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Abstract—Global properties, such as connectivity, shape con-
straints and boundary polarity, are useful high-level priors for
image segmentation, allowing its customization for a given target
object. In this work, we introduce a new method called Connected
Oriented Image Foresting Transform (COIFT), which provides
global optimum solutions according to a graph-cut measure,
subject to the connectivity constraint in Oriented Image Foresting
Transform (OIFT), ensuring the generation of connected objects,
as well as allowing the simultaneous control of the boundary
polarity. While the use of connectivity constraints in other
frameworks, such as in the min-cut/max-flow algorithm, leads to
an NP-Hard problem, COIFT conserves the low complexity of the
OIFT algorithm. Experiments show that COIFT can considerably
improve the segmentation of objects with thin and elongated
parts, for the same number of seeds in segmentation based on
markers.

I. INTRODUCTION

Object segmentation is one of the most fundamental and
challenging problems in image processing and computer vi-
sion. In this work, we focus on seed-based methods for in-
teractive image segmentation [2]–[6], where the user provides
a partial labeling by drawing scribbles on the image (seed
pixels). A graph derived from the image is then partitioned
among the different labeled seeds according to some energy
formulation, which can be roughly described in a unified
manner according to a common framework, sometimes re-
ferred to as, Generalized Graph Cut (GGC) [7], [8]. Within
this framework, there are two important classes of energy
formulations, the ε1- and ε∞-minimization problems [7], the
former including the min-cut/max-flow algorithm [3], whereas
the latter class encompasses methods, such as watersheds [6],
fuzzy connectedness [5], and some cases of image foresting
transform (IFT) [9].

Connectedness is an important global topology property,
which can be used as a high-level prior for object segmenta-
tion. For a given binary image that represents the segmentation
result, in this work, we consider a connected component as a
maximal set of pixels, such that there are paths composed
by adjacent pixels (ex: 4-neighborhood or 8-neighborhood)
interconnecting all its elements and passing exclusively within
the object. In this context, the seed-based methods can be
classified into three groups, according to their level of Con-
nectedness: (1) In the first group, we have methods that do

* This work relates to the PhD thesis of the first author [1].

not guarantee any level of connectedness (Figures 1a-b). In
the graph cut (GC) community, this is usually referred to
as the disconnection problem of GC, when the source and
sink nodes are connected to all image pixels [3]. (2) In the
second group, we have methods that guarantee that object’s
pixels are connected to some internal seed. However, note
that the object could be composed by several disconnected
components, as long as we have some object’s seeds in each
component (Figure 1c). The majority of methods belong to
this class, including fuzzy connectedness and watershed from
markers [5], [6]. (3) In the third group, we have methods that
guarantee that the segmented object forms a single connected
component in the image domain [10]–[13]. This is especially
important when the target is a single object (Figure 1d).

(a) (b)

(c) (d)

Fig. 1. (a) Input image with user selected seeds. (b) Segmentation by Graph
cut showing the disconnection problem of an object region that is not marked
by any seed on the right. (c) Segmentation by IFT resulting in disconnected
components that are all marked by some object seed. (d) Segmentation by the
proposed method producing a single connected component.

In this work, we use the term connectivity constraint to
indicate methods from the third group. The ε1-minimization
among all objects satisfying the connectivity constraint was
proved to be NP-Hard [10], [11]. Vicente et al. [10] propose
a heuristic algorithm, named DijkstraGC, which merges the
Dijkstra algorithm and graph cut. DijkstraGC is still slow,
since it requires many calls to the maxflow algorithm. Other



method, named Topology cuts, by Zeng et al. [11] also finds
only an approximate solution to incorporate topology priors
in the min-cut/max-flow algorithm. Nowozin and Lampert
adopted a different approach solving a related optimization
problem, which forces the output labeling to be connected in
the framework of recent maximum a posteriori (MAP)-MRF
linear program (LP) relaxations [12], [13].

In this PhD thesis, our main goal was to develop a new seed-
based segmentation method that guarantees optimal results
subject to the connectivity constraint in the ε∞-minimization
problem of the GGC framework.

In Section II we review IFT and OIFT. In Sections III
and IV we present and evaluate our proposed method, and
our conclusions are stated in Section V.

II. IMAGE GRAPH CONCEPTS

A 2D/3D image can be interpreted as a weighted digraph
G = ⟨V,A, ω⟩, whose nodes V are the image pixels/voxels in
its image domain I ⊂ Zn, and whose arcs are the ordered pixel
pairs ⟨s, t⟩ ∈ A. The digraph G is symmetric if for any of its
arcs ⟨s, t⟩ ∈ A, the pair ⟨t, s⟩ is also an arc of G. Each arc
⟨s, t⟩ ∈ A has a weight ω(⟨s, t⟩), such as a dissimilarity mea-
sure between pixels s and t (e.g., ω(⟨s, t⟩) = ∣I(t)−I(s)∣ for a
single channel image with values given by I(t)). For a given
image graph G = ⟨V,A, ω⟩, a path π = ⟨t1, t2, . . . , tn⟩ is a se-
quence of adjacent pixels (i.e., ⟨ti, ti+1⟩ ∈ A, i = 1,2, . . . , n−1)
with no repeated vertices (ti ≠ tj for i ≠ j). Other greek
letters, such as τ , can also be used to denote different paths.
A path πt = ⟨t1, t2, . . . , tn = t⟩ is a path with terminus at a
pixel t. When we want to explicitly indicate the origin of the
path, the notation πs;t = ⟨t1 = s, t2, . . . , tn = t⟩ may also be
used, where s stands for the origin and t for the destination
node. More generally, we can use πS;t = ⟨t1, t2, . . . , tn = t⟩
to indicate a path with origin restricted to a set S (i.e., t1 ∈ S).
A path is trivial when πt = ⟨t⟩. A path πt = πs ⋅⟨s, t⟩ indicates
the extension of a path πs by an arc ⟨s, t⟩.

A predecessor map is a function P that assigns to each pixel
t in V either some other adjacent pixel in V , or a distinctive
marker nil not in V — in which case t is said to be a root
of the map. A spanning forest is a predecessor map which
contains no cycles — i.e., one which takes every pixel to nil
in a finite number of iterations. For any pixel t ∈ V , a spanning
forest P defines a path πPt recursively as ⟨t⟩ if P (t) = nil,
and πPs ⋅ ⟨s, t⟩ if P (t) = s ≠ nil.

A. Image Foresting Transform (IFT)

A connectivity function computes a value f(πt) for any
path πt, usually based on arc weights. A path πt is optimum
if f(πt) ≤ f(τt) for any other path τt in G. By taking to each
pixel t ∈ V one optimum path with terminus at t, we obtain
the optimum-path value V fopt(t), which is uniquely defined by
V fopt(t) = min

∀πt in G
{f(πt)}.

The image foresting transform (IFT) [9] takes an image
graph G = ⟨V,A, ω⟩, and a path-cost function f ; and assigns
one optimum path to every pixel t ∈ V such that an optimum-
path forest P is obtained — i.e., a spanning forest where all

paths πPt for t ∈ V are optimal. However, f must meet certain
admission criteria, otherwise, the paths may not be optimal,
as demonstrated in [14].

The cost of a trivial path πt = ⟨t⟩ is usually based on a seed
set S, and the cost for non-trivial paths follow a path-extension
rule. The path-cost function f /∥ Smax is a Monotonic-Incremental
cost function (MI) and, consequently, is guaranteed to provide
optimum results in the IFT framework [9]. This function will
be important in COIFT. Note that f /∥ Smax processes anti-parallel
arcs ⟨t, s⟩ along the path, which requires a symmetric digraph.

f /∥ Smax(⟨t⟩) = {
−1 if t ∈ S
+∞ otherwise

f /∥ Smax(πs ⋅ ⟨s, t⟩) = max{f /∥ Smax(πs), ω(⟨t, s⟩)} (1)

The IFT algorithm computes a path-cost map V , which
converges to V fopt if f is a MI function [9], [14]. It is also
optimized in handling infinite costs, by storing in its priority
queue Q only the nodes with finite-cost path, assuming that
V fopt(t) < +∞ for all t ∈ V .

B. Oriented Image Foresting Transform (OIFT)

Let G be a strongly connected and symmetric digraph,
where the weights ω(⟨s, t⟩) are a combination of an undirected
dissimilarity measure δ(⟨s, t⟩) between neighboring pixels s
and t, multiplied by an orientation factor, i.e., ω(⟨s, t⟩) =

δ(⟨s, t⟩)×(1+α) if I(s) > I(t), ω(⟨s, t⟩) = δ(⟨s, t⟩)×(1−α)
if I(s) < I(t) and ω(⟨s, t⟩) = δ(⟨s, t⟩) otherwise, where
α ∈ [−1,1]. Different procedures can be adopted for δ(⟨s, t⟩),
as discussed in [15], [16], such as the absolute value of the
difference of image intensities (i.e., δ(⟨s, t⟩) = ∣I(s) − I(t)∣).
Note that we usually have ω(⟨s, t⟩) ≠ ω(⟨t, s⟩) when α ≠ 0.
For colored images, a reference map should be considered for
I(t) or α must be set to zero [17].

OIFT is build upon the IFT framework by considering the
following path function in a symmetric digraph:

f♂
(⟨t⟩) = {

−1 if t ∈ S1 ∪ S0
+∞ otherwise

f♂
(πr;s ⋅ ⟨s, t⟩) = {

ω(⟨s, t⟩) if r ∈ S1
ω(⟨t, s⟩) otherwise (2)

where S1 and S0 denote, respectively, the set of seeds selected
inside and outside the object to be segmented.

The segmented object OP by OIFT is defined from the
forest P computed by the IFT algorithm, with f♂, by taking
as object pixels the set of pixels that were conquered by paths
rooted in S1, i.e., OP = {t ∈ V ∣ πPt = τS1;t}. For α > 0, the
segmentation by OIFT favors transitions from bright to dark
pixels, and α < 0 favors the opposite orientation.

The optimality of OP by OIFT is supported by the max-
imization of an energy criterion of cut in graphs involving
arcs from object to background pixels C(OP ) (outer-cut
boundary) [17], [18].

C(O) = {⟨s, t⟩ ∈ A ∣ s ∈ O and t ∉ O} (3)
E(O) = min

⟨s,t⟩∈C(O)
ω(⟨s, t⟩) (4)



III. OIFT WITH CONNECTIVITY CONSTRAINTS

A. Connectivity Constraints
An object O is connected if for any pair of vertices

p, q ∈ O there is a path πp;q = {t1 = p, t2, ..., ti, ..., tn = q},
such that ti ∈ O, 1 ⩽ i ⩽ n. In this work, we introduced the
concept of γ-connectivity in relation to a given set S1 of
internal seeds, which is described by Definition 1, where
V⊙(c, γ) is a disk with center c and radius γ, defined by
V⊙(c, γ) = {t ∈ I ∣ ∥t − c∥ ⩽ γ}, such that ∥t − c∥ is the Eu-
clidean distance between vertices t and c.

Definition 1 (γ-connected object). For a given object O and
set of seeds in its interior S1, let Rγ(O) be the set of all
vertices t ∈ O, such that t is the center of a disk with radius
γ, which is completely contained in the object O. That is,
Rγ(O) = {t ∈ O ∣ V⊙(t, γ) ⊆ O}. An object O is γ-connected
in relation to S1 if the seeds in S1 are all in the same connected
component of Rγ(O). That is, for any pair of vertices p, q ∈
S1, there is a path πp;q = {t1 = p, t2, ..., ti, ..., tn = q}, such
that ti ∈ Rγ(O), 1 ⩽ i ⩽ n (Figure 2).

(a) A 1-connected object in relation to {r1, r2, r3}

(b) A non-3-connected object in relation to {r1, r2, r3}

Fig. 2. Examples of γ-connected and non-γ-connected objects. For an
object O with S1 = {r1, r2, r3}, we have in: (a) A region Rγ(O) with
γ = 1 (shaded region) such that r1, r2 and r3 belong to the same connected
component of Rγ(O), identifying a 1-connected object. (b) A region Rγ(O)
with γ = 3 (shaded region) such that r1 does not belong to the same
connected component of r2 and r3 in Rγ(O), thus, not satisfying the
constraint of 3-connectivity. Note that for γ = 1, the paths πr1↝r2 , πr2↝r3
and πr1↝r3 = πr1↝r2 ⋅πr2↝r3 are completely contained in Rγ(O) and for
γ = 3 there are no paths that interconnect r1 with r2 (neither r1 with r3)
and that are completely contained in Rγ(O).

B. Segmentation of a connected object via COIFT
In order to resolve the disconnection problem in image

segmentation, in [19] we successfully incorporated connec-
tivity constraints in the OIFT approach, resulting in a novel
method named Connected Oriented Image Foresting Trans-
form (COIFT), which simultaneously handle boundary polarity
and connectivity constraints.

Let A be a given set of pixels, the optimum energy
value using the set A as internal seeds is denoted by

EA = max
O∈U(A,S0)

E(O). According to the same notation, E{t}
denotes the optimum energy from a single internal seed, when
S1 = {t}. COIFT is supported by the following propositions:

Proposition 1. Let EA∪B be the energy of a seed set A ∪B.
The optimum energy EA∪B among all objects in U(A∪B,S0),
satisfies EA∪B =min{EA,EB}.

Proposition 2. For a given strongly connected and symmetric
digraph G, and sets of seeds S1 and S0, such that S1 = {t}

we have that E{t} = V
f
/∥S0
max

opt (t).

V f
/∥S0
max

opt (t) is the cost of an optimum path by function f /∥ S0
max

(Eq. 1). Hence, the first step of COIFT can be accomplished
by computing V f

/∥S0
max

opt (t) = E{t} for all t ∈ V , which requires
one execution of the IFT algorithm with f /∥ S0

max , using only the
external seeds in S0 to initialize the costs of trivial paths. So,
in a second step, we interconnect disconnected seeds in S1
through pixels with higher energy values of E{t} obtaining a
new connected set of internal seeds Sc1 . For that, we consider a
particular case of the cost function employed by the Riverbed
method [20] (see Figure 3). In the last step, we simply

(a) E(O) = 7 (b) E(O) = 4

Fig. 3. Graph representation with segmentation results by: (a) OIFT. (b)
COIFT. The riverbed path (red line) interconnects the disconnected internal
seeds passing through regions with higher values of E{t}.

compute the OIFT method with f♂ from seed sets Sc1 and S0,
generating a final result, which is guaranteed to be a connected
object (Theorem 1).

Theorem 1 (Cut optimality by COIFT). For two given
sets of seeds S1 and S0, let U(S1,S0) be the universe of
all possible objects satisfying the seed constraints and let
Uc(S1,S0) = {O ∈ U(S1,S0) ∣ G[O] is strongly connected},
where G[O] is the subgraph of G induced by O, denote
the universe of all possible connected objects satisfying the
seed constraints. Any segmented object Oc computed by the
COIFT algorithm (Algorithm 1) maximizes E(O) (Eq. 4)
among all possible segmentation results in Uc(S1,S0). That
is, E(Oc) = max

O∈Uc(S1,S0)

E(O).

Algorithm 1. – COIFT ALGORITHM



INPUT: Digraph G = ⟨I, A, ω⟩, sets S1 and S0 of seeds
and cost function f♂.

OUTPUT: A component ⟨L, P, V ⟩ containing label map L,
spanning forest P and path-cost map V .

AUXILIARY: Optimum-path cost map V
f
∦S0
max

opt , energy map
E ∶ I → R and set Sc1 of seeds.

1. Compute ⟨−, −, V
f
∦S0
max

opt ⟩← IFT (G, ∅, S0, f∦S0
max)

2. For each t ∈ I , do

3. E(t)← V
f
∦S0
max

opt (t)
4. Compute Sc1 ← NewObjSeeds(G, S1, E)

5. Compute ⟨L, P, V ⟩← IFT (G, Sc1, S0, f♂
)

Return ⟨L, P, V ⟩

Algorithm 2. – NEWOBJSEEDS ALGORITHM

INPUT: Digraph G = ⟨I, A, ω⟩, set S1 of seeds and
energy map E ∶ I → R.

OUTPUT: Set Sc1 of seeds.
AUXILIARY: Path forest Priver , cost function f ′river and vari-

ables s∗, K1 and pred.

1. s∗ ← argmin
t∈S1

E(t)

2. K1 ←max
t∈I
E(t)

3. For each t ∈ I , do
4. ωv(t)←K1 − E(t).
5. Compute ⟨−, Priver, −⟩← IFT (G, {s∗}, ∅, f ′river)
6. Sc1 ← ∅

7. For each t ∈ S1, do
8. pred← t
9. While pred ≠ nil, do
10. Sc1 ← Sc1 ∪ {pred}
11. pred← Priver(pred)
Return Sc1

C. Segmentation of a γ-connected object via COIFT

In [21] we proposed a COIFT extension in order to segment
γ-connected objects in relation to S1, for that we introduce
a new parameter that controls the width of the connectivity
regions, making COIFT more adaptable to different objects.
In this configuration COIFT is called COIFT with adjustable
width.

Let EV⊙(t,γ) be the optimum energy from a single disk
V⊙(t, γ), using V⊙(t, γ) as internal seeds. From Propo-
sitions 1 and 2 we have EV⊙(t,γ) = min

p∈V⊙(t,γ)
E{p} and

EV⊙(t,γ) = min
p∈V⊙(t,γ)

V f
∦S0
max

opt (p).

The algorithm of COIFT with adjustable width comprises
the following three steps: (1) First, we compute EV⊙(t,γ)
for all t ∈ I (Figures 4c,d). (2) Secondly, we interconnect
disconnected seeds in S1, by computing paths passing through
pixels t with maximum energy EV⊙(t,γ), resulting in a new
connected set of internal seeds Sc1 (Figure 4e). For that, we
use another particular case of the cost function employed by
the Riverbed method [20]. In order to guarantee the width of
the γ-connected object in relation to S1, we consider the disks
centered at the set Sc1 to obtain a new connected set of internal
seeds Sγc1 . (3) In the last step, we compute the OIFT method
with f♂ from seed sets Sγc1 and S0, generating a final result,
which is guaranteed to be a γ-connected object (Theorem 2).

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Graph representation with segmentation results by: (a) OIFT. (b)
COIFT (γ = 0), the riverbed path interconnecting the seeds and the values
of E{t} for each region are shown in red. (c-f) COIFT with γ = 1.0. In
(c), we can observe how the energy of the disk V⊙(a, γ) is computed for
the pixel a, i.e., EV⊙(a,γ) = min{E{a1},E{a2},E{a3},E{a4},E{a}} =
min{3,5,4,5,5} = 3. The colored regions in (d) represent the final energy
regions EV⊙(t,γ) for all t ∈ V . (e) The riverbed path interconnecting the
internal seeds is shown. (f) A 1-connected object in relation to the initial set
of internal seeds is obtained.

Theorem 2 (Cut optimality by COIFT with adjustable width).
For two given set of seeds S1 and S0, let Uγc (S1,S0) =

{O ∈ U(S1,S0) ∣ O is γ-connected in relation to S1} be the
set of all γ-connected objects in relation to S1 satisfying
the seed constraints (i.e., Uγc (S1,S0) ⊆ U(S1,S0)). Any
segmented object Oγc computed by the COIFT-with-adjustable-
width algorithm (Algorithm 3) maximizes E(O) (Eq. 4) among
all possible segmentation results in Uγc (S1,S0). That is,
E(O

γ
c ) = max

O∈U
γ
c (S1,S0)

E(O).

Algorithm 3. – COIFT-WITH-ADJUSTABLE-WIDTH
ALGORITHM

INPUT: Digraph G = ⟨I, A, ω⟩, sets S1 and S0 of seeds
and cost function f♂.

OUTPUT: A component ⟨L, P, V ⟩ containing label map L,
spanning forest P and path-cost map V .

AUXILIARY: Optimum-path cost map V
f
∦S0
max

opt , energy map
E⊙ ∶ I → R and set Sγc1 of seeds.

1. Compute ⟨−, −, V
f
∦S0
max

opt ⟩← IFT (G, ∅, S0, f∦S0
max)

2. For each t ∈ I , do



3. E⊙(t)← min
p∈V⊙(((t,γ)))

V
f
∦S0
max

opt (p)

4. Compute Sγc1 ← NewDiskObjSeeds(G, S1, E⊙)

5. Compute ⟨L, P, V ⟩← IFT (G, Sγc1 , S0, f♂
)

Return ⟨L, P, V ⟩

Algorithm 4. – NEWDISKOBJSEEDS ALGORITHM

INPUT: Digraph G = ⟨I, A, ω⟩, set S1 of seeds and
energy map E⊙ ∶ I → R.

OUTPUT: Set Sγc1 of seeds.
AUXILIARY: Path forest Priver , cost function f ′river , set Sc1 of

seeds and variables s∗, K2 and pred.

1. s∗ ← argmin
t∈S1

E⊙(t)

2. K2 ←max
t∈I
E⊙(t)

3. For each t ∈ I , do
4. ωv(t)←K2 − E⊙(t).
5. Compute ⟨−, Priver, −⟩← IFT (G, {s∗}, ∅, f ′river)
6. Sc1 ← ∅

7. For each t ∈ S1, do
8. pred← t
9. While pred ≠ nil, do
10. Sc1 ← Sc1 ∪ {pred}
11. pred← Priver(pred)
12. Sγc1 ← ∅

13. For each t ∈ Sc1, do
14. Sγc1 ← S

γc
1 ∪V⊙(((t, γ)))

Return Sγc1

In the PhD thesis, we also extended the theoretical analysis
of our works [19] and [21] in order to improve the handling
of ambiguities in the energy formulation of COIFT without
affecting its theoretical results but improving the quality of
the resulting segmentation.

Figure 5 shows an example of the segmentation by OIFT
and COIFT for the same user-selected markers, making clear
the advantages of COIFT.

(a)

(b) OIFT (c) COIFT with γ = 1.0

Fig. 5. (a) Input image with user-selected markers. (b) A poor segmentation
result is obtained by OIFT. (c) An improved segmentation result by COIFT.

IV. EXPERIMENTS

In our experiments we compared COIFT against other
methods with competitive running times (IRFC [5], OIFT [18],

ORFC+GC [22], [23]), to show how ε∞-minimization (or
equivalently E(O)-maximization) based methods can benefit
from the use of connectivity constraints. In order to stress
the methods, we only considered the image-based weight
assignment from [16] for δ(s, t), without any prior intensity
distribution model, aiming a higher challenge. We used α = 0.5
for all methods with boundary polarity constraints.

A. Experiments of COIFT without adjustable width

The experiment was conducted using a robot user, as
proposed by Gulshan et al. [24], to simulate user interaction
by placing brush strokes automatically to iteratively perform
the segmentation task. We used 40 slice images from CT
cervical spine studies of 10 subjects to segment the spinal-
vertebra (Figures 6g-i). Figure 6 shows segmentation results
by OIFT [18] and COIFT for the same user-selected markers,
making clear the advantages of COIFT. Figure 7 shows the
experimental curve using the robot user, which confirms the
same results.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. (a,d,g) Input images with user-selected markers. (b,e,h) Segmentation
without connectivity constraints. (c,f,i) The proposed results by COIFT
guarantee connected objects.

B. Experiments of COIFT with adjustable width

Since segmentation errors of objects with thin and elongated
parts do not result in significant differences in the evaluation
measure using the Dice Coefficient due to the small number
of pixels contained in these regions. In our experiments, we
used the Boundary Error 1 as a comparison measure between
the evaluated methods in order to better differentiate their
performances. Also, a second approach was considered to
automatically get the sets of seeds, that simulates the selection

1The error was computed as the mean distance of the ground truth boundary
from the delineated boundary.
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Fig. 7. Spinal-vertebra mean accuracy curve by a robot user.

of seeds with a large brush in the bigger parts of the object
and a small brushstroke at the extreme parts of its thin
and elongated parts. The skeleton extremes together with the
erosion of the object in the ground truth of the images were
used to obtain the internal seed set S1 and in the case of the
external seed set S0 only the erosion of the background was
computed for the same erosion radius considered to obtain S1.

In our experiments with COIFT with adaptable width con-
sidering the handling of energy ties, we used two image
datasets composed of 100 images of birds and 130 images of
spiders, insects and another invertebrates 2. The ground truth
for these images was generated by manual segmentation and
it is publicly available to the community 3.

Figures 8 and 9 show the mean error curves to segment
the dataset of birds and the dataset of spiders, insects and an-
other invertebrates, respectively. Note that ORFC+GC (green
curve) [22], [23] did not perform well in these datasets because
it was not able to segment some thin and elongated parts of
the objects.

V. CONCLUSION

In this work, we have as main results: (1) A novel
method called Connected Oriented Image Foresting Transform
(COIFT), that support a user-controllable minimum width
of the connectivity constraint. We also improved the han-
dling of ties in COIFT energy formulation and discussed
its application to avoid objects with holes, by applying the
connectivity constraint for the background seeds. The new
method, successfully incorporates connectivity constraints on
OIFT, preserving its low time complexity O(N = ∣V ∣) (when
Q is implemented using bucket sorting [9]), since it requires
only four executions of the IFT algorithm. (2) The theoretical
analysis of a particular case of the cost function of the
Riverbed method that guarantees an optimal result according
to a graph-cut measure [25]. (3) The theoretical analysis of the

2 These images are released under Creative Commons CC0 into the public
domain, available at the web site https://pixabay.com/.

3URL: http://www.vision.ime.usp.br/∼lucyacm/thesis/coift.html.
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Fig. 8. The mean error curve (boundary error) for the segmentation of the
dataset of birds.
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Fig. 9. The mean error curve (boundary error) for the segmentation of the
dataset of spiders, insects and another invertebrates.

IFT definition, pointing out a failure in its original PAMI paper
and presenting sufficient conditions for its correctness [26]. (4)
The design of three new ground truth datasets from 280 public
images 4, which contain objects with thin and elongated parts,
available to the community 5. (5) Four conference papers were
published in international events of high regard [19], [21], [25],
[26]. This work also received the best doctoral thesis award
at WVC2018 - XIV Workshop de Visão Computacional.
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