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Abstract—This work addresses the person re-identification
problem, which consists on matching images of individuals cap-
tured by multiple non-overlapping surveillance cameras. Works
from literature tackle this problem extracting characteristics that
are robust to different poses and illumination conditions, and
matching functions to assign the correct identity for individuals.
More scalable and accurate matching functions is the focus of
this work'. Specifically, we propose two matching methods: the
Kernel MBPLS and the Kernel X-CRC. The Kernel MBPLS
is a nonlinear regression model that is scalable with respect to
the number of cameras and allows the inclusion of additional
labelled information (e.g., attributes). Differently, the Kernel X-
CRC is a nonlinear and multitask matching function that can
be used jointly with subspace learning approaches to boost the
matching rates. We present an extensive experimental evaluation
of both approaches in four datasets (VIPeR, PRID450S, WARD
and Market-1501). Experimental results demonstrate that the
Kernel MBPLS and the Kernel X-CRC outperforms approaches
from literature. Furthermore, we show that the Kernel X-CRC
can be successfully applied in large-scale datasets.

I. INTRODUCTION

Person re-identification (Re-ID) consists in establishing
correspondences between pedestrian images captured by mul-
tiple non-overlapping cameras. The goal in a person re-
identification system is to look for previous occurrences of
a probe image in the gallery-sets of all cameras connected in
a surveillance camera network. Re-ID is important to provide
a broad view of the people’s behavior to the security personnel

and has attracted the researches attention in the past years [2].

Formally, let us consider p as the probe image and G as the
gallery-set composed of N individuals with known identities,
where g, € G corresponds to the ith subject in the gallery-set.
Then, we can determine p identity (id) as

id = argmax sim(¥(p), ¥(g;)), (M

where W corresponds to a feature extraction function and
sim(-,-) is some cross-view matching function. In a super-
vised setting, the cross-view matching and feature extraction
functions are learned using a training set, which consists of
labeled individuals captured by different surveillance cameras.
Then, these functions are deployed in a test set whose identi-
ties are disjoint from the training set, as illustrated in Figure 1.

Due to the ambiguity between individuals and the com-
putational cost required to match pedestrian images in the
entire surveillance network, the person re-identification is a
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Fig. 1. Training and test sets. In the training set the better configuration
of feature descriptors and cross-view functions are learned using labeled
individuals in a pair of cameras. Then, in the test set, these functions are
deployed using a disjoint subset of individuals.

challenging task. In fact, the same subject when captured
by different surveillance cameras might look more dissimilar
than different subjects as consequence of the variations in
the camera capture conditions (e.g., camera viewpoint and
illumination) and the person’s pose [3]. In addition, dozens
of cameras would be necessary to monitor just hundreds
of individuals in medium-sized environment. Therefore, the
scalability of the person re-identification system with respect
of the number of cameras is an important and still overlooked
issue for real-world applications.

The person re-identification literature have addressed the
ambiguity between individuals with novel features descrip-
tors [4]-[6], which are more robust to the different camera
conditions, and with camera pairwise matching models [7]-
[13]. The latter is an interesting solution since these models
capture specific transitions of feature descriptors for a sin-
gle pair of cameras, such as the variations due to different
camera viewpoints and illumination conditions. One widely
used approach is the cross-view quadratic discriminant anal-
ysis (XQDA) [4] that learns a common and low-dimensional
representation and a matching function.

Despite outperforming results, the pairwise matching of
probe and gallery cameras is not suitable for a real-world
scenario. In a surveillance camera network with ¢ connected
cameras, we can have ¢(c—1)/2 pairs of camera (see Figure 2),
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Fig. 2. Pairwise and multiple cameras cross-view matching models, which
are represented using gear icons. Notice that the pairwise learns a model for
each pair of cameras. Differently, the multiple cameras learns a single for the
entire camera network.

which is not scalable for most of the real-world applications
with thousands of surveillance cameras (e.g. an airport).

In this work, we tackle both problems: the scalability
with respect to the number of surveillance cameras and
the ambiguity between individuals. Regarding the scalability
problem, we proposed the Kernel Multiblock Partial Least
Squares (Kernel MBPLS) that considers multiple sources of
data when projecting the data onto a low-dimensional subspace
that correlates the input data with the responses. To reduce
the ambiguity between individuals, we propose the Kernel
Cross-view Collaborative Representation based Classification
(Kernel X-CRC) that collaboratively represents test samples
as a nonlinear combination of training samples.

Kernel HPCA [7] is the unique approach in literature
that also addresses the scalability problem in person re-
identification. However, while the Kernel HPCA only learns
a common subspace, the Kernel MBPLS also performs a
regression that imposes a better separation of the data in the
learned subspace. Some works also investigate the person re-
identification problem using sparse or collaborative representa-
tions [6], [14]-[17]. Kernel X-CRC has some key advantages
when compared to the these methods. For instance, Kernel
X-CRC 1is a general method that does not assume a block
structure in the coefficients representation as required in [15].
Differently from dictionary learning-based approaches [16],
[17], our work represents probe and gallery images using
training samples, which avoids solving costly optimization
problems without sacrificing the matching rate. More im-
portantly, different from previous works [6], [15]-[17], we
efficiently model the strong nonlinear transition of features
between cameras achieving an analytical solution.

Experimental results in the WARD, which is a multiple
cameras dataset, demonstrate that Kernel MBPLS is not only
scalable but also surpasses subspace learning approaches from
literature. Similarly, experimental results show that the pro-
posed Kernel X-CRC outperforms approaches from literature
when considering VIPeR and PRID450S datasets. Besides,
we demonstrate that the Kernel X-CRC can be successfully
adjusted to work in Market-1501, a large-scale dataset.

The predominant contributions of this work for the person
re-identification problem are: (¢) a common subspace learn-
ing that combines scalability with respect to the number of

cameras with higher matching rates, (i¢) a nonlinear and
multitask matching function that boosts the matching rates
of subspace learning approaches from literature and (i)
an extensive experimental evaluation and discussion of the
employed strategies in four person re-identification datasets.

The methods described in this work correspond to the main
achievements during the doctorate research [18], [19]. Besides
these approaches, we also proposed additional methods for
subspace learning that maximizes the covariance between a
pair of cameras (Kernel PLS [20] ) or multiple cameras (Kernel
HPCA [21]). We also tackled the person re-identification
problem by comparing probe and gallery with a fixed subset
of individuals [22], using inverted indexing lists [23] and as a
ranking aggregation problem [24].

II. KERNEL MULTIBLOCK PARTIAL LEAST SQUARES

In this section, we describe the proposed Kernel MBPLS
that nonlinearly relates data blocks (i.e., images from different
surveillance cameras) and responses in a learned latent space.
Despite its simplicity, the proposed method captures high-
order correlations between input variables and responses. Fur-
thermore, we show how to compute the regression coefficients

of the Kernel MBPLS efficiently.

The overall idea of the proposed Kernel Multiblock PLS
consists on computing scores for each block (s;) of data,
combining them in a super block (S) and, then, performing a
regression between the super block and the responsive matrix
Y. In the following paragraphs, we give a more detailed
description of the proposed Kernel MBPLS that is presented
in Algorithm 1. This algorithm is a modification of the classic
NIPALS algorithm [25] that decomposes a matrix X into

orthonormal scores (a) and loadings (2) as X = az', such
that we can represent a and z as
a=Xz and z=X'a. 2)

Therefore, we have that we can update the scores as a =
X X Ta. Then, using a nonlinear transformation in matrix X,
we obtain ® and using the “kernel trick” to substitute the
cross-product ®® " by the kernel Gram matrix K € R™ ",
we have that ¢ = Ka. From lines 4 to 7 of Algorithm 1, we
can notice that the block-scores (s, and s4) are updated in this
manner to construct the super block S. Then, in lines 8 and
9, we represent the super block as S = uw! and, in lines 10
and 11, we represent the response matrix as Y = uq ' . Notice
that as we use the same scores for both S and Y, we correlate
them in the learned low-dimensional subspace. Finally, after
the convergence, the input matrices are deflated (lines 13 and
14) and the process continues until the number of factors (f)

has been reached.
Finally, we can compute the regression response as

¥, =KT(T'K,T)"'TY, 3)

where kg is the kernel representation of the jth probe image
(p;) and T € R™*f is a result of the concatenation of the
scores t; € R™ ! computed for each factor in Algorithm 1.
Similarly, we can compute the regression responses for a
gallery sample (yg) using K, and the previous equation.



Algorithm 1: Kernel Multiblock PLS (Kernel MBPLS)

input : K,, K,, Y matrices and the integer (f)

1 randomly initialize t and tg
2 for i=1 to f do
while ||t —#|| > € do

w

4 to — t

5 sp =Kyt s, H:ﬁ
6 sg =Kyt s, ”:ﬁ
7 S [sp, 5g]

8 w=S"t

9 u=Sw u+ HTUH

10 q= Y'u

1 t=Yq/q'q

12 end

B3 K,=K,-tt'K,,
14 Y=Y-tt'Y
15 end

K, =K, - tt'K,,

In this work, we assume that when comparing test samples
measured from data blocks ¢ and j, we can use the regression
responses y; and y, as discriminative signatures. Specifically,

the matching between ¢ and j (s(4, 7)) is computed using the
cosine similarity between ¥, and y; as

s(6,5) = ¥:¥;/ 1y Ly, - )

III. KERNEL CROSS-VIEW COLLABORATIVE
REPRESENTATION-BASED CLASSIFICATION

In this section, we present the Kernel Cross-View Collabora-
tive Representation based Classification (Kernel X-CRC) that
efficiently represents each pair probe p and gallery g images
collaboratively using its camera-view specific training samples
X, and X, respectively.

Considering as related tasks the representation of probe and
gallery images using training images from their respective
cameras, the proposed Kernel X-CRC model simultaneously
estimates oy, and «, in a multi-task collaborative representa-
tion framework. Thus, we aim at estimating the most similar
coding vectors o, and ay, that simultaneously describe probe
and gallery subjects. To compute these coding vectors, we
introduce a similarity term | @, — a, ||3 that balances

representativeness and similarity, as illustrated in Figure 3.
The proposed Kernel X-CRC model results in the following
optimization problem

min || ¢(p) — ®perp ||§ + |l ¢(g) — @40y Hg
st 2 2 2 )
A ap [l2 +A [[ag |2 +7 || ap —ay |2,

where ¢(.) is a nonlinear function and, ®, and ®,, are resulting
nonlinear mapping of X, and X, respectively. Analytically
deriving Equation 5 with respect to a, and a4, we obtain

a, = A, ey + A, '@, ¢(p) and

_ _ (6)
ag =A, lap +A, 1®;¢(g)7

where projections matrices A, and A, are given by
A, =®,®, + (\+7)land
Ay =®,%,+ (\+7)L

Note that Equations in 6 are interdependent. Therefore, replac-
ing a4 and isolating a,, we obtain

@)

o =7Q A AR 6(g) +QTIA IR 0(p)  (®)
with projection matrix Q corresponding to
Q=1-7°A,"'A;". ©9)

Similarly, we can compute the coding vector o as

a, =TW 'A;A 'R, H(p) WA 'R, H(g)  (10)

with W computed as

W=I-7°A,'A," (11)

To avoid explicitly mapping of data to a high-dimensional
space, we can use the “kernel trick” substituting cross-product
<I>;<I>g and <I>;<I>p by the kernel Gram matrix K, and K, €
R™*™ respectively. Furthermore, we replace <I>ngzS(g) and
®, &(p) by their respective row vectors k? and k.

Algorithm 2: Kernel X-CRC.

input : Kernel matrices (K, and K,,)
output: Ranking list of gallery images R

1 Compute Ay, Ap, Q and W matrices
2 B9 WP, BE WA A
» “IA~1 B9 7Q 'ATIA!
3B QAL BT p g
4 forp; € P do
5 for x; € X do
6 a, — ﬁ-gkf —I—ﬂ’q’kﬁ.’, a, — ,ngf +,3§k§?
L % ala,
sim (i) < o MagT

end

R, < sort(sim, descend)
10 end

11 return R

Due to the multi-task learning framework, a pair of probe
(p) and gallery images (g) will compute a;, and a, that
balances the representativeness in each camera with the sim-
ilarity between coding vectors. This balance will only result
in a similar coding vector if p corresponds to the respective
gallery image of g. Therefore, we match probe and gallery
using the cosine similarity between a,, and o, as described
in Algorithm 2.

IV. EXPERIMENTS

In this section, we perform a comprehensive evaluation
of the proposed methods assessing the influence of different
parameters in the obtained experimental results and providing
a broad comparison with state-of-the-art approaches in
two camera pairwise and single-shot datasets (VIPeR [26],
PRID450S [27]) and two multiple cameras and multi-shot
datasets (Market-1501 [28] and WARD [29]). In the following
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Fig. 3. Schematic representation of the proposed Kernel X-CRC method.
For a pair of probe and gallery images, we compute the coding vectors (ay
and ag) that collaboratively represent them using training samples captured
at their respective camera. A similarity term balances the trade-off between
representativeness and similarity.

Fig. 4. Images of the same individual (columns) captured by different cameras
(rows) in the employed person re-identification datasets. From left to right:
PRID450S, VIPER, Market-1501 and WARD datasets.

paragraphs, we first present the four datasets evaluated and
the training and evaluation protocols. Then, in the remaining
sections, we present the ablation study and state-of-the-art
comparisons for Kernel MBPLS (Section IV-A) and Kernel
X-CRC approaches (Section IV-B).

1) Datasets: VIPER contains 632 labelled pairs captured
by two outdoor cameras in very challenging conditions.
PRID450S has 450 labelled image pairs capture by two
surveillance cameras. Differently, Market-1501 contains
32,668 images of 1,501 individuals captured from six
surveillance cameras, where the same individual can have
multiple images at the same camera (i.e., multi-shot).
Similarly, the WARD is a multi-shot dataset consisting
of 4,786 images of 70 individuals from three surveillance
cameras. Figure 4 shows examples of individuals from the
four datasets evaluated.

2) Training and Evaluation Protocols: To set the
parameters of the proposed methods, we use the common
strategy in the person re-identification literature of using a
validation and test set composed by ten random partitions
of images in training and probe/gallery subsets with equal
number of identities [4], [5]. When presenting results in
tables, we report the mean rank-k matching rate in ten distinct

TABLE 1
ABLATION STUDY ON THE WARD DATASET.
Features | Labels | Scenario |
GoG LOMO | ID Attr | Multi  Pair | Rank-1
v v v 76.5
v v v 69.8
v v v 78.8
v v v 67.4
v v v v 81.3

partitions of the data, which consists of the percentage of
individuals correctly identified when considering the fop-k
ranking positions, a widely employed metric to compare
Re-ID approaches.

3) Feature Descriptors: As designing a feature descriptor is
not the focus of this work, we evaluate the proposed methods
using two widely used descriptors: the Hierarchical Gaussian
descriptor (GoG) [5] and the LOMO [4]. LOMO consists of
color and texture descriptors extracted from multiple scales
and horizontal stripes that are summarized using an horizontal
pooling operation. GoG is a hierarchical Gaussian distribution
of covariance and mean statistics that captures texture and
color information of image patches.

A. Kernel MBPLS

1) Ablation Study: In this section, we present the ex-
perimental results using the proposed Kernel MBPLS with
different strategies and using the WARD dataset. Specifically,
we evaluate state-of-the-art feature descriptors as the GoG [5]
and LOMO [4], labelled information as identity and attributes,
and the multiple cameras (multi) and camera pairwise (pair)
scenarios. To consider the attributes information, we manually
labelled 24 attributes for each individual in the WARD dataset.

Table I presents the obtained mean rank-1 for all camera
pairs. For instance, the first row shows the rank-I when
using the GoG feature descriptor, the identity information
to construct the matrix Y and a multiple cameras setting,
which means that a unique model is learned for the entire
system. Based on these results, it is possible to conclude that
the highest results are obtained when considering identity
and attribute labels due to its complementary (i.e., line 5).
Besides, the GoG descriptor results in a large gain when
compared to the LOMO (i.e., line 1 and 2). Finally, the
experiment using a pairwise approach - one model learned
for each camera pair - presents a small improvement when
compared to the same configuration using a multiple camera
approach (i.e., lines 1 and 3) as a consequence of learning
subtle variations that occur in a camera pair. However, it
has the huge disadvantage of growing quadratically with the
number of cameras.

2) State-of-the-art Comparisons: Table II presents the ob-
tained rank-1 results for the different camera pairs when using
the proposed Kernel MBPLS and other subspace learning ap-
proaches from the literature, such as the Kernel CCA (KCCA),
CCA and the Kernel HPCA. These methods are divided in



pairwise and multiple cameras models, while the first learns a
model for each pair of cameras, the latter learns a single model
for the entire camera system. Kernel MBPLS presents superior
results, which can be related to the nonlinear regression that
better separates samples in the learned subspace. Thus, the
Kernel MBPLS is scalable and presents higher matching rates
than similar approaches from literature.

TABLE II
MEAN Rank-1 MATCHING RATE ON WARD DATASET.

) ) Probe/Gallery
Models Methods B T AIC | BIC
Pairwise CCA 80.3 | 62.9 | 70.0
KCCA 826 | 654 | 709
Multipl Ker. HPCA 81.1 64.0 | 71.7
WUP® | Ker. MBPLS | 86.6 | 77.1 | 837

B. Kernel X-CRC

TABLE IV
SUBSPACE EVALUATION ON THE VIPER DATASET.
Viper (p=316)
Method XQDA 4] MLAPG [31] KCCA 7]
Cosine 451 414 405
Kernel X-CRC 514 47.6 457

and different matching functions, such as the cosine dis-
tance, Mahalanobis distance and the MLAPG [31] methods.
According to the results showed in Table V, all matching
functions represent an improvement in the matching rates
when compared to the cosine distance. More importantly,
between all methods evaluated, the Kernel X-CRC is the one
with highest results, which demonstrates its contribution as a
matching function.

1) Feature Descriptors: Table III presents the experimental

results considering distinct feature descriptors in the VIPeR
dataset with the proposed Kernel X-CRC model. Specifically,
we evaluated the WHOS [6], the LOMO+CNN [30] and the
GoG [5] descriptors. While the WHOS is a simple concate-
nation of shape, texture and color descriptors extracted at
different resolutions, the LOMO+CNN consists of a combi-
nation of the LOMO descriptor with a feature representation
learned using a deep learning model and trained on the VIPeR
dataset. According to the results, we observed that the direct
application of deep learning approaches results in worst results
when compared to the GoG descriptor. It can be related to
the small number of samples, which favours the overfiting
problem. Therefore, in the remaining experiments, we will
focus on the GoG descriptor.

TABLE V
DIFFERENT MATCHING FUNCTIONS IN THE XQDA SUBSPACE.
Viper (p=316)
Method r=1 | r=5 | r=10

XQDA + Cosine 45.1 74.2 84.9

XQDA + Mahalanobis 46.2 74.7 85.6
XQDA + MLAPG 47.6 76.8 86.6

XQDA + Kernel X-CRC 514 81.2 89.7

4) Ablation Study: Table VI presents the obtained results
using the baselines SRC [32] and the CRC [33], and the dif-
ferent strategies employed in the Kernel X-CRC formulation.
Out of these results, we notice that the linear kernel diminishes
the rank-1 in 1.0 percentage point and that without the multi-
task formulation the rank-1 reduces in 2.3 percentage points.
Furthermore, Table VI demonstrates a great improvement in
the Kernel X-CRC when compared to classical approaches as
a results of the nonlinear and multitask formulation.

TABLE III
FEATURE DESCRIPTORS EVALUATION ON THE VIPER DATASET.
. . Viper (p=316)
Feature Descriptor — =3 =10
WHOS 43.0 74.0 84.4
LOMO+CNN 46.8 71.3 88.7
GoG 514 81.2 89.7

TABLE VI
RESULTS OF THE BASELINE APPROACHES ON THE VIPER DATASET.
Viper (p=316)

Approach r=1 r=5 r=10

SRC 39.8 65.2 74.9

CRC 47.6 77.6 86.0

Linear Kernel 50.4 79.9 88.4

Without Multi-task 49.1 79.7 88.6
Kernel X-CRC 514 81.2 89.7

2) Subspace Learning Approaches: One important compo-
nent in the Kernel X-CRC method is the projection in a low-
dimensional subspace as it is responsible to reduce the com-
putational cost while improving the matching rates. Table IV
compares subspace learning approaches from literature when
using the as matching function the proposed Kernel X-CRC
or a simple cosine distance. According to the results, Kernel
X-CRC represents a large margin gain for all approaches,
which we credit to the nonlinear formulation, collaborative
representation and the multitask approach. In the following
experiments, we study the influence of each component.

3) Influence of the XQDA: To further understand the sep-
arated contribution of the Kernel X-CRC and the XQDA [4]
model, we compare the experimental results using the XQDA

5) Large-Scale and Multiple Cameras Datasets: In the fol-
lowing experiments, we used the Market-1501 due to the large
number of samples and multiple cameras. As feature descrip-
tor, we employed the deep learning representation computed
using the ResNet50 model, as proposed in [2]. The Kernel X-
CRC computes a kernel function that grows quadratically with
the number of samples. In large-scale person re-identification
datasets, each individual has multiple samples that are obtained
using some tracking algorithm - which we coined tracklets.
To make the Kernel X-CRC suitable in this setting, we can
compute the average of the feature representation in the
entire tracklet. In this way, we limit the complexity of the
kernel computation to the number of individuals instead of
the number of samples. Table VII presents the comparison



between using the average pooling and considering all the
samples. From these results, we can notice that the average
pooling not only reduces the computational complexity, but
also increases the matching rate.

TABLE VII
INFLUENCE OF AVERAGE POOLING.
Market-1501
Strategy e —> 3
No Pooling 79.7 85.5 88.6
Average 81.6 87.1 89.5

Despite the fact that Equation 5 considers a pair of cameras,
the proposed Kernel X-CRC is not limited to the camera
pairwise scenario. To demonstrate that, we propose a simple
experiment where the matrices ®,, (i.e., probe camera) repre-
sents the camera 3, while the camera ®, (i.e., gallery camera)
represents different subsets of cameras. Table VIII presents
the obtained experiments for this setting. For instance, the
first column represents the rank-I when matching camera 3
with camera 6 (pairwise setting), and the last column consists
on matching camera 3 with all camera except the camera 3.
Based on these results, we can observe that the proposed
Kernel X-CRC is not only suitable for a multiple cameras,
but also improves the performance when more cameras are
available. Furthermore, the Kernel X-CRC outperforms the
XQDA method in all settings.

TABLE VIII
RANK-1 MATCHING RATES FOR DIFFERENT GALLERY SETS.

Models Market-1501
G=06 | G=64 | G=65 | G=G3
XQDA 76.4 75.6 86.2 89.8
Ker. X-CRC 78.0 78.6 87.8 90.8

6) State-of-the-art Comparisons: Table IX presents the
matching rates of different approaches considering the VIPeR
dataset. These methods are based on metric learning [4], [5],
subspace learning [18], deep learning [30], [34], [35] and the
SCSP [36], which imposes spatial constraints when matching
samples. Based on these results, the proposed Kernel X-CRC
outperforms the subspace and deep learning approaches. In
fact, the small number of samples results in a challenging
scenario for deep learning methods. Besides, the subspace
learning approaches employ a simple cosine distance, while
the Kernel X-CRC uses a nonlinear and multitask matching
function that boosts the results. Finally, the SCSP [36] shows
the highest matching rates, which can be associated to the
spatial constraints that are successfully captured in VIPeR
dataset as the majority of the individuals appear in a frontal
view at one camera and side view at the other.

Table X shows the obtained experimental results in
PRID450S dataset. Similarly to the VIPeR dataset, the pro-
posed Kernel X-CRC surpassed the subspace learning and
deep learning approaches demonstrating that the obtained
results are consistent when considering different datasets.

TABLE IX
TOP RANKED APPROACHES ON THE VIPER DATASET.

Viper (p=316)

Method r=1 r=5 r=10
Deep Ranking [34] 38.4 69.2 81.3
LOMO + XQDA [4] 40.0 68.0 80.5
MultiCNN [35] 47.8 74.7 84.8
GoG + XQDA [5] 48.2 713 87.6
Shangxuan et al. [30] 51.1 81.0 91.4
SCSP [36] 53.5 82.6 91.5
Kernel X-CRC | 51.2 | 79.9 | 89.9

Differently, the SCSP [36] reached the smallest matching rates
between the methods evaluated on PRID450S, which we credit
to the challenging pose variations that occur in this dataset.

TABLE X
TOP RANKED APPROACHES ON THE PRID450S DATASET.

PRID450S (p=225)
Method =1 [ 1=5 [ =10
SCSP [36] 44.4 71.6 82.2
LOMO + XQDA [4] 61.4 - 90.8
Shangxuan et al. [30] 66.6 86.8 92.8
GoG + XQDA [5] 66.2 87.8 92.6
Kernel X-CRC | 68.1 | 90.7 | 95.0

V. CONCLUSIONS

In this work, we addressed the person re-identification
problem using two approaches that are extensively evaluated
in four datasets from literature that diversify in number of
samples and cameras. The Kernel MBPLS is a nonlinear
regression model that projects samples onto a common and
low-dimensional subspace. Experimental results demonstrate
the Kernel MBPLS is not only scalable with respect to the
number of cameras, but also presents superior results when
compared to similar approaches from literature. Besides, we
show an improvement in the matching rates when additional
labels are included, such as attributes. The Kernel X-CRC
indirectly matches samples using a multitask formulation.
Experimental results demonstrate its superiority as a matching
function for subspace learning approaches from literature. In
fact, we achieved the highest and the second highest rank-
1 in PRID450S and VIPeR datasets, respectively. Besides,
we demonstrate that the Kernel X-CRC can be successfully
adapted to large-scale and multiple cameras datasets.
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