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Abstract—The availability of low-cost, high-quality personal
wearable cameras combined with the unlimited storage capacity
of video-sharing websites has evoked a growing interest in First-
Person Videos (FPVs). Such videos are usually composed of long-
running unedited streams captured by a device attached to the
user body, which makes them tedious and visually unpleasant
to watch. Consequently, there is a rise in the need to provide
quick access to the information therein. To address this need,
efforts have been applied to the development of techniques
such as Hyperlapse and Semantic Hyperlapse, which aims to
create visually pleasant shorter videos and emphasize semantic
portions of the video, respectively. The state-of-the-art Semantic
Hyperlapse method SSFF, negligees the level of importance of
the relevant information, by only evaluating if it is significant
or not. Other limitations of SSFF are the number of input
parameters, the scalability in the number of visual features
to describe the frames, and the abrupt change in the speed-
up rate of consecutive video segments. In this dissertation, we
propose a parameter-free Sparse Coding based methodology
to adaptively fast-forward First-Person Videos, that emphasize
the semantic portions applying a multi-importance approach.
Experimental evaluations show that the proposed method creates
shorter version video retaining more semantic information, with
fewer abrupt transitions of speed-up rates, and more stable final
videos than the output of SSFF. Visual results and graphical
explanation of the methodology can be visualized through the
link: https://youtu.be/8uStih8P5-Y.

I. INTRODUCTION

Statics about Internet usage in 2017 announce that online
videos represented 70% of global traffic. Studies predict that
this number will strike 80% by 2022 [1]. Not only are Internet
users watching more online video, but they are also recording
themselves and producing a growing number of videos for
sharing their day-to-day life routine. Wearable devices are one
of the big players contributing to the rise in the amount of
video data. These devices introduced the concept of free-hand
recording, allowing the user to perform any activity in the
meantime. Due to this feature, wearable cameras are being
used to capture many hours of unedited videos from the most
memorable events to monotonous and repetitive daily tasks,
such as walking, jogging, cooking, driving, and working shift.

Long-running and boring videos decrease the propensity
of future viewers to watch the footage, even the recorders
could not pay attention to the majority of recordings [2],
making significant moments to be lost along with activities
that do not merit recording. Thus, a central challenge is to
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provide quick access to the meaningful parts of the videos
without losing the whole message that the user would like to
convey. To accelerate the video is one alternative to provide
quick access to the information while keeping the context.
However, First-Person Videos (FPVs) incorporate the natural
body movements of the recorder, since they are recorded with
the camera attached to the body. Accelerating these videos
naı̈vely amplifies the movement frequency turning the video
unwatchable [3]. Consequently, fast-forward egocentric video
had attracted the attention of researchers.

Hyperlapse techniques address the shaking effects of fast-
forwarding FPVs by performing an adaptive frame selec-
tion [3]–[7]. The drawback of these approaches is assuming
every frame equally relevant, e.g., in a lengthy stream of
daily activity, some portions of the videos are undoubtedly
more relevant than others. Recently, Semantic Hyperlapse
techniques have emerged as a solution for fast-forwarding
videos emphasizing the relevant content, dealing with visual
smoothness and semantic highlighting of FPVs [8], [9].

Aiming to address both objectives, visual smoothness and
semantic highlight, Semantic hyperlapse methods use features
to describe the video frames and their transitions, then for-
mulate an optimization problem using the combination of
these features. Consequently, the number of features used
impacts the computation time and memory usage, since the
search space grows exponentially. Therefore, such Hyperlapse
methods are not scalable regarding the number of features.

The problem addressed by this thesis is the selection of
frames with constraints regarding visual smoothness, tempo-
ral continuity, and the semantic load of the original video.
We tackle this problem by creating a Semantic Hyperlapse
technique using sparse coding formulation to perform the
adaptive frame sampling addressing the problem related to the
scalability of the sampling optimization regarding the number
of features to describe the frames.
Contributions. We list the main contributions as:

i) a Sparse Sampling-based adaptive frame selection ap-
proach to address the problem related to the scalability
of the feature dimensionality in a time-efficient manner.

ii) a Machine Intelligence method to learning the user’s
preference from visual data and their statistics.

iii) the publicly available 80-hour unconstrained Dataset of
Multimodal (Depth, IMU, and GPS) Egocentric Videos
with labels regarding the frames, videos, and recorders.

https://youtu.be/8uStih8P5-Y


II. RELATED WORK

Video processing to resume the story of First-Person Videos
has been extensively studied in the past few years, especially
the video summarization problem and fast-forward techniques.
The fundamental difference between these two techniques is
that Hyperlapse methods are focused on creating a visually
smooth and temporally continuous shorter version of the input
video, i.e., the video is sped up entirely not removing any
clips, unless there are stationary camera moments. Video
summarization methods, on the other hand, are focused on
creating compact visual summaries capable of presenting the
most discriminative and/or the most enlightening parts of
the video [2]. These summaries are usually presented in the
format of video skims or key-frame collection of the relevant
moments, not preserving the footage context [10].
Video Summarization. The goal of video summarization is
to produce a compact visual summary containing the most
informative parts of the original video. Lee et al. [11] exploited
interaction level, gaze, and object detection frequency as
egocentric properties to create a storyboard of keyframes with
important people and objects. Sparse coding theory also has
been applied to this task, as the work of Cong et al. [16] that
formulated the summarization as a dictionary selection prob-
lem, and extract keyframes using sparsity consistency. Zhao et
al. [17] proposed a method based on online dictionary learning
that generates keyframes collection summaries on-the-fly using
Sparse Coding to eliminate repetitive events. Sparse Coding
has also been successfully applied to a variety of vision
tasks [16]–[22]. This thesis differs from Sparse Coding video
summarization since we handle both visual instability and
temporal constraints while performing the frame sampling.
Hyperlapse. Kopf et al. [4] proposed the first Hyperlapse
method addressing the visual instability through an adaptive
frame sampling that reconstructs the 3D scene geometry and
creates the final video using a virtual camera traveling on an
optimal path. Poleg et al. [3] perform the frame sampling
by performing the shortest path in a graph modeled as the
frames are the nodes, edges are the frame transitions, and edge
weights are a linear combination of the shakiness, speed of
motion, and appearance between pairs of frames compositing
the transitions. Halperin et al. [6] extended the work of
Poleg with an expansion of the field of view of the output
video by using the mosaicking technique on frames from
multiples videos and stabilizing the final video by a moving
cropping area. Microsoft Hyperlapse [5] is the state-of-the-art
Hyperlpase method as far as visual smoothness is concerned.
The authors modeled the frame sampling problem using
dynamic-time-warping formulation. Wang et al. [7] created
a Hyperlapse method based on multiple spatially-overlapping
sources to synthesize virtual routes created from paths traveled
by distinct cameras. Recently, Hyperlapse methods have been
extended to omnidirectional videos [23]–[25].

Although these solutions have succeeded in creating short
and watchable versions of long first-person shots, they neglect
the semantic load of the videos.

Semantic Fast-Forward Methods. To the best of our knowl-
edge, Okamoto and Yanai [26] proposed the pioneering se-
mantic technique by fast-forwarding a guidance video with the
emphasis on parts of the route containing street corners and
pedestrian crosswalks. The authors applied a lower speed-up
rated on these semantic segments regarding the non-semantic
ones, and then frames were uniformly sampled. Despite the
shaky results of applying uniform sampling in FPVs, other
works [27], [28] on this category have also applied naı̈ve
sampling after calculating speed-up rates to emphasize the
semantic segments.

Ramos et al. [8] designed the first Semantic Hyperlapse
addressing both visual smooth and semantic load while fast-
forwarding FPVs. The proposed method calculates the seman-
tic load of the frames, segments the video into relevant and
non-relevant portions, estimates speed-up rates in a manner
that the semantic portions are played slower than the non-
semantic ones, and performs a graph-based adaptive frame
sampling. The drawbacks of this method are the feature
scalability, since it is based on graph modeling, and shaky
transitions in the non-semantic segments.

Silva et al. [9], in the context of this thesis, extended
the work of Ramos et al. improving the visual smoothness
by introducing a methodology combined with a stabilization
process specially designed to fast-forwarded videos (Stabilized
and Semantic Fast-Forward video - SSFF), which is based
on weighted homography transformations and image stitching
using frames dropped during the sampling process. Finally,
the authors proposed a semantically controlled and labeled
dataset to evaluate fast-forward videos regarding the semantic
load. The failing cases of this and the previous methodologies
are to treat the semantic information as a binary problem
disregarding its level of relevance, and the ad hoc semantic
definition (only faces or pedestrians).

In this thesis, we aim to create a novel methodology to sam-
ple frames adaptively addressing issues related to the existing
works such as, treat the semantic analysis as a binary problem,
ad hoc semantic definition, and the scalability regarding the
number of frames and dimension of the feature vectors used
to describe the frames. We model the frame sampling step as a
Minimum Sparse Reconstruction problem. To the best of our
knowledge, it is the first Sparse Coding-based Hyperlapse.

III. METHODOLOGY

Our method consists of five primary steps: i) Creation and
temporal segmentation of a semantic profile of the input video;
ii) Weighted sparse frame sampling; iii) Smoothing Frame
Transitions (SFT); iv) Filling gaps between segments, and v)
Video compositing.

A. Temporal Semantic Profile Segmentation

In the first step, we create a semantic profile of the input
video, by extracting the relevant information and assigning
a score for each frame of the video (Fig. 1-a). We use the
classifier-based ad hoc definition of semantic to perform the
experimental evaluation as proposed in the work of Ramos et
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Fig. 1. Main steps of our semantic video fast-forward. For each segment created in the temporal semantic profile segmentation (a), weights based on the
camera movement are computed (b) and the frames are described (c). Frames are sampled by minimizing local-constrained and reconstruction problem (d).
The smoothing step is applied to tackle the abrupt transitions of the selected frames inside segments (e). Fill processing is applied to handle visual gaps
between segments (f). Frames selected in previous steps are used to composite the final fast-forward video (g).

al. [8]. In this work, we proposed the CoolNet, a Convolutional
Neural Network that learns the preference of the user from
visual data of frames of YouTube videos in the YouTube8M
dataset [29] and their statistics (number of views, likes, and
dislikes). The readers is referred to our work [30] to details
about the dataset creation, training routines, and model ac-
curacy. The created semantic profile is used for segmenting
the input video into sequences of different levels of semantic,
and to compute speed-up rates such that it slows down the
video portions according with their semantic load. We refer
the reader to our work [30] for a more detailed description
of the multi-importance semantic segmentation and speed-up
rate assignment. The output is a set of segments that feeds the
steps described in Sections III-B and III-C which process each
one separately.

B. Weighted Sparse Frame Sampling

Hyperlapse techniques sample frames adaptively by search-
ing the optimal configuration (e.g., shortest path in a graph
or dynamic programming) in a representation space where
different features are combined to represent frames or frame
transitions. Although recent works achieved better results
applying a large number of features to represent the data [31]–
[33], it increases both the computation time and memory usage
since it leads to a high-dimensional space in optimization
problems. We address this representation problem using a
sparse frame sampling approach as depicted in Fig. 1-d.

Let D = [d1,d2, · · · ,dn] ∈ Rf×n be a segment of the orig-
inal video with n frames represented in our feature space. Each
entry di ∈ Rf stands for the feature vector of the i-th frame.
Let the video story v ∈ Rf be defined as the sum of the frame
features of the whole segment, i.e., v =

∑n
i=1 di. The goal is

to find an optimal subset S = [ds1 ,ds2 , · · · ,dsm ] ∈ Rf×m,
where m� n and {s1, s2, · · · , sm} belongs to the set of
frames in the segment.

Let the vector α ∈ Rn be an activation vector indicating
whether di is in the set S or not. The problem of finding the
values for α that lead to a small reconstruction error of v,
can be formulated as a weighted Locality-constrained Linear
Coding (LLC) [34] problem as follow:

α? = arg min
α ∈ Rn

‖v −D α‖2 + λα ‖W g �α‖2, (1)

where g is the Euclidean distance between each dictionary
entry di and the segment representation v, � is an element-
wise multiplication operator, λα is the regularization term of
the locality of the vector α, and W is a diagonal matrix built
from the weight vector w ∈ Rn, i.e., W , diag(w).

The benefit of using the LLC formulation instead of the
traditional L0-pseudo norm or L1-norm Sparse Coding (SC)
models is twofold: i) the LLC provides local smooth sparsity,
and ii) it can be solved by an analytical solution, which results
in a lower computational cost.

This weighting formulation provides a flexible solution, in
which we create weights for frames based on the camera
motion and thus we can modify the contribution for the recon-
struction without increasing the sparsity term. This manner, we
oversample frames in region of abrupt camera movement.

Let C ∈ Rc×n be the Cumulative Displacement Curves [35]
(Fig. 1-b), and C ′ ∈ Rc×n be the derivative of each curve C
w.r.t. time. We assume frame i to be within an interval of
abrupt camera motion if all curves C ′ present the same sign
(positive/negative) at the point i, which represents a turning
movement [35]. We empirically assign wi = 0.1 for frames in
these intervals to enforce a denser sampling in these intervals,
and wi = 1.0 for the remaining ones.

1) Speed-up Control: All frames related to the activated
positions of the vector α? will compose the final video. Since
λα controls the sparsity, it also controls the speed-up rate of
the created video. Therefore, we perform an iterative adjust in
the λα value to achieve the desired number of frames.



2) Frame Description: The feature vector of the i-th frame
di ∈ R446 (Fig. 1-c) is composed of the concatenation of the
following terms. The hofm ∈ R50 and hofo ∈ R72 are the
histogram of the optical flow magnitudes and the orientations
of the i-th frame, respectively. The appearance descriptor
a ∈ R144 contains the mean, standard deviation, and skewness
values of the HSV color channels of the windows in a
4× 4 grid of the frame i. To define the content descriptor
c ∈ R80, we use the YOLO [36] to detect the objects in
the frame i; then, we create a histogram with these objects
over the 80 classes of the YOLO architecture. Finally, the
sequence descriptor s ∈ R100 is an one-hot vector, with the
mod(i, 100)-th feature activated indicating the video portion
where the frame is located.

C. Smoothing Frame Transitions

A solution α? does not ensure a final continuous fast-
forward video. The solution might provide a low recon-
struction error of small and highly detailed segments of the
video. Thus, by creating a better reconstruction with a limited
number of frames, α? may ignore stationary moments or
visually similar views and create videos akin to results of
summarization methods.

We address this problem by dividing the frame sampling
into two steps. First, we run the weighted sparse sampling
to reconstruct the video using a speed-up multiplied by a
factor SpF . The resulting video contains 1/SpF of the desired
number frames. Then, we iteratively insert frames into the
shakier transitions (Fig. 1-e) until the video achieves the exact
number of frames.

Let I(Fx, Fy) be the instability function defined by

I(Fx, Fy) = AC(Fx, Fy) ∗ (dy − dx − speedup). (2)

The function AC(Fx, Fy) calculates the Earth Mover’s Dis-
tance [37] between the color histograms of the frames Fx and
Fy . The second term of the instability function is the speed-
up deviation term. This term calculates how far the distance
between frames Fx and Fy , i.e., dy − dx are from the desired
speedup. We identify a shakier transition using:

i? = arg max
i ∈ Rm

I(Fsi , Fsi+1
). (3)

The transition composed of Fsi? and Fsi?+1
, i.e., solution of

Eq. 3, has visually dissimilar frames with a distance between
them larger than the required speed-up.

After identifying the shakier transition from the subset with
frames ranging from Fsi? to Fsi?+1

, we choose the frame
Fj? that minimizes the instability of the frame transition as
follows:

j? = arg min
j ∈ Rn

I(Fsi? , Fj)
2 + I(Fj , Fsi?+1

)2. (4)

Since the interval is small, Eq. 3 and 4 can be solved by
exhaustive search (we use SpF = 2 in the experiments).
Larger values increase the search interval, also increasing the
time for solving Eq. 4.

D. Fill Gap between segments

Temporal discontinuities between some video segments may
occur due to the frame selection being performed for each
segment at a time while neglecting the remaining ones. If the
last selected frame of one segment is far from the first selected
frame of the following video segment, it creates a visual gap
in the final video. Section III-C provides a valid solution by
inserting frames and tackling the visual discontinuities created
within the segments. However, it has no effect on frame
transitions between segments.

Abrupt speed-up differences between video segments are
additional issues present in most semantic fast-forward meth-
ods in the literature. These abrupt differences are caused by
the selection of speed-up rates assigned to video segments.
Generally, they occur when one segment containing a sig-
nificant amount of semantic information is followed by, or
follows, a non-semantic segment. This would create abrupt
differences among speed-up rates assigned to each segment.
For instance, in the experiment “Biking 50p” a 2× speed-up
semantic segment follows a non-semantic segment with speed-
up 14×. In this section, we propose to address both the visual
gap and the abrupt speed-up difference issues.

To address the visual gap problem, we first calculate the
instability index (Eq. 2) between the last frame of a segment
A and the first frame of its consecutive segment B. If the
instability index is larger than the average instability over
all transitions of segment A, then we create a new segment
delimited by the last frame of segment A and the first frame of
the segment B (Fig. 1-f). This newly created segment is then
used to smooth the speed-up transition and fill the visual gap.
To solve the abrupt speed-up difference problem, we define
the speed-up rate for the new segment as the average value
between the speed-ups of A and B. Then, we fill the visual gap
by running the Weighted Sparse Frame Sampling and Smooth-
ing Frame Transitions, defined in Sections III-B and III-C
respectively, using the smoother calculated speed-up.

E. Video compositing

All selected frames of each segment are concatenated to
compose the final video (Fig. 1-g). After the concatenation is
done, we run the video stabilization designed to fast-forwarded
videos proposed in the context of this work [9]. The stabilizer
creates smooth transitions by applying weighted homogra-
phy transformations. Frames corrupted by the homography
transformations are reconstructed using image stitching and
blending of the non-selected frames of the original video.

IV. EXPERIMENTS

Competitors. We compare our method with: i) EgoSam-
pling (ES) [3]; ii) Microsoft Hyperlapse (MSH) [5], the state-
of-the-art method in terms of visual smoothness; and iii)
Stabilized Semantic Fast-Forward (SSFF) [9], the state-of-the-
art method in terms of retained amount of semantics.
Datasets. Two datasets were used for the evaluation process.
The first one, Annotated Semantic Dataset (ASD), is composed
of small and controlled videos regarding the amount semantic
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information of each video. We used it for finding the the fast-
forward approach that retains the highest semantic load of
the original video. Aside from the ASD dataset, we extend
the evaluation process on a challenging dataset. Because
of the absence of unrestricted and annotated data to work
with egocentric tasks, we proposed an 80-hour Dataset of
Multimodal Semantic Egocentric Videos (DoMSEV) covering
a wide range of activities, light and weather conditions,
places, camera mounting, device, and recorders. All details
mentioned earlier are annotated along with the attention of
the user while recording and their personal preferences. The
multimodal data contains visual, depth, GPS, sound, and
inertial information. A few examples of frames and the some
labels are depicted in Fig. 2. DoMSEV, built setup, and
video details are publicly available in www.verlab.dcc.ufmg.
br/semantic-hyperlapse/cvpr2018-dataset/.
Metrics. The quantitative analysis presented in this work is
based on four aspects: temporal discontinuity, visual insta-
bility, amount of semantic information retained in the fast-
forward video, and processing time.
1) Discontinuity: we calculate the Root-Mean-Square Er-
ror (RMSE) over the selected frames jumps and the required
speed-up rate for that video. Higher values indicate the accel-
erated video contains long jumps, which creates visual gaps.
2) Instability: it is measured by the cumulative sum of the
standard deviation of pixels in a sliding window over the
video [30]. The lower the value, less shaky is the video,
indicating that the frame selection is visually pleasant to watch.
3) Semantic: this index is given by the ratio between the sum
of the semantic content in each frame of the final video and
the maximum possible semantic value for the video [8]. We
consider the semantic labels defined in the Semantic Dataset.
4) Processing Time: we measure the time spent to run the
frame sampling process comparing the time performance
between the graph-based approach and the proposed sparse
coding formulation. The reader is referred to the work [8],
[30] for more details about the metrics.
Parameter settings. We used SpF = 2 during the Smoothing
Frame Transitions. Half of the frames compositing the final
video were sampled to reconstruct well the context of the
original video, and the other half to smooth the transitions.

V. RESULTS

We first evaluate quantitatively the CoolNet, then we per-
form a quantitative analysis over the proposed methodology.

A. CoolNet

Since most of the “Cool” images in our Dataset are related
to radical sports and beautiful landscapes, the Network classi-
fies with high score frames with nature elements, e.g., forest
and gardens. Visually uniform frames, like indoor looking
images, walls, and offices, yield to a low rating. Figure 4
depicts network score related to different scenes. In the left
image, when the wearer passes through an inside garden,
the network assigns an average rating. In the center image,
the wearer is walking inside a building hall, which the net
considers unattractive. In the right image, the wearer goes to
an outside area composed of many trees and gardens, which
are highly rated by the CoolNet.

Fig. 3-a shows the results of the Semantic evaluation per-
formed using the sequences in the ASD Dataset, in which the
area under the curves measures the retained semantic content.
The area under the curve of our proposed method is more
than the double of the area under the curve regarding the best
competitor, SSFF, which is the state-of-the-art in this metric.
Non-semantic hyperlapse techniques such as MSH and ES
achieved at best 19.4% of our result.

The results for the Instability metric are presented as the
mean of the instability indexes calculated over all sequences in
the ASD Dataset (Fig. 3-b, lower values are better). The black
dotted and the cyan dashed lines stand for the mean instability
index when using a uniform sampling and for the original
video, respectively. Ideally, it is better to yield an instability
index as close as possible to the original video. The chart
shows that our methodology created videos smoother than the
state-of-the-art method MSH.

The Chart in Fig. 3-c depicts the visual gap problem related
to the frame selection of Semantic Hyperlapse techniques. Our
proposed method achieved a value of 10.1, while the lowest
value 5.7 was achieved by MSH. However, it is noteworthy
that MSH is a non-semantic hyperlapse method, i.e., all
segments are sped-up with at the same rate. The discontinuity
value for semantic fast-forward methods is expected to be
higher since semantic segments are accelerated in a rate
smaller than the required for the whole video. Consequently,
the non-semantic segments will have a greater speed-up rate
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assigned to it.
Fig. 5 shows the time for the frame sampling step of

our method and the best semantic competitor SSFF. We run
a parameter setup based on Particle Swarm Optimization
and the shortest path in the SSFF. Our methodology runs
minimum reconstruction, frame transition smoothing, and fill
gap between segments steps. The execution time of SSFF
grows exponentially while our method was not influenced by
the growth in the number of frames in the input video.

It is noteworthy that unlike SSFF which requires 14 param-
eters to be adjusted, our method is parameter-free. Therefore,
the average processing time spent per frame to perform the
frame sampling step using our methodology was 0.2 ms,
while the automatic parameter setup process and the sampling
processing of SSFF spent 36 ms per frame, indicating that
our method is 170× faster, with no code optimization. The
descriptor extraction for each frame ran in 320 ms facing
1,170 ms of SSFF. The experiments were ran in a machine
with an i7-6700K CPU @ 4.00GHz and 16 GB of memory.

VI. CONCLUSION

We tackled the challenging task of creating Semantic Hyper-
lapse for a First-Person Video through a sparse coding-based
framework composed of the adaptive frame sampling, Smooth
Frame Transition, and Fill Gap steps. The frame sampler
was modeled as a weighted minimum sparse reconstruction
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Fig. 5. Processing time regarding to video length. Y-axis is shown in
logarithmic scale. Trend-lines follow a second order polynomial curve.

problem allowing a denser sampling along the segments with
high camera movement. The Smoothing Frame Transitions
step addressed visual instability by inserting frames into abrupt
transitions, while the Fill Gap step dealt with temporal discon-
tinuities. Contrasting with previous fast-forward methods that
are not scalable in the number of features used to describe
the frame/transition, our method is not limited by the size
of feature vectors. Experimental evaluation showed that our
hyperlapse videos kept the double of semantic information,
were smoother, and present fewer temporal discontinuities
when compared with the best competitors SSFF and MSH.
Moreover, the improvements did not affect the running time
of the frame sampling process. An additional contribution is
the smoothing of abrupt speed-up transitions, leading to more
natural accelerated videos. An ablation study was performed
to evaluate the contributions of each step of the methodology,
the results can be visualized in the thesis.
Limitations and Future Work. The main drawback of this
work is to model the frame sampling problem regardless
of the temporal information of frames, i.e., the transitions
information between frames are not encoded. Future steps to
continue evolving the result are to address the characterization
of frame transition and to perform the Smooth Frame Transi-
tion step adding virtual frames shaped by encoding temporal
information of dropped frames.
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