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Abstract—Rendering large point clouds ordinarily requires
building a hierarchical data structure for accessing the points that
best represent the object for a given viewing frustum and level-of-
detail. The building of such data structures frequently represents
a large portion of the cost of the rendering pipeline both in terms
of time and space complexity, especially when rendering is done
for inspection purposes only. In this work we present OMiCroN –
Oblique Multipass Hierarchy Creation while Navigating – which
is the first algorithm capable of immediately displaying partial
renders of the geometry, provided the cloud is made available
sorted in Morton order. In fact, a pipeline coupling OMiCroN
with an incremental sorting algorithm running in parallel can
start rendering as soon as the first sorted prefix is produced,
making this setup very convenient for streamed viewing.

I. INTRODUCTION

In recent years, improvements in acquisition devices and
techniques have led to the creation of huge point cloud
datasets. Direct rendering of such datasets must resort to in-
dexing data structures. In many use cases, the cost of building
such structures is not critical for the task at hand and need
not justify arbitrarily long preprocessing times (e.g. [1], [2]).
In other cases, shortening the time to produce the hierarchy is
deemed worthwhile, at the expense of achieving slightly worse
balance or render quality (e.g. collision detection [3]).

In this paper we introduce OMiCroN (Oblique Multipass
Hierarchy Creation while Navigating), a new take on the
problem of shortening the delay between point cloud acqui-
sition and its visualization. The technical contributions of
this work are the introduction of Hierarchy Oblique Cuts,
allowing parallel data sorting, spatial hierarchy construction
and rendering; restriction of the preprocessing to a very fast
and flexible Morton code based partial sort; on-the-fly Octree
construction for large point clouds; full detail rendering of the
data from the very beginning, following the Morton Order;
immediate visual feedback of the hierarchy creation process.

II. BACKGROUND

Our work depends on three major concepts: Morton Order;
Hierarchical Spatial Data Structures; and Rendering Fronts.
The theory behind them is summarized in this section.
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Morton Order and Hierarchical Spatial Data Structures:
Morton [4] proposed a linearization of 2D grids, later gener-
alized to n-dimensional grids. It results in a z-shaped space-
filling curve, called the Z-order curve. The order in which the
grid cells are visited by following this curve is called Morton
order or Z-order. The associated Morton code for each cell can
be computed directly from the grid coordinates by interleaving
their bits. Morton codes extend naturally to regular spatial
subdivision schemes, thus they are usually used in conjunction
with Hierarchical Spatial Data Structures such as Octrees and
regular Kd-trees (Bintrees). They provide fast data culling and
a direct level-of-detail structure, by mapping the n-dimensional
structure to a one-dimensional list.

Rendering Front: A Rendering Front, hence called only
Front, is a structure to optimize sequential traversals of hier-
archies, and has been used in many works [5]–[8]. Instead of
starting the traversal at the root node for every new frame, it
starts at the nodes where it stopped in the preceding frame.
Fronts have two basic operators: prune and branch. The prune
operator traverses the hierarchy up and the branch operator
works in the opposite direction.

III. RELATED WORK

While the use of points as rendering primitives was in-
troduced very early in Computer Graphics [9], [10], their
widespread adoption only occurred much later, as discussed
on extensive survey literature [11]–[16]. Here we focus the
discussion on multiresolution and LOD structures, establishing
an argument for why a stream-and-feedback-based algorithm
such as OMiCroN is a desirable tool for the academy and
industry.

QSplat [1] is the seminal reference on large point cloud
rendering. It is based on an out-of-core hierarchy of bounding
spheres, which is traversed to render the points. Since its
main limitation is the extensive CPU usage, QSplat was
followed by techniques that load more work onto the GPU.
For example, Sequential Point Trees [17] introduced adaptive
rendering completely on the graphics card by defining a new
octree linearization. Other methods used approaches relying
on the out-of-core paradigm, such as XSplat [18] and In-
stant Points [2]. XSplat proposed a paginated multiresolution
point-octree hierarchy with virtual memory mapping, while



Instant Points extended Sequential Point Trees by nesting
linearized octrees to define an out-of-core system. Layered
Point Clouds [19] proposed a binary tree of precomputed
object-space point cloud blocks that is traversed to adapt
sample densities according to the projected size in the image.
Wand et al. [20] presented an out-of-core octree-based renderer
capable of editing large point clouds and Bettio et al. [21]
implemented a kd-tree-based system for network distribution,
exploration and linkage of multimedia layers in large point
clouds. Other works focused on parallelism using multiple
machines to speed-up large model processing or to render on
wall displays using triangles, points, or both [22]–[26].

More recently, relatively few works have focused on fur-
ther improving the rendering of large point clouds, such as
the method by Lukac et al. [27]. Instead, more effort has
been concentrated on using established techniques in domains
that require the visualization of large datasets as a tool for
other purposes. For example, city visualization using aerial
LIDAR [28], [29], sonar data visualization [30] and, more
prominently, virtual reality [31]–[34].

While the aforementioned papers present very useful and
clever methods to implement or use large point cloud render-
ing, none of them considers presenting data to the user before
the full hierarchy is created.

IV. OVERVIEW

Rendering a hierarchy while it is under construction is a
non-trivial synchronization problem. Since a rendering front
can potentially have access to any node in the hierarchy,
the use of locks might lead to prohibitive performance. We
propose to synchronize those tasks using specific Morton
Curve and Morton Code properties to classify nodes in all
curves composing a hierarchy. This classification is based on
an Oblique Hierarchy Cut, a novel data-structure to represent
hierarchies under construction. Nodes inside an Oblique Cut
are guaranteed to be rendered without interference of the
construction and vice-versa. An overview of the idea can be
seen in Figure 1.

To evaluate if a node is inside an Oblique Cut we need
a methodology that is consistent for all curves at different
hierarchy levels. One that makes sense is to consider a node
inside the cut if all of its descendants are also inside it. Thus,
we need a proper way to relate nodes at Morton Curves at
different levels of the hierarchy. For that purpose, let span(x)
be a function that returns the Morton Code of the right-most
descendant of a supposedly full subtree rooted by x. With
this definition span has several useful properties. First, it
conceptually maps nodes in any hierarchy level with other ones
at the deepest level. Thus, it also maps any Morton Curve to
the Morton Curve at that level. Not only this, but by definition
span(y) <= span(x), for any descendant y of x. Figure 2
shows how span works.

V. OBLIQUE HIERARCHY CUTS

In this section we describe the Oblique Cuts in detail.
Given a conceptual expected hierarchy H , with depth lmax,

an Oblique Hierarchy Cut C consists of a delimiting Morton
code mC and a set of lists LC = {LC,k, LC,k+1...LC,lmax},
where k is the shallowest level of the hierarchy present in the
cut. Each node N is uniquely identified by its Morton code
mN and these two concepts are interchangeable from now on.
Figure 3 contains a schematic view of the data structure. We
now formally define the two operators, concatenate and fix, as
well as the important concept of Placeholder nodes.

A. Operator Concatenate

The operator concatenate is defined as C ′ =
concatenate(C, {x0, ..., xn}), where mC < x0 < ... < xn.
This operator incorporates new lmax level leaf nodes
{x0, ..., xn} to C, resulting in a new cut C ′. The operator
itself is simple and consists of concatenating all new nodes
into list LC,lmax

. This operator is illustrated in Figure 3.

B. Operator Fix

The operator fix definition is C ′′ = fix(C ′). Its purpose is
to insert the ancestors of {x0, ..., xn} that should be in subtrees
in LC′ . To achieve this, it suffices to find an ancestor set S
where span(S) > mC . To identify S, the lists are processed
bottom-up, in Morton order (see Figure 3).

C. Placeholders

According to the aforementioned definition of Oblique
Hierarchy Cut, H can only have leaves at level lmax, since the
concatenate operator only inserts nodes at that level. Leaves
could be inserted into other levels directly, but it would make it
difficult for fix to efficiently maintain morton order. To address
this issue, the concept of placeholder is defined. A placeholder
is an empty node at a given level representing a node at a
shallower level. More precisely, given a node N at level l, its
placeholder PN,l+1 at level l + 1 is defined as the rightmost
possible child of N . Note that, with this definition, PN,lmax

has Morton code span(mN ).
A leaf X in H with level l < lmax is represented by

placeholder PX,i such that l < i ≤ lmax when inserting the
subtree of level i at LC′

i
. Placeholders are used as roots of

degenerate subtrees, since there is no purpose for them inside
subtrees. Even if not meaningful for H , placeholders ensure
morton order in fix until level l is reached.

Intuitively, a sequence of Oblique Hierarchy Cuts Ci result-
ing from sequentially applying operators concatenate and fix
until no more leaf nodes or placeholders are left for insertion
results in an oblique sweep of H .

VI. OBLIQUE HIERARCHY CUT FRONT

Concomitantly with the building of H with progressive
oblique cuts, a rendering process might be traversing the
already processed portions of H with the help of a front
(see Figures 1 and 4). Thus, for a given Oblique Hierarchy
Cut C, the rendering process will adaptively maintain a front
FC restricted to the renderable part of H . In order to ensure
proper independence of FC with respect to C, the nodes in
the front must be in morton order (so siblings are adjacents



(a) Initial (possibly empty) ren-
derable hierarchy and concatenate
operator.

(b) The fix operator: node ances-
tors are inserted into the hierarchy.

(c) After the fix operation the ren-
derable hierarchy is expanded.

Fig. 1. OMiCroN overview. A renderable hierarchy is maintained while inserting incoming nodes in parallel. This cycle is repeated until the whole hierarchy
is constructed.

0 1 7

0

root

8 9 15

1

57 58 63

7

Morton order

span(0) = 7
span(1) = 15

span(root) = 63

span(57) = 57

mC = 7

Fig. 2. span. In the example, the cut is defined by the delimiting Morton
Code mC = 7, defined at the deepest level. Each pair of colored squares
shows the input and result of span. The blue square case is inside the cut
because span(0) = 7 <= 7. The other cases (red, green and black) are
outside of the cut because span(x) > 7. It is important to note that the
operation is defined for any level of the hierarchy, even for nodes at the
deepest level, where span(x) = x.

and prune is trivial) and the roots of subtrees in LC cannot
enter the Front (so roots moved by fix do not interfere in
rendering). Similarly, placeholders cannot be pruned either
since their parents might not yet be defined. An example of a
valid Oblique Hierarchy Cut Front is given in Figure 4.

In summary, the evaluation of an Oblique Hierarchy Cut
Front consists of three steps:

1) Concatenate new placeholders into the front.
2) Choose the hierarchy level l where candidates for substi-

tuting placeholders in the front are to be sought.
3) Iterate over all front nodes, testing whether they are

placeholders that can be substituted, and whether they
need to be pruned, branched or rendered.

A. Insertion of new nodes

Since the root of H is only available after all sequential
cuts are evaluated, the usual front initialization is not possible
for FC . In order to simplify leaf and placeholder insertion
and substitution, all leaves are first inserted in the front as
placeholders and saved in a per-level list of leaves to be
replaced. One main reason for this duplication is that new
nodes are always inserted as roots in LC,lmax , and cannot

enter the front. Thus, placeholders mark their position until
the fix operator moves them to other subtrees.

B. Substitution of placeholders

Since the leaf lists are organized by level, and the place-
holders and leaves are respectively inserted into the front and
into the lists in Morton order, a very simple and efficient
substitution scheme is proposed. Given a placeholder and a
substitution level l, it consists in verifying if the first element
in the leaf list of level l is an ancestor of the placeholder. If it
is, the leaf is removed from the substitution list and replaces
the placeholder in the front. Since comparison of Morton codes
is a fast O(1) operation, the entire placeholder substitution
algorithm is also O(1). Keeping in mind that for each front
evaluation a single level l will be checked for substitution, all
leaves at that level are guaranteed to be substituted in a single
frame.

C. Choice of substitution level

In order to maximize node substitution, l is chosen as the
level with most insertions. This is an obvious choice, since
the list will be completely emptied after the evaluation, so
we are substituting the maximum number of placeholders in
one iteration. The nodes not substituted in the current front
evaluation are ignored since their corresponding leaves are not
in level l. However, the algorithm guarantees that all currently
inserted leaves will substitute their placeholders in the next
lmax − 1 front evaluations at max. Thus, the delay to starting
rendering a leaf node after insertion is minimal.

D. Leaf collapse

In order to maintain the use of main memory within a given
budget, it is also possible to enable a very simple optimization,
called Leaf Collapse. This optimization removes all leaves at
level lmax which form a chain structure with their parents,
i.e., leaves that do not have siblings.

VII. EXPERIMENTS

The prototype implementation was tested using four point
cloud datasets obtained at the Digital Michelangelo Project
page: David (469M points, 11.2GB), Atlas (255M points,

https://graphics.stanford.edu/projects/mich/
https://graphics.stanford.edu/projects/mich/


Fig. 3. Oblique Hierarchy Cut and operators concatenate and fix. A cut C
is defined by a delimiting Morton code mC and a list of roots per level LC

(a). The green color represent nodes already created and inside the cut. The
red color indicates nodes not created yet, which exist only in the conceptual
expected hierarchy H . The concatenate operator inserts new roots x0 and x1

at the deepest level lmax, resulting in cut C′ (b). Then, operator fix traverses
subtrees bottom-up, creating parents until the boundary S is reached.

6.1GB), St. Mathew (187M points, 4.5GB) and Duomo (100M
points, 2.4GB). The maximum hierarchy depth was set to 7 to
ensure memory footprints compatible with available memory
and swap area. Coordinates in all datasets were normalized to
range [0, 1].

Fig. 4. Example of valid Oblique Hierarchy Cut Front. The direction of the
blue arrows indicate the order restriction. The nodes in the front cannot be
roots in LC′′ .

A. Rendering latency tests

In order to assess the actual delay from the moment the
raw unsorted collection of points is available, and the moment
where rendering actually starts, we must consider the sorting
process in some depth. Our testbed consists of a desktop
computer with an Intel Core i7-3820 processor with 16GB
memory, NVidia GeForce GTX 750 and a SanDisk 120GB
SSD. The same SSD is used for swap and I/O.

The first experiment consists of consecutively sorting and
streaming chunks of the input to OMiCroN. Parallel rendering
and leaf collapse are enabled for these tests. Using more
chunks allows rendering to start earlier, as shown in Figure 5.
In particular, increasing the number of sorting chunks can
improve the time between the moment input finishes and
rendering starts from 5 to 31 times, depending on the size
of the dataset. For large datasets, the partial sort can diminish
the use of swap during sort and hierarchy creation, resulting
in better timings in all aspects, as Figure 5c demonstrates.

The second experiment consists of profiling and comparing
OMiCroN with the parallel rendering activated and deactivated
at hierarchy creation time, also evaluating the system core
usage while running the algorithm. The input for this test
consists of the datasets already sorted in Morton order and the
data is streamed directly from disk. Leaf collapse is disabled.
Figure 6 shows the results. The overhead imposed is between
20% (David) and 34% (St.Mathew), which is an evidence that
the overhead impact decreases as the dataset size increases.
The final observation from this experiment is that OMiCroN
maintains the usage of all 8 logical cores near 90% with peaks
of 100% for the entire hierarchy creation procedure.

The third experiment’s purpose is to generate data for better
understanding the hierarchy creation progression over time. It
consists of measuring the time needed to achieve percentile
milestones of hierarchy creation. For this test, the sorted data
is streamed directly from disk, parallel rendering is enabled
and leaf collapse is disabled unless pointed otherwise. The
results are presented in Figure 7. We can conclude that the
hierarchy construction has the expected linear progression.



(a) St. Mathew. (b) Atlas (c) David

Fig. 5. Impact of the number of sort chunks. After a constant time spent reading the input (blue), the first chunk is sorted (red), starting the parallel hierarchy
creation and rendering (orange). The first column in all charts corresponds to the case where all input is sorted before the hierarchy creation begins.

Fig. 6. Comparison of hierarchy creation with and without parallel rendering.
Sorted data is streamed directly from disk. The overhead imposed by parallel
rendering is between 20% (David) and 34% (St. Mathew).

Fig. 7. Hierarchy creation over time. Sorted data is streamed directly from
disk, parallel rendering is enabled and leaf collapse is disabled unless pointed
otherwise.

B. Hierarchy creation and rendering

A second set of experiments were conducted to assess
OMiCroN’s behavior in terms of memory usage and per-
formance. All experiments in this set read a sorted dataset
directly from disk. The test system had an Intel Core i7-6700,
16GB memory, NVidia GeForce GTX 1070, and secondary

SSD storage with roughly 130 MB/s reading speed. Two
main parameters impact OMiCroN’s memory footprint: Leaf
Collapse optimization and parent to children point ratio, as
shown in Table I. These also impact the reconstruction quality
of the algorithm as can be seen in Figure 8.

TABLE I
RELATIONSHIP BETWEEN THE ALGORITHM RECONSTRUCTION

PARAMETERS – LEAF COLLAPSE, PARENT TO CHILDREN RATIO – AND
MEMORY FOOTPRINT, TOTAL HIERARCHY CREATION TIMES, AND

AVERAGE CPU USAGE PER FRAME.

Model Coll Ratio Mem Creation CPU

David On 0.2 8.5GB 146.3s 7.6ms
David On 0.25 9.9GB 151.2s 8.8ms
David Off 0.2 21GB 229.8s 16.7ms
Atlas On 0.2 2.3GB 77.8s 11.9ms
Atlas On 0.25 3.0GB 81.9s 11.0ms
Atlas Off 0.2 11.5GB 120.8s 16.2ms

Mathew On 0.2 1.7GB 59.6s 13.7ms
Mathew On 0.25 2.2GB 60.9s 11.6ms
Mathew Off 0.2 8.4GB 80.6s 25ms
Duomo On 0.2 0.9GB 31.0s 18.2ms
Duomo On 0.25 1.2GB 32.6s 23.1ms
Duomo Off 0.2 4.5GB 40.0s 21.9ms

Even though limited to datasets that fit in RAM unless swap
space is used, OMiCroN can be set up to fit a broad range of
memory budgets maintaing rendering quality.

C. Comparisons
We also found it useful to compare OMiCroN with other

algorithms that create hierarchies for large datasets. To this
end, we evaluated the hierarchy creation algorithm used in
the large point cloud renderer Potree [35]. The methodology
was to compare the best cases in Figures 5a, 5b and 5c,
which include input, sorting, hierarchy creation and rendering,
and the timings reported by Potree, which include input and
hierarchy creation. All tests created hierarchies with depth 7.

Figure 9 shows the results for St. Matthew, Atlas and David.
OMiCroN is more than 2 times faster for David and more than



(a) David, leaf collapse on, 0.2 point ratio. (b) David, leaf collapse on, 0.25 point ratio. (c) David, leaf collapse off, 0.25 point ratio.

(d) Atlas, leaf collapse on, 0.2 point ratio. (e) Atlas, leaf collapse on, 0.25 point ratio. (f) Atlas, leaf collapse off, 0.25 point ratio.

(g) St. Mathew, leaf collapse on, 0.2 point ratio. (h) St. Mathew, leaf collapse on, 0.25 point ratio. (i) St. Mathew, leaf collapse off, 0.25 point ratio.

(j) Duomo, leaf collapse on, 0.2 point ratio. (k) Duomo, leaf collapse on, 0.25 point ratio. (l) Duomo, leaf collapse off, 0.25 point ratio.

Fig. 8. Rendering comparison of hierarchies with different leaf collapse and parent to children point ratio parameters. As can be seen from items (a) to (i),
the final reconstructions are very detailed even at close range and the differences when the leaf collapse is turned on are almost imperceptible for the David,
Atlas and St. Mathew datasets. The hierarchy for Duomo suffers from lack of density when leaf collapse is turned on because the dataset itself has smaller
density in comparison with the others.

4 times faster for St. Matthew and Atlas. An important detail
is that Potree reports creating a hierarchy with only 68% of the
input points for David, whereas St. Matthew and Atlas result
in 100% of input points usage.

VIII. FINAL REMARKS

In this work, we presented OMiCroN, a flexible and generic
algorithm for rendering large point clouds. We know of no
other method that can render incomplete hierarchies with full
detail in parallel with its construction and data sorting. We
also defined the novel idea of Hierarchy Oblique Cut, a strong
concept that can be used to apply sweeps on hierarchies.

Additionally, OMiCroN opens the path for new workflows
based on streaming of spatially sorted data. Supposing that
large scans could be streamed directly in Morton order, the
data could be rendered without any delays at all. Another
advantage is that a dataset sorted in a Morton code level can
be rendered by OMiCroN using a hierarchy with any level less
or equal to the sorting level.
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