Z2,
the arcs/edges listed in A are the ordered pairs of pixels
(s, t) ∈ I2 (usually, in 2D images, identified with either 4-
or 8-neighborhoods), and the weight map ω associates to each
arc (s, t) ∈ A a value ω(s, t) ∈ [−∞,∞] (usually defined as
ω(s, t) = ‖I(t)− I(s)‖, i.e. a dissimilarity measure). We use
the notations t ∈ A(s) and (s, t) ∈ A to indicate that t is
adjacent to s.

A digraph G is symmetric if for all (s, t) ∈ A, the pair
(t, s) is also an arc of G, that is, (t, s) ∈ A. All digraphs
we consider below are symmetric. Notice, that we may have
ω(s, t) 6= ω(t, s).

In binary segmentation, whose goal is to separate an ob-
ject/region O1 from its background O0 = I \O1, we consider
two non-empty seed sets S0 ∪ S1 ⊂ I, aiming for O1 ⊃ S1
and O0 ⊃ S0, assuming that S1 ∩ S0 = ∅. In particular, the
region O1 is identified with its labeling L : I → {0, 1}, which
is the indicator function of O1, i.e. O1 = {v ∈ I : L(v) = 1}
and O0 = {v ∈ I : L(v) = 0}. All this notation may be easily
extended for multiple region segmentation.

A. Oriented Image Foresting Transform (OIFT)

The Oriented Image Foresting Transform (OIFT) method
is build upon the Image Foresting Transform(IFT) frame-
work [12] which is a modification of Dijkstras shortest paths
algorithm [38] allowing multiple sources and general con-
nectivity functions (Monotonically Increasing (MI) functions).
The OIFT explores the region-contour orientation, in con-
nected and symmetric digraphs using non-smooth connectivity
functions (NSCF) [19], and some optimal criteria based on a
cut measure on the graph. It improves the segmentation results
because it helps to distinguish between two similar and nearby
boundary segments with opposite orientations from distinct
regions. However it was only defined for binary segmentation.

The resulting image segmentation by OIFT is a global
optimum solution by maximizing the graph-cut measure given
by:

εmin(L) = min{ω(s, t) : (s, t) ∈ A & L(s) > L(t) = 0},
(1)

subject to the seed constraints.

B. High-level priors

We briefly describe some individual and structural priors
used, such as boundary polarity, shape priors and geometric
interactions.

1) Boundary polarity: To explore the boundary polarity
the arcs weights ω(s, t) are defined as a combination of an
undirected dissimilarity measure ψ(s, t) between neighboring
pixel s and t, multiplied by an orientation factor, as follows:

ω(s, t) =

 ψ(s, t)× (1 + α) if I(s) > I(t),
ψ(s, t)× (1− α) if I(s) < I(t),
ψ(s, t) otherwise,

(2)

where α ∈ [−1, 1] and we usually have ψ(s, t) = |I(t)−I(s)|.
Other options for ψ(s, t) are discussed in [39], [40]. Note that,
in general, we have ω(s, t) 6= ω(t, s) for α 6= 0. For α > 0,
the segmentation by OIFT favors transitions from bright to
dark pixels, and for α < 0 favors the opposite orientation.
Finally, for multi-region segmentation we consider multiples
αi values, each associated to a different region.

2) Geodesic star convexity: The geodesic star convexity
prior (GSC) corresponds to a discrete version of the star shape
prior (SSP) [16], by considering shortest paths in the image
graph, returned by IFT with the additive path-cost functions,
as line segments. It considers all the given seeds as center
points of a region, prioritizing the segmentation of the region
with more regular shape [41]. The geodesic star convexity
prior is obtained by setting the weights of some arcs in the
created digraph to −∞, according to the scheme proposed
in [41]. Moreover, it is still possible to simultaneously handle
boundary polarity and shape priors [41].

3) Geometric interactions: The contribution of [20], for
multi-region segmentation, is a binary multi-layered formula-
tion, defining a layer for each region, encoding only geometric
interactions between the different regions in the image. These
interactions refer to the inclusion of a region within another
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Fig. 1. Overview of our framework. Given the input parameters, a hierarchical
weighted digraph of layers (digraphs) is constructed using the inclusion (solid
line) and exclusion (dashed line) hierarchical constraints between objects, and
a graph-cut measure is optimized by our algorithm. Finally, we have a labeled
image as output.

and the exclusion of them, while enforcing a minimal dis-
tance between the region contours in different layers for the
inclusion case. However, in [20], their globally optimal results
are restricted only to some particular cases, because it often
results in bad local minima due to complexities of interaction
constraints.

III. OUR METHOD

We propose the Hierarchical Layered Oriented Image
Foresting Transform (HLOIFT) as a new seed-based method
for multi-object segmentation. Figure 1 shows an overview
of our framework. For a given input image, seeds sets for
some objects, and the tree of relations between objects, the
HLOIFT method has the following steps: (1) Each layer is
constructed as a weighted digraph representing one object with
its own priors (described in Subsection III-A). (2) HLOIFT
defines a setup for the inter-layer connections representing
the hierarchical constraints, such as inclusion and exclusion
relations (described in Subsection III-B). (3) HLOIFT uses
an extension of the OIFT algorithm to compute an optimal
cut over the hierarchical layered digraph, giving as output a
labeled image (described in Subsection III-C).

A. Set of layer digraph construction

We first create a set of m layers, where each layer Hi
represents a single region Oi, i ∈ L = {1, . . . ,m}, of
an (n-dimensional) image. A layer Hi = (Ni,Ai, ωi) is
a weighted digraph, where Ni = {i} × I and each node
t = (i, v) ∈ Ni correspond to the pixel p(t) = v and
λ(t) = i means that t belongs to the ith layer of the graph.
We define the intralayer adjacency Ai on Ni = I as AI ,
usually being the 4- or 8-neighborhood adjacency in the case
of 2D images. Similarly, an intralayer weight function ωi for
every (s, t) ∈ Ai (given, for example, by (2)). Of course, ωi
should highlight the priors for Oi whenever it is appropriate.
We used the boundary polarity priors, and the geodesic star
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Fig. 2. Illustration of inclusion inter-layer arc construction, involving two
regions Oi and Oj (Oj is the parent of Oi, i.e., h(i) = j), where ω(s, t) =
−∞ and ω(t, s) =∞ for λ(s) = i and λ(t) = j.
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Fig. 3. Illustration of exclusion inter-layer arc construction, involving two
regions Oi and Oj (Oi and Oj are siblings), where ω(s, t) = −∞ for all
inter-layer arcs (s, t).

convexity prior, prioritizing the Oi with more regular shape,
as mentioned before.

B. Hierarchical digraph construction

In this step, HLOIFT generates a hierarchical layered
weighted digraph H as the union of all layered graphs Hi,
i = 1, . . . ,m, with additional interlayer arcs connecting only
some of the distinct layers, based on the requirements imposed
by the priors h (a tree) and ρ (distance parameter).

The hierarchy prior (h) between any pair 〈Oi, Oj〉 of regions
is understood as follows. If Om+1 = I (the image domain and
the root of the tree). Then h(i) = j (inclusion) if, and only
if, Oj is the smallest of the regions properly containing Oi,
and we will refer to Oj as the parent of Oi. We say that the
regions Oi and Oj , with Oi∩Oj = ∅, are siblings (exclusion),
provided i, j ∈ L are distinct and h(i) = h(j).

Specifically, we declare that for s ∈ Ni and t ∈ Nj , with
i, j ∈ L being distinct, the pair (s, t) is an arc in H (i.e., (s, t)
belongs to A of H) if, and only if, p(s)− p(t) ≤ ρ and either
Oi and Oj are siblings, or one of them is the parent of the
other. We will use the distance parameter ρ ≥ 0, where
(C) for siblings Oi and Oj we will assume that ‖s− t‖ > ρ

for every s ∈ Oi and t ∈ Oj , while for parent-offspring
pair 〈Oj , Oi〉 that t ∈ Oj whenever there exists an s ∈ Oi
with ‖s− t‖ ≤ ρ.

The weights of the inter-layer arcs for inclusion, is ω(t, s) =
∞ and ω(s, t) = −∞, and for exclusion (As) as ω(s, t) =
ω(t, s) = −∞. Figures 2 and 3 show the arcs and their
corresponding weights, with ρ = 1 of inter-layer arcs using
a 4-neighborhood adjacency for inclusion and exclusion cases
respectively.

C. Energy optimization

Finally, we execute the HLOIFT defined by Algorithm 1
and a labeled image is obtained. The algorithm is applied to



the hierarchical layered graph H constructed above and its
output maximizes a single energy εhmin defined to ensure that
the output satisfies also the hierarchical constraints imposed
by h and ρ. Specifically, for a binary map X : N → {0, 1}
(segmentation) the energy εhmin of X is defined as

εhmin(X) = min{εinclmin(X), εexclmin(X)}, (3)

where εinclmin(X) = min{ω(s, t) : (s, t) ∈ A \ As & X(s) >
X(t)}, and εexclmin(X) = min{ω(s, t) : (s, t) ∈ As & X(s) =
X(t) = 1}.

As result we have the Theorem 1 which proof of correctness
is described in [33].

Theorem 1 (Cut optimality by HLOIFT). For every image
(I, I), a hierarchy tree h, a distance parameter ρ ≥ 0, and a
sequence 〈S0, . . . ,Sm〉 of seed sets consistent with (C) (with
respect to h and ρ), the binary map X : N → {0, 1} computed
by Algorithm 1 maximizes the energy εhmin(X) given by (3)
among all solutions satisfying the seed constraints and the
consistency requirement (C).

The Algorithm 1 starts initializing the binary and cost map
together with the priority queue, given the input set of seeds.
In lines 7-10 indicates that for the inclusion case, if the seeds
for the parent region are given, then they are propagated as
background seeds to the layers of their corresponding children
regions. The condition on line 16 indicates, if we have only
one region (i.e., L = {1}), then X = L, or when tree h
has no siblings, the condition from line 19 is never satisfied,
so lines 19-20 can be removed. The weights of inter-layer
arcs are chosen among −∞ and ∞ so that when its value
becomes V (t), during the execution of line 17 in HLOIFT,
the value of V (t) (equal to ω(s, t) when X(s) = 1 and to
ω(t, s) when X(s) = 0) is −∞ if, and only if, the value of
X(s) together with the consistency requirement (C) uniquely
determine the value of X(t). In particular, V (t) = −∞ will
ensure that t will be chosen from the queue Q with the highest
possible priority, so that the value of X(t) can be affixed to
that forced by (C) and X(s) before the consistency of X could
be jeopardized. Specifically, for inclusion case if s is removed
from Q in line 11 with X(s) = 1, then the required final
value X(t) = 1 will be ensured soon after by the highest
priority of V (t) = ω(s, t) = −∞. Similarly, if t is removed
from Q in line 8 with X(t) = 0, then the eventual value
X(s) = 0 required by (C) will be ensured by the highest
priority of V (s) = ω(s, t) = −∞. Thus for the exclusion
case, if s is removed from Q in line 11 with X(s) = 1, then
the eventual value X(t) = 0 required by (C) will be ensured
by the highest priority of V (t) = ω(s, t) = −∞. Similarly,
when t is removed from Q in line 11 with X(t) = 1. In case
when, for the removed s, we have X(s) = 0, HLOIFT will
simply not update any information on t. In this case, in line 16
the condition is satisfied when s and t are siblings and p(s) ∈
Oλ(s) as X(s) = 1. Therefore, lines 19-20 ensure that for the
output X we have no (s, t) ∈ As with X(s) = X(t) = 1, that
is, εexclmin(X) = −∞.

Algorithm 1. – HLOIFT ALGORITHM

INPUT: Hierarchical layered digraph H = (N ,A, ω),
build using the hierarchical tree h and the distance
parameter ρ; the seed sets 〈S0, . . . ,Sm〉.

OUTPUT: The binary map X : N → {0, 1} identifying
segmentation of regions.

AUXILIARY: Priority queue Q, variable tmp, the cost map
V : N → [−∞,∞], and an array of status
S : N → {0, 1}, where S(t) = 1 for processed
nodes and S(t) = 0 for unprocessed nodes.

1. For each t ∈ N and i ∈ L do
2. Set S(t)← 0 and V (t)←∞;
3. If p(t) ∈ S0 then
4. V (t)← −∞, X(t)← 0, insert t in Q;
5. If p(t) ∈ Si and λ(t) = i then
6. V (t)← −∞, X(t)← 1, insert t in Q.
7. For each j ∈ L do
8. If h(j) = i and λ(t) = j then
9. V (t)← −∞, X(t)← 0, insert t in Q.
10. While Q 6= ∅ do
11. Remove s from Q such that V (s) is minimum;
12. Set S(s)← 1;
13. For each (s, t) ∈ A such that S(t) = 0 do
14. If X(s) = 1 then tmp← ω(s, t)
15. Else tmp← ω(t, s);
16. If tmp < V (t) and ¬ [(s, t) ∈ As and X(s) = 0], then
17. Set V (t)← tmp and X(t)← X(s);
18. If t /∈ Q then insert t in Q;
19. If (s, t) ∈ As and X(s) = 1 then
20. X(t)← 0.

Concerning the computational complexity, HLOIFT is
O(M +N), where N is the number of vertices in the graph
H and M is the number of arcs in the graph H, when Q is
implemented using bucket sorting [12] and O(M +N logN)
(linearithmic time) if Q is a heap. The Graph cut computa-
tional complexity is O(

√
M ∗ N2) = O(N2.5) when H is a

sparse graph, which is more than quadratic-time using a push-
relabel based on the highest label node selection rule [42].

D. Extensions of HLOIFT
1) 3D HLOIFT: We propose the usage of HLOIFT for the

segmentation of 3-dimensional images (volumes), where I is
a finite set of voxels (i.e., I ⊂ Z3). From the implementation
point of view of HLOIFT, the only required changes are that
now each layer has intra-layer arcs in a 3D neighborhood and
that the parameter ρ defines a sphere in space.

2) HLOIFT with superpixels: We also propose a super-
pixel-based adaptation of the HLOIFT method [34], leading
to a more efficient and adequate solution in large images,
reducing the running time conserving the results by HLOIFT.
Superpixels can group pixels into perceptually meaningful
atomic regions of similar and connected pixels being com-
putationally more efficient than their pixel counterparts. In
this case, we used the IFT-SLIC [43], to compute superpixels
from a given input image, creating a Region Adjacency Graph
(RAG) greatly reducing the number of graph elements. Then,
we create each pair (Ni, Ai) as an isomorphic copy of the
created RAG, then the framework is similar to the HLOIFT
considering ever superpixels instead of pixels.



1 2 3 4 5

6

h

INPUT

7

1

2 3

45 6

OUTPUT

Fig. 4. An axial cross section of a thoracic-abdominal CT image segmentation.
HLOIFT obtained a result similar to the given manual ground-truth.

IV. EXPERIMENTAL RESULTS

This section is divided in three parts, showing experimental
results for the 2D HLOIFT, 3D HLOIFT and for the HLOIFT
with superpixels respectively. We used medical and synthetic
images, composed of multiple sophisticated regions. Also, the
experiments presented here were conducted in a laptop Intel
Core i3-5005U CPU 2.00GHz ×4.

A. 2D HLOIFT

1) Qualitative comparison with the IFT method: In Fig-
ure 4, we use an axial cross section of a thoracic-abdominal
CT image extracted from [44] to segment six regions: right
lung (O1), liver (O2), heart (O3), left lung (O4), aorta (O5)
and the thoracic-abdominal region (O6). We used ωi with
ψ(s, t) = I(s)− I(t), ρ = 3.5, boundary polarity from dark
to bright pixels for O1, O4 shape constraint by geodesic star
convexity for O2 and O3, and boundary polarity from bright
to dark pixels for O5 and O6. Clearly, the results obtained by
HLOIFT are closer to the ground-truth compared to the IFT
results.

2) Comparison with multi-object segmentation by min-
cut/max-flow algorithm: We show a comparison between
HLOIFT and the hierarchical segmentation of multiple regions
min-cut/max-flow algorithm [20]. Figure 5 shows a flower
segmentation using ωi(s, t) = G(s) + G(t), where G(.)
denotes the maximum magnitude of the Sobel gradient for
the three image channels. We used ρ = 1.5 and no region
constraints (shape constraints/boundary polarity). In general
the results are similar for both methods. The min-cut/max-
flow algorithm generates results with a smoother contour, but
sometimes this can lead to errors in some finer parts of the
region, such as the petals (Figure 5b). Besides being able

(a) (b) (c)
Fig. 5. Flower segmentation in two regions, the central part in cyan and the
petals in yellow, using the inclusion relation. (a) The input image. (b) Result
by the min-cut/max-flow algorithm in layered graphs. (c) Result by HLOIFT.

Image size (pixels) HLOIFT (ms) min-cut/max-flow (ms)
380× 320 114.65 323.61
760× 640 488.62 1,798.91

1520× 1280 1,823.55 19,021.71

TABLE I
THE RUNNING TIMES FOR THE FLOWER SEGMENTATION BY HLOIFT AND

THE MIN-CUT/MAX-FLOW ALGORITHM IN LAYERED GRAPHS USING
DIFFERENT IMAGE SIZES.

to compute globally optimal results with arbitrary hierarchy
constraints, the proposed HLOIFT method also has a better
running time compared to the min-cut/max-flow algorithm.
Table I shows the running times for the flower segmentation
using different image resolutions.

3) Quantitative accuracy experiments: We compared
HLOIFT, with the multi-region segmentation by IFT [45],
its improved version by the relaxation procedure proposed
by [46], and the hierarchical layered graph cut [20], denoted as
HLGC, using two datasets of medical images into 2 datasets,
and considering simple arc weights (ψ(s, t) = |I(s)− I(t)|).

The first dataset has 40 slices from thoracic CT studies of
size 512 × 512 to segment the liver and the abdomen as its
parent region. The second dataset has 40 real MR images to
segment the talus and calcaneus bones as siblings, taking the
foot region as their parent. The same seeds were used for all
the methods, obtained by progressively eroding the ground
truth regions and background for different radius sizes. For
the bones we used α = −0.5 and ρ = 3 pixels, while for
the liver we used α = 0.9 and ρ = 5 pixels. The mean
accuracy curves according to the Dice coefficient are shown in
Figure 6, being the results in the left column obtained without
shape constraints and the ones in the right with Geodesic Star
Convexity (GSC). HLOIFT had the best results in most cases.
Note also that it could benefit more from the usage of the
shape constraint by GSC for the liver compared to HLGC.

B. 3D HLOIFT

We presents an experimental evaluation of HLOIFT on
3-dimensional images (volumes) to assess its performance
considering different high-level priors. In Figure 7, we use a
synthetic image of size 150×150×150 voxels composed of six
distinct regions: Two dark cubes contained in a brighter ball,
which in turn is contained inside a bigger cube, surrounded by
a white background, and a small ball contained in one of the
inner cubes. Then, we want to segment it into three regions,
where O1 and O2 are included in O3. We will highlight the
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Fig. 6. The mean curves of Dice accuracy for different methods.
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(a)

(b) (c)

Fig. 7. (a) Given the input image with six regions and seeds for O1 (in
yellow), O2 (in blue) and background (in red), we obtain different results for
O1 and O2 included in O3, defining different boundary polarities. In (b) and
(c) the 3D renderings of the regions is given.

(a) (b)

Fig. 8. 3D HLOIFT inclusion segmentation for (a) the brain and (b) ventricles.

boundary polarity prior, showing that using of prior “from
bright to dark” (bd) or “from dark to bright” (db) for O1 and
O3, gives different results for the same input image, which are
shown in a slice view and the 3D renderings of the regions’
surfaces as depicted in a red box.

In order to test our 3D HLOIFT in a real MR image, we
used an image of 120×120×90 voxels, to segment the brain
(Figure 8a) and the lateral ventricles (Figure 8b) using the
inclusion relation. The running time was 4.2 sec.

C. HLOIFT with superpixels

We present experimental results leading to a more efficient
and adequate solution for multi-region segmentation in large

Fig. 9. The segmentation of a CT image of the knee for different superpixel
sizes.

171× 193 342× 386 684× 772 1368× 1544
IFT [45] 8.46 29.26 106.61 333.13

HLOIFT [33] 54.55 200.44 724.73 2,878.91
(10× 10) 0.52 1.88 8.08 33.05

(5× 5) 1.61 8.14 24.78 91.29
3× 3() 4.37 17.25 62.93 260.24

TABLE II
TIME IN MS FOR THE DIFFERENT METHODS AND IMAGE RESOLUTIONS.

images, showing the improvement in the running time.
In Table II, we show the execution time gains of the

proposed approach in comparison to IFT [45] and the multiple
region segmentation by the regular HLOIFT [33] without
superpixels, for different image resolutions and superpixel
sizes, for the segmentation of three regions in a CT image
of the knee with inclusion and exclusion relations. The usage
of superpixels in HLOIFT significantly reduced the size of
the graph, resulting in a great saving of memory and com-
putation time.Moreover, the segmentation results for different
superpixel sizes were similar to those obtained by HLOIFT at
the pixel level demonstrating the robustness of the proposed
method (Figure 9).

V. CONCLUSIONS

We proposed a new graph-based algorithm, named as
HLOIFT, for multi-region segmentation, allowing the integra-
tion of each region high-level priors with the hierarchical rela-
tions between them into a single energy optimization. Besides
the theoretical contribution, our experiments show that good
segmentation results can be obtained, even when considering a
simple measure of intensity dissimilarity. Besides being faster
than hierarchical min-cut/max-flow based approaches, it is also
less restrictive, allowing globally optimal results for arbitrary
hierarchies. Finally, we presented how the HLOIFT method
can be easily extended to work with 3D images. Therefore, we
also proposed a superpixel-based adaptation of the HLOIFT
method, leading to a more efficient and adequate solution for
multi-object segmentation in large images.
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