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Abstract—Synthetic aperture radar SAR imaging systems have
a coherent processing that causes the appearance of the multi-
plicative speckle noise. This noise gives a granular appearance
to the terrestrial surface scene impairing its interpretation. The
similarity between patches approach is applied by the current
state-of-the-art filters in remote sensing area. The goal of this
manuscript is to present a method to transform the non-local
means (NLM) algorithm capable to mitigate the noise. Single-
look speckle and the NLM under the Haar wavelet domain
are considered in our research with intensity SAR images. To
achieve our goal, we used the Exponential-Polynomial (EP) and
Gamma distributions to describe the Haar coefficients. Also,
stochastic distances based on these two mentioned distributions
were formulated and embedded in the original NLM technique.
Finally, we present analyses and comparisons of real scenarios to
demonstrate the competitive performance of the proposed method
with some recent filters of the literature. 1

I. INTRODUCTION

The image processing literature is always searching for new
algorithms to attenuate noise [1] because the filters are used in
a vast amount of disciplines like Forensic Science, Astronomy,
Medicine and Biology [2].

Synthetic aperture radar (SAR) systems are important for
monitoring the terrestrial surface activities like oil leakage in
the oceans, melting glaciers and borderlands analysis. These
systems are applicable in all sunlight and weather conditions
[3]. Nevertheless, SAR images are contaminated with mul-
tiplicative speckle noise that emerges from the interference
on the return signal given by the surface elements of the
target [4]. The speckle gives a granular appearance in SAR
images making their analyses and interpretations a difficult
task. Furthermore this noise is present not only in SAR images,
but also in medical ultrasound, sonar and laser images [5].

Based on the non-local means (NLM) filter [6], the collab-
orative filtering techniques like Block Matching 3D (BM3D)
[7] and sparsity based methods as K-SVD [8] were developed.
These techniques use the assumption of similarity between
patches [9], i.e., nxn windows with n ∈ N∗ and odd, centered
in the pixels of an image [4]. The similarity is given by a
metric that relates the gray values of the pixels of each patch.

The filters above mentioned were originally proposed for
additive white Gaussian noise (AWGN), while the Probabilis-
tic Patch-Based filter (PPB) [10] was made for additive and

1This article is related to a Ph.D. thesis.

multiplicative noise. The NLM method may be applied to
reduce speckle noise in (Pol)(In)SAR images [11]. One can
say that SAR-BM3D [12] and FANS [13] are considered the
state-of-the-art with very good results [4].

The stochastic distances [14] have already been used to
remove noise in many areas: speckle in SAR images [4], [15]–
[18] and ultrasound images [19], [20], [21] and Poisson noise
in [22] and [23].

The wavelets transforms [24] have been used by many ap-
plications in areas like Astrophysics and Geophysics [25]. We
present the results for the Haar wavelet, which is considered
the simplest case [26]. The objective is to extend the NLM
filter capability in the wavelet domain to reduce the speckle
noise in intensity SAR images using the stochastic distances.
This paper presents new stochastic distances based on the
Gamma and Exponential-Polynomial (EP) distributions [27].

Results with real experiments show that the proposed
method and distances generate competitive results with the
state-of-the-art filters and other NLM based algorithms. Fi-
nally, the rest of the paper is organized as follows: Section II
presents the model of speckle and the wavelets fundamentals,
Section III explains the NLM filter and the stochastic dis-
tances for EP and Gamma distributions, real experiments are
discussed in Section V and the proposed research is concluded
with future works in Section V.

II. SAR INTENSITY IMAGE AND THE WAVELET APPROACH

A SAR system sends electromagnetic pulses and captures
the backscattered signal of a target. Considering an intensity
SAR image, the return Z is the product of two independent
random variables given by

Z = X.Y, (1)

where X and Y represent, respectively, the backscatter return
and the speckle noise [5]. The intensity format of a SAR
follows a Gamma distribution fY (y) ∼ Γ(L,L/α) [28], [29]
with a probability density function (pdf), expressed by [27]

fY (y;L,L/α) =
LL

αΓ(L)

( y
α

)L−1
exp

(
−L
α
y

)
, (2)

where L > 0 and α denote, respectively, the number of looks
and the underlying reflectivity mean.



A. Wavelet Paradigm

A wavelet can be expressed by [27]

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, (3)

where a corresponds to the scale size, b is the translation and
t denotes time.

The signal x can be decomposed by [30]

x(t) =

∞∑
k=−∞

cJ,kφJ,t(k) +

∞∑
k−∞

J∑
j=1

ψj,t(k)wj,k, (4)

where

φj,t(x) = 2−jφ(2−jx− t) (5)

and

ψj,t(x) = 2−jψ(2−jx− t). (6)

The φ function denotes the scale function and ψ represents
the wavelet. The j parameter indicates the number of resolu-
tions for decomposition. The coefficients are expressed by:

cj+1,t =

∞∑
k−∞

h(k − 2t)cj,k, (7)

wj+1,t =

∞∑
k−∞

g(k − 2t)cj,k. (8)

wj,t is the wavelet coefficient and cj,t coefficient represents
a smoothed version of the original signal from the scale
function. The h and g terms represent, respectively, the low-
pass and high-pass impulse response of the filters given by
equations (9) and (10).

1

2
φ(
x

2
) =

∞∑
k−∞

h(k)φ(x− k) (9)

1

2
ψ(
x

2
) =

∞∑
k−∞

g(k)ψ(x− k) (10)

1) Haar wavelet: The Haar wavelet was the first and the
simplest example of an orthonormal wavelet transformation
[26]. The Haar function ψ(t) is a rectangular pulse described
as

ψ(t) =

 1 0 ≤ t < 1
2 ,

−1 1
2 ≤ t < 1,

0 otherwise.
(11)

The scale function φ(t) is given by

φ(t) =

{
1 0 ≤ t < 1,
0 otherwise. (12)

2) EP distribution: The Exponential-Polynomial (EP) dis-
tribution [27] was made for Haar wavelet coefficients. It
describes the difference between two independent random
variables fitted by the Gamma distribution. For single-look
SAR images (L = 1) the EP pdf is a Gamma convolved
with the same Gamma, but with the inverted argument [31].
Also, since Exponential is a special case for a Gamma with
L = 1, the difference between two Gammas can be defined
as a generalization of the Laplace distribution, i.e., the differ-
ence between two Exponentials [32]. Figure 1 illustrates the
wavelet coefficients with the EP distribution considering one
decomposition level with the Haar wavelet. The expression for
the EP distribution is given by

pep(y) =
exp(−L

b |y|)
(L− 1)!

(
L

a

)L(
L

b

)L

L−1∑
j=0

(L+ j − 1)!

j!(L− j − 1)!(L
a + L

b )L+j
|y|L−j−1

, (13)

where a and b are mean values of two different patches under
the NLM concept. pep(y) is called Exponential-Polynomial
because it is a product of an exponential by a polynomial
function. If a random variable follows the EP distribution, it
is defined as x ∼ EP (L,L/a, L/b).

(a) Single-look

(b) Three looks

(c) Four looks

Fig. 1. Pdf of EP for different looks considering one decomposition level
with the Haar wavelet.

By applying an M decomposition level considering the Haar
wavelet, the scale cM and detail wM coefficients were fitted
by equations (14) and (15) [27].

cM ∼ Γ(4ML, 2−M ) (14)



wM ∼ EP (22M−1L, 2−ML) (15)

III. NL-MEANS AND THE STOCHASTIC DISTANCES

The NLM [6] algorithm considers the patches similarity of
an image. Patches are windows of m × m size centered
on the pixels with m ∈ N∗ and odd [4]. The NLM will
use the Euclidean distance to compute a weighted average
between these patches to measure the similarity. The goal
of the proposed method is to replace the original Euclidean
distance of the NLM filter by the new distances to turn the
NLM able to filter the speckle noise in the wavelet domain.
The family of divergences (h, φ) [33] was used to de-
rive the stochastic distances integrals [14]: Kullback-Leibler,
Rényi, Hellinger, Bhattacharyya, Jensen-Shannon, Arithmetic-
Geometric, Triangular and Harmonic Mean. Based on the
integrals of these distances, we computed new distances for
the EP distribution. In the following (16) to (23) formulas, a1
and a2 are means of two different patches.
Kullback-Leibler distance (dKLEP ):

dKLEP =
(ln(a1 + 1)− ln(a2 + 1))(a1 − a2)

2(a1 + 1)(a2 + 1)
(16)

Hellinger distance (dHEP ):

dHEP =
a1 + a2 − 2

√
a1 + 1

√
a2 + 1 + 2

(2 a1 + 2) (a2 + 1)
(17)

Rényi distance with β = 0.5 (dREP ):

dREP = −2ln(1− dH) (18)

Bhattacharyya distance (dBEP ):

dBEP = −ln(1− dH) (19)

Jensen-Shannon (dJSEP ):

dJSEP =
(ln(2 a2 + 2)− ln(a1 + a2 + 2))

2 (a1 + 1)
+

(ln(2 a1 + 2)− ln(a1 + a2 + 2))

2 (a2 + 1)

(20)

Arithmetic-Geometric distance (dAGEP ):

dAGEP = − (ln(a2+1)+ln(4 a1+4)−2 ln(a1+a2+2)) (a1+a2+2)
4 (a1+1) (a2+1)

(21)
Triangular distance (dTEP ):

dTEP =
(a1 − a2)2

(a1 + 1)(a2 + 1)(a1 + a2 + 2)
(22)

Harmonic-Mean distance (dHMEP ):

dHMEP = −ln
(

1− dT
2

)
(23)

According to equation (14) in Section II-A2, the approxima-
tion coefficient follows a Gamma distribution. Therefore, the
distances for this distribution were also computed. However,
for the eight stochastic distances, only four distances had their
closed formulas found by equations (24) to (27).
Kullback-Leibler distance (dKLG):

dKLG =
(a1 − a2)

2

2 a1 a2
(24)

Hellinger distance (dHG):

dHG =

(√
a1 −

√
a2
)2

a1 + a2
(25)

Rényi distance with β = 0.5 (dRG):

dRG = −2 ln

(
2
√
a1
√
a2

a1 + a2

)
(26)

Bhattacharyya distance (dBG):

dBG = − ln

(
2
√
a1
√
a2

a1 + a2

)
(27)

1) Distances proprieties: A distance d(x, y) must be homo-
geneous, symmetrical and positive. Figures 2 and 3 show the
good behavior of the stochastic distances obtained for the
EP and Gamma distributions considering single-look speckle.
Their plots are above the x-axis and the dark blue color
indicates the zero value when x = y. Finally, the curves
indicate symmetry when interchanging x and y values.

IV. DISCUSSION AND RESULTS

The proposed algorithm is presented in Figure 4. The noisy
image is decomposed with one level using the Haar wavelet,
which gives the approximation coefficient (Ac) and the details
coefficients: horizontal (Hc), vertical (Vc) and diagonal (Dc).
Note that L indicates the low-pass filter while H denotes
the high-pass filter. Then we apply the NLM filtering with
the stochastic distances for Gamma and EP distributions and
an inverse DWT (IDWT) is performed to obtain the filtered
image. For the real and synthetic experiments below, the
following stochastic distances were used: Kullback-Leibler for
NLM with Gamma distribution and Jensen-Shannon for NLM
with EP distribution.
The proposed filter was compared with FANS [13], OBNLM
[34], Iterative PPB [10], SAR-BM3D [12]. Furthermore, for
the mentioned algorithms, we chose the parameter settings
proposed in the original papers.

A. Real experiments

We used two 512× 512 real intensity SAR single-look scenes
to compare and analyze the filters from the Oberpfaffenhofen
region near Munich (Germany) taken through the ESAR
platform presented in Figure 5. The NLM was set with a
5 × 5 patch and a 11 × 11 search window for all regions.
The approximation coefficient of DWT was filtered with the
smoothing parameter h = 5 × 10−3. The detail coefficients
were processed with h = 5 × 10−3σ2

cA, where σ2
cA is the

approximation coefficient variance. All values were found
experimentally.
Examining Figures 6 and 7, which show the filtered regions 1
and 2, we can consider that the proposed method is competitive
with other filters. Visually, the PPB produces blurry images.
Furthermore, our approach is quite effective in subtracting the



(a) Arithmetic-Geometric (b) Bhattacharyya

(c) Hellinger (d) Jensen-Shannon

(e) Kullback-Leibler (f) Harmonic-Mean

(g) Rény (h) Triangular

Fig. 2. Stochastic distances 3D plots for the EP distribution for single-look
speckle.

speckle in homogeneous and heterogeneous regions. However,
details are lost in extremely heterogeneous surfaces as de-
scribed in the previous section. The FANS filter also removes
fine details in heterogeneous areas.
Applying the ratio between the noisy image Z and the filtered
image f̂ : r = Z/f̂ is an effective measure without reference
[5]. This ratio shows the standard noise removed that it is sup-
posed to be distributed according to the Gamma distribution.
With an ideal filter, r should contain only pure noise pattern.
Otherwise, it will give an image with structures and edges [4].
By observing Figures 8 and 9, we confirm the loss of some
structures with our filter, like PPB, OBNLM and FANS. Al-

(a) Bhattacharyya (b) Hellinger

(c) Kullback-Leibler (d) Rény

Fig. 3. Stochastic distances 3D plots for the Gamma distribution for single-
look speckle.

though FANS demonstrates good results, it also loses details.
The difficulty to find details on the SAR-BM3D ratio confirms
its place as state-of-the-art. By using the mean (µr) and
standard deviation (σr) of the ratio r it is possible to make a
quantitative approach. The µr and σr values should be close
to the theoretical ones, i.e., µ ≈ 1 and σ ≈ 1 for L = 1. Tables
I and II show the µr and σr values for Regions 1, and 2. We
note that the mean and the variance of the proposed method
are the ones that most approached the ideal value. Although
the PPB presents a blurred image, its σr is superior to the
other algorithms.

TABLE I
MEAN (µr) AND VARIANCE (σr) OF REGION 1 RATIO. THE BEST RESULTS

ARE MARKED IN BOLD.

Filters µr σr Time (s)
FANS 0.83 0.46 6.43

PM 1.00 0.61 201.03
OBNLM 0.94 0.50 0.97

PPB 0.96 0.57 62.46
SAR-BM3D 0.96 0.42 99.73

TABLE II
MEAN (µr) AND VARIANCE (σr) OF REGION 2 RATIO. THE BEST RESULTS

ARE MARKED IN BOLD.

Filters µr σr Time (s)
FANS 0.83 0.46 6.83

PM 1.00 1.00 199.57
OBNLM 0.94 0.50 1.10

PPB 0.96 0.57 63.18
SAR-BM3D 0.96 0.44 103.11



Fig. 4. Diagram of the proposed method with one level decomposition using the Haar wavelet.

(a) Region 1 (b) Region 2

Fig. 5. Intensity HH SAR regions with L = 1.

(a) FANS (b) OBNLM

(c) PPB (d) PM

(e) SAR-BM3D

Fig. 6. Results for Region 1 (R1). PM: proposed method.

(a) FANS (b) OBNLM

(c) PPB (d) PM

(e) SAR-BM3D

Fig. 7. Results for Region 2 (R2). PM: proposed method.

V. CONCLUSION

SAR imaging systems are important to study the terrestrial
surface. They use coherent processing that generates the
speckle noise. This noise needs be eliminated so that the SAR
image can provide a good interpretation.
A technique to reduce single-look speckle noise in intensity
SAR image was presented. Its approach is based on the NLM
filter philosophy, which was originally developed for additive
noise.
The fundamental step of our approach is to apply the NLM
algorithm with the stochastic distances calculated for Gamma
and EP distributions, replacing the Euclidean distance. Fur-
thermore, the process has been developed in the Haar wavelet



(a) FANS (b) OBNLM

(c) PPB (d) PM

(e) SAR-BM3D

Fig. 8. Ratio for Region 1 (R1). PM: proposed method.

(a) FANS (b) OBNLM

(c) PPB (d) PM

(e) SAR-BM3D

Fig. 9. Ratio for Region 2 (R2). PM: proposed method.

domain.
The real experiments of the proposed method were competitive
with the other filters. It has been proven that the new approach
is quite effective at removing the speckle in homogeneous
regions. Also, it has been shown that there is a need to
circumvent the problem of applying the proposed method in
heterogeneous regions. However, the algorithm performance
was higher than other filters primarily in removing the speckle
in real SAR images.
Lastly, we can cite as a future work to apply the presented
stochastic distances with the BM3D algorithm. We can also
decrease the execution time of the proposed method by using
an optimization of performance or vectorization code for NLM
and propose the idea to other wavelets. Also, it is necessary to
solve the loss of details in extremely heterogeneous regions.
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[34] P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, “Nonlocal means-
based speckle filtering for ultrasound images,” IEEE Transactions on
Image Processing, vol. 18, no. 10, pp. 2221–2229, 2009.


