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Abstract—Sensor-based Human Activity Recognition (HAR)
provides valuable knowledge to many areas. Recently, wearable
devices have gained space as a relevant source of data. However,
there are two issues: large number of heterogeneous sensors
available and the temporal nature of the sensor data. To handle
these issues, we propose a multimodal approach that processes
each sensor separately and, through an ensemble of Deep Con-
volution Neural Networks (DCNN), extracts information from
multiple temporal scales of the sensor data. In this ensemble,
we use a convolutional kernel with a different height for each
DCNN. Considering that the number of rows in the sensor
data reflects the data captured over time, each kernel height
reflects a temporal scale from which we can extract patterns.
Consequently, our approach is able to extract information from
simple movement patterns such as a wrist twist when picking up
a spoon, to complex movements such as the human gait. This
multimodal and multi-temporal approach outperforms previous
state-of-the-art works in seven important datasets using two
different protocols. In addition, we demonstrate that the use
of our proposed set of kernels improves sensor-based HAR in
another multi-kernel approach, the widely employed inception
network1.

I. INTRODUCTION

The use of sensors from wearable devices to recognize
human activities has grown every year. As discussed by Lara et
al. [1], there are many reasons for this growth: the increasing
interest of several areas, such as, medical, military, and secu-
rity applications; the convenience and comfort of using such
devices (it does not change or hinders the action due to their
use); the feeling of privacy (as opposed to monitoring with
cameras where depending on the activity performed or the lo-
cation, the user feels uncomfortable); and it is already naturally
inserted into people’s lives, facilitating the data capture. The
number of sensors in such devices is increasing and the large
range of sensors provide rich and complementary information
regarding the activities performed by users. Therefore, an
important line of research that has gained attention focuses on
the investigation to combine (i.e., fuse) these multiple sensors
to improve human activity recognition.

Some works perform fusion in the raw data (i.e., early
fusion), concatenating the sensors into a common matrix used
as input for machine learning methods. For instance, Chen
and Xue [2] employed a Deep Convolutional Neural Network
(DCNN) with three convolutional layers and used the size of
the kernel to extract the relation between the axes and temporal
information. Motivated by the architecture proposed in [2],

1This work corresponds to an M.Sc. dissertation.

Jordao et al. [3] suggested a DCNN able to explore the patterns
among the signal axes in all the layers that compose the
network. As a consequence, their proposed DCNN achieved
better results than [2]. Different from [2] and [3], Jordao et
al. [4] employed a DCNN and use partial least squares analysis
to reduce the dimensionality of each max-pooling layer and
consider the concatenation of the dimension reduction as a
feature to feed a softmax classifier. To improve the data
representation, Jiang and Yin [5] applied a discrete Fourier
transform to pre-process the input matrix and use a DCNN
composed by a stack of two convolutional layers, a fully
connected and a softmax layer to recognize the activities.
However, due to the multimodal nature of each sensor, merging
the sensors in the raw data may not be appropriate since
sensors have several dissimilarities between them, such as a
different number of axes, scales, meanings, or data nature (e.g.,
angle, intensity or frequency).

To address the multimodality problem, some authors pro-
posed to insert a padding between the sensors to separate
the data and to be able to extract features from the sensors
separately. For instance, Ha et. al. [6] preprocessed the matrix
of sensors adding a zero-padding between each sensor and
use a DCNN with the same layer structure as in [5]. However,
this division is only effective at the first layer since, from
the second layer onwards, the data from different sensors
are convoluted together. In fact, in another work, Ha and
Choi [7] proposed to insert zero-padding before each convo-
lutional layer to avoid interference between sensors when 2D
convolutional kernel is applied. While this approach separates
in some way the data before performing fusion, it uses the
same DCNN to learn features from all sensors simultaneously,
which might overcharge the model since the kernel have to
learn patterns from different data nature.

In a recent work, Yao et al. [8] brought a new perspective to
the problem by merging multimodal data to perform sensor-
based HAR. They build an architecture with three different
sequential blocks: an individual deep convolutional subnet for
each input sensor to learn local patterns; a common deep
convolutional subnet that concatenates all sensors and learns
the high-level relationship among them; and, at the end of the
architecture, a stacked Gated Recurrent Unit [9] structure to
learn meaningful temporal features. Since the use of convolu-
tional and recurrent networks is already well established in the
sensor community, the main advance of [8] is to go beyond just
placing a boundary between the sensors in the input matrix.
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Fig. 1. Our approach, the Multimodal DCNN Ensemble (MDE) relies on two premises. The first is separately processing each sensor and the second is to
extract patterns from multiple temporal scales. Thus, for each sensor, we create a DCNN ensemble that extracts multi-temporal information. This ensemble is
composed of streams so that each one extracts patterns on a specific temporal scale and classifies the sample. We merge all scores into a late fusion approach
which allows us to take advantage of the complementarity between both sensors and temporal scales.

Instead, before merging the data from multiple sensors (i.e.,
exploit the complementarity of the sensors), they separate the
sensors to extract features individually to learn which patterns
from each sensor better classify human activities.

Besides the sensor data heterogeneity, another issue that
must be considered is the temporal nature of the data. Due
to the CNN input format for sensors (where columns refer
to the sensor axes and rows to data-capture over time), the
height of the convolutional kernel represents the size of the
temporal window used to learn patterns. Since there are several
possibilities to set the kernel height, we can see each size as
a temporal scale to extract potential patterns.

In traditional deep convolutional network methods [2], [3],
[5], a single kernel size is set for each layer, which discards
all other possible temporal scales for that particular layer.
In these networks, each stacked convolutional layer learns
features at a larger semantic level than the previous one and,
in the sensor context, a deeper CNN network would learn
features in multiple temporal scales due to its depth (each
layer learns a higher temporal scale than the previous one).
However, the convolutional maps that go to the next layer are
the activations for the kernel in the previous layer. In this way,
when one chooses a single kernel size for a specific layer,
it might discard important information in this layer which
would only be selected by another kernel size. Therefore, to
avoid this problem, we propose the use of an ensemble of
multiple kernels which is able to learn several temporal scales
simultaneously. This follows the intuition that human activities
are composed by different durations, i.e., while some activities
can only be distinguished by small and fast movements, others

need to be analyzed for longer periods of time to be classified.
Given the aforementioned issues, we propose an approach

based on multiple streams to individually process the sensor
data. The core of this approach is a novel way of extracting
temporal data by employing an ensemble of temporal scales
implemented with multiple DCNNs. As each DCNN has a
kernel size which reflects one scale of a pre-defined temporal
scale range, we can extract patterns of multiple sizes, ranging
from short movements, such as a gentle twist of the wrist,
to large and complex motions, such as the human gait. To
the best of our knowledge, this is the first work to propose
extract patterns on sensor data using multiple scales to capture
multiples movements.

According to experimental results, our approach outper-
forms previous state-of-the-art results in seven datasets using
two different evaluation protocols. In addition, we adapt the
Inception module [10] to compare to our DCNN Ensemble
approach (without multimodal premise) and we demonstrate
that our method is better than the Inception. We also show that
the use our kernel set is more suitable for the sensor-based
HAR than the kernels originally proposed in the Inception
module.

II. PROPOSED APPROACH

In this work, we propose an approach, called Multimodal
DCNN Ensemble (MDE), to recognize human activities using
data provided by smartphones and smartwatches. It is based on
two hypotheses: (i) the use of multiples sensors might improve
accuracy due to the complementarity between the sensors, (ii)
activities are best described using multiple temporal scales
to extract patterns. To test these hypotheses, our approach
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Fig. 2. The deep convolution neural network stream.

consists of three main steps. First, we divide the sensors into
different inputs to process each one individually. Then, for
each sensor, we build an ensemble of temporal scales extracted
through DCNN streams that are subnets within our network.
Finally, we use an approach based on late fusion to merge the
multi-modal and multi-temporal information. The following
sections detail each step of this process. Figure 1 shows an
overview of our method.

A. DCNN Stream

Our approach is an end-to-end neural network composed
of subnets integrated through an ensemble technique. These
subnetworks, for convenience, let us call them streams, are
Deep Convolutional Neural Networks composed of two parts,
as illustrated in Figure 2.

The first block of the stream is a convolutional block with
two convolutional layers intercalated by two max-pooling lay-
ers. While the convolutional layers allow us to learn patterns in
the temporal scale defined for each stream, the pooling layers
control overfitting, reduce the number of parameters and the
computation cost. At the end of the subnet, we have a fully-
connected block consisting of a flatten layer, a fully-connected
layer and a softmax layer. We use scaled exponential linear
units (SELUs) [11] as the activation function of the fully
connected block. SELU has self-normalizing properties which
make the learning highly robust and allows to train networks
that have many layers. Additionally, the learning speed is faster
in SELU compared to the ReLU activation function as shown
in the work of [12]. While the convolutional block provides
a meaningful and invariant feature space, the fully-connected
block learns a non-linear function in that translates the features
learned by the convolutional block to the softmax scores.

B. DCNNs Ensemble

The sensor data is commonly stored in a matrix of size t×a,
where a is the number of axes of the sensor (for instance, three
axes (x, y, z) on motion sensors) and t is the temporal axis,
where each row is a sensor sample at a given time instant.
Therefore, given a 2D kernel (h,w), our premise is that the
height of the kernel (h) is responsible for determining in which
temporal scale we are learning the patterns. For instance, a h
equal to 25 in a matrix of 500 rows (a sample of size 5 captured
at a frequency of 100Hz) learns patterns of 0.25 seconds while
a h equal to 250 learns patterns of 2.5 seconds. Thus, the larger
the kernel height, the larger the temporal pattern it captures.
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Fig. 3. The DCNN ensemble is composed of streams so that each stream
extracts patterns from a specific temporal scale and classifies the sample for
that scale. We merge all scores into a late fusion approach which allows us to
take advantage of the complementarity between sensors and between temporal
scales.

Based on the aforementioned premise, we employ an
ensemble of deep convolutional streams with different kernel
sizes to extract information from multiple temporal scales.
The architecture of our multiscale ensemble is illustrated in
Figure 3. The number of DCNNs in each ensemble is pre-
defined as a parameter of our architecture, called pool. The
pool is a set of kernels K = {K1,K2, ...,Kj} containing a
variety of kernel sizes ranging from a small to a large kernel.
For each kernel in our pool, we add a DCNN in the ensemble
and set its two convolutional layers with the specific kernel.
For instance, in Figure 3, we have a pool of j kernels where
three of them have their streams explicitly drawn in the figure
composing a kernel pool K = {5× 2, 25× 2, ..., 250× 2}.

The multiscale ensemble is the most important contribution
of this thesis since, to the best of our knowledge, we are the
first to extract patterns on sensor data using multiple scales. As
shown in the architecture of our main approach (Figure 1), an
ensemble is built for each sensor, so we have several ensembles
according to the number of sensors processed (in the example
illustrated in Figure 1, we have three sensors and consequently,
three ensembles of DCNNs).

C. Decision Level Fusion

At the end of the DCNN ensemble stage, we have an
ensemble for each sensor, and each ensemble is composed
of j streams. Thus, it is necessary to merge this information
to take advantage of the complementarity provided by both the
multiple sensors and the multiple temporal scales. According
to our experimental results, the best way to merge these
streams is by using meta-learning of the scores. Therefore,
we concatenate all the scores of the streams (j × number of
sensors) in a single feature vector and pass it to a classification
layer (softmax).

The training of our network is performed in an end-to-end
way, which optimizes the weights of the entire network since
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Fig. 4. DCNN Ensemble approach on previous concatenated sensors data.

it maps the input of all the modalities to a single output.
Consequently, the network dynamically learns which scales
and sensors are most appropriate to classify each activity.

III. EXPERIMENTAL RESULTS

To evaluate the contribution of each part of the proposed
approach (i.e., the ensemble of convolutional neural networks
and the individual processing of the sensors), we implemented
two simplified versions of our proposed approach. The first,
called DCNN Ensemble, is illustrated in Figure 4. In this ver-
sion, we do not separate the sensors, instead, we concatenate
all sensors into a single array, in the same way of the majority
of works. Thus, we employ only a single ensemble of kernels
since we have only one input. The goal is to measure the
contribution of the multi-temporal scale approach implemented
with the DCNN ensemble in a scenario without multimodal
processing of sensors.

Figure 5 shows the second simplified version of our ap-
proach, called Multimodal Stream, that aims at measuring
the contribution of individual processing of the sensors. In
this version, we create a network following the multimodal
hypothesis but without using the DCNN ensemble approach.
Instead, we employ only a single DCNN stream (see Figure 2)
for each sensor. In this DCNN stream, we empirically choose
the value of 25× 2 to set the kernel size.

We compare our approach and its simplified versions with
all methods evaluated by Jordão et al. [13]. Thereby, in
addition to the methods mentioned in Section I, we also
show results from three other handcrafted methods [14]–[16]
surveyed by Jordão et al. [13]. Usually, this family of methods
extracts statistical features and applies a classifier to recognize
activities. We include them in our evaluation mainly because
they present better results in some datasets than approaches
based on deep learning. Finally, due to the multimodal nature,
we evaluate the MDE and Multimodal Stream only on datasets
that contain more than one sensor.

A. Experimental Setup

One of the most latent problems in wearable sensor-based
human activity recognition is the lack of standardization of
metrics, evaluation protocols, and datasets, which makes it
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Fig. 5. Multimodal stream approach. A simplified version to evaluate one of
the main steps of our MDE approach. This version is based on the premise of
processing the sensors separately to extract meaningful features before fusion.
We do not use the DCNN ensemble in this version, instead, we use only one
stream to process each sensor and we set the kernel size as 25× 2.

difficult to compare the methods in the literature. While some
works record their own datasets to perform experiments, others
use datasets from the literature but do not clarify the evaluation
protocol employed, which prevents the reproducibility of the
results. Recently, a work has endeavored to solve this issue
by bringing the first standardization to the domain. Jordão et
al. [13] performed a thorough study and standardized seven
datasets of the wearable sensor literature in four different
protocols.

As pointed by Jordão et al. [13], most of the works based
on convolution networks omit some important parameters,
hindering comparison between methods. To handle this issue,
the protocol created by Jordão et al. [13] sets some parameters.
The maximum number of epochs was set to 200 and the
method stops its training when the loss function reaches a
value less or equal than 0.2. These values were set empirically
by observing the trade-off between execution time and accu-
racy. Regarding deep learning implementation decisions, we
use cross-entropy as the loss function of our network. Cross-
entropy measures the performance of a classification model
whose output is a probability value between 0 and 1. The loss
increases as the predicted probability diverges from the actual
probability. We employ the RMSprop [17] as optimizer since
it provides an efficient execution time. As dropout layer, we
use alpha dropout [11] since it fits well to scaled exponential
linear units by randomly setting activations to the negative
saturation value. Alpha dropout keeps the mean and variance
of inputs to their original values, to ensure the self-normalizing
property even after dropout. We set the dropout rate to 0.1.

Regarding the ensemble implementation, it is important to
mention that in the DCNN stream (see Figure 2) we use 16
filters in the first convolutional layer and 32 filters in the
second. In addition, the results shown in our experiments were
performed using K = {2 × 2, 3 × 3, 5 × 2 12 × 2 25 × 2} as
our pool of kernels.

Jordão et al. [13] conducted a survey in the litera-
ture and gathered seven important datasets: WHARF [18],



USCHAD [19], UTD-MHAD (set 1 and 2) [20], WISDM [21],
PAMAP2P [22] and MHEALTH [23]. This set of datasets
composes an interesting diversity of number of samples,
types of activities performed and number of available sensors,
making it possible to evaluate the robustness of the methods
in different scenarios. The datasets were processed and stan-
dardized with a sampling rate of five seconds, except for the
UTD-MHAD dataset that had to be sampled at 1-second rate.
We evaluate our approach in these seven datasets following
strictly the procedure defined by Jordão et al. [13]2.

Regarding the evaluation protocols, according to Jordão
et al. [13], Leave-One-Subject-Out (LOSO) and Leave-One-
Trial-Out (LOTO) are the most appropriate for reporting
results in sensor-based HAR. In the LOSO protocol, the data
are separated in training and test so that the test has only one
subject at a time and the training has the other subjects. In
the LOTO, the trial consists of a transition from one activity
to another, so the data is separated into trials where each trial
contains only a continuous capture of an activity. Therefore,
the training is performed with all the trials except one that is
set as test. LOSO represents the real scenario of applications
for wearables devices, where a method is trained in known
subjects and applied to new subjects afterwards. This protocol
also analyzes the generalization quality of the method since
the training and test data do not have the same distribution. On
the other hand, LOTO protocol has the benefits of generating
a large number of samples and certifying that the contents of
a trial do not appear in training and testing at the same time,
different from the cross-validation protocols inappropriately
used in the literature, which ensures a correct evaluation of
the performance.

B. Comparison with a Kernel Ensemble Baseline

To analyze the contribution of the pool of kernels and to
evaluate the contribution of our DCNN ensemble, we use the
Inception network module proposed by Szegedy et al. [10] as
a baseline. Although the inception was originally designed for
object detection in images, it is analogous to our approach
since it also applies multiple kernels to the same input to
extract different pattern sizes. We were not able to compare our
DCNN Ensemble with inception’s full architecture because the
available datasets to sensor-based HAR do not have enough
data to train a network the size of inception (in the object
detection domain the inception was trained using 1.2 million
of images provided by ImageNet dataset [24], in our context
the dataset with the largest number of samples used in our
evaluation has 20,000 samples). One option would be to
use the network pre-trained on the ImageNet and perform
transfer learning. However, the pre-trained model is restricted
to the use of three channels and requires a minimum array
of 139x139 pixels as input. The sensor data is composed of
one channel and our largest dataset has a matrix of 500x10.
Therefore, it is not possible to use the pre-trained inception
network without deforming our data.

2Refer to [13] for more details regarding the evaluation procedure.

Due to the aforementioned restrictions, we performed a
study of the appropriate number of inception modules that
should be used for the context of wearable sensors. Our
experiments showed that the addition of more than one module
deteriorates the results. Therefore, all inception-based experi-
ments in this work were executed by using only one inception
module. Another important point is that we add the fully
connected block used in our stream to the inception module.
This considerably increased the inception performance since
the fully connected block is capable of fusing different patterns
extracted by different kernels sizes and also regularize the
network since we use SELU activation function. We employed
two modules proposed by Szegedy et al. [10]: the naı̈ve and
the dimensionality reduction module as baselines. In addition,
to evaluate our kernel pool, we adapt each type of inception
module to the wearable sensors domain by using the same
pool of kernels used by our approach instead of the kernels
proposed in Szegedy et al. [10].

Table I shows the results obtained with the described ap-
proaches on LOTO and LOSO evaluation protocols. According
to the results, the use of our pool of kernels improves the result
of the inception original modules for all datasets. This support
our hypothesis that extracting multiple temporal scales is ap-
propriate for the sensor domain. Besides, our DCNN ensemble
approach outperforms all four inception-based methods using
LOSO and LOTO on the seven datasets, which points out
that our ensemble is more suitable to employ multiple kernels
to extract temporal information in the context of wearables
sensors.

C. Comparison with a Multimodal Baseline

Yao et al [8] brought advances to sensor fusion by em-
ploying multiple streams to process each sensor separately.
To the best of our knowledge, that is the only multimodal
method using multiple streams that have been proposed so far
in the context of wearables sensors. Our multimodal stream
and MDE explore this intuition. It is important to note that
due to the multimodal premise of the approaches, we do not
evaluate the work of [8] and our multimodal approaches (MDE
and Multimodal Stream) on WHARF and WISDM datasets
since they consider only the accelerometer sensor.

The approach proposed by Yao et al [8] shows poor
results both on LOTO and LOSO (see Table I) protocols
reporting accuracy lower than very simple approaches such
as handcrafted methods in all datasets evaluated. Particularly,
their approach performs poorly in UTD-MHAD family and
MHEALTH datasets. We believe this is because the network
proposed by Yao et al [8] has a very complex structure which
can cause overfitting since these datasets do not have a large
number of samples. In addition, in the datasets of the UTD-
MHAD family, the sample size does not allow it to be divided
into time-steps to fed the network, which is essential to the
approach of Yao et al [8] since it uses recurrent neural network
(RNN).

In contrast to the approach proposed by Yao et al [8],
our method showed superior results even using only the



TABLE I
COMPARISON OF OUR MULTIMODAL DCNN ENSEMBLE (MDE) AND ITS SIMPLIFICATIONS (DCNN ENSEMBLE AND MULTIMODAL STREAM) TO THE

STATE-OF-THE-ART ARCHITECTURES SURVEYED BY [13] USING LOTO AND LOSO PROTOCOLS ON SEVEN DATASETS. ALSO, WE SHOW THE RESULTS OF
TWO INCEPTION MODULES [10] USING THE ORIGINAL PROPOSED KERNELS AND OUR PROPOSED POOL OF KERNELS. CELLS WITH THE SYMBOL “-”

DENOTES THAT IT IS NOT POSSIBLE TO EXECUTE THE METHOD ON THE RESPECTIVE DATASET DUE TO ITS ARCHITECTURE.

WHARF UTD-1 UTD-2 WISDM USCHAD MHEALTH PAMA WHARF UTD-1 UTD-2 WISDM USCHAD MHEALTH PAMA

METHODS LOTO (ACCURACY (%)) LOSO (ACCURACY (%))

Kwapisz et al. [14] 44.51 15.99 69.61 79.08 76.52 89.75 70.58 42.19 13.04 66.67 75.31 70.15 90.41 71.27
Catal et al. [15] 64.84 47.80 81.37 80.52 87.77 91.84 81.03 46.84 32.45 74.67 74.96 75.89 94.66 85.25
Kim et al. [16] 61.12 50.98 75.27 56.26 85.70 91.51 78.08 51.48 38.05 64.60 50.22 64.20 93.90 78.08
Chen and Xue [2] 72.55 - - 86.55 84.66 89.95 82.32 61.94 - - 83.89 75.58 88.67 83.06
Jiang and Yin [5] 70.79 - - 83.82 80.73 52.78 - 65.35 - - 79.97 74.88 51.46 -
Ha et al. [6] - - - - - 85.31 80.13 - - - - - 88.34 73.79
Ha and Choi [7] - - - - - 82.75 71.19 - - - - - 84.23 74.21
Yao et al. [8] × 12.70 22.41 × 81.34 31.35 70.59 × 11.45 22.40 × 71.52 31.88 72.61

Inception naı̈ve mod [10] 43.98 50.87 76.27 83.02 - - - 36.64 40.71 72.55 78.64 - - -
Inception naı̈ve + pool 49.86 53.06 76.71 84.89 - - - 41.14 41.44 72.46 81.99 - - -

Inception mod [10] 51.76 52.36 74.62 79.18 - - - 42.07 39.62 68.34 73.86 - - -
Inception + pool 60.74 56.66 78.62 86.83 - - - 49.97 42.23 72.96 80.99 - - -

DCNN Ensemble 75.50 62.03 81.63 89.01 88.49 93.09 83.99 69.79 46.75 79.38 86.22 82.66 96.27 87.59
Multimodal Stream × 48.90 79.82 × 85.95 83.17 79.62 × 36.99 74.59 × 79.68 90.20 80.58
MDE × 69.61 83.78 × 90.08 84.61 76.35 × 57.13 81.99 × 83.40 88.97 77.70

multimodal hypothesis through our multimodal stream ap-
proach (without DCNN ensemble as explained in the be-
ginning of this section). Furthermore, using the multimodal
DCNN ensemble, we solve the temporal issue in an apparently
more efficient way since it does not use RNNs and still is able
to surpass more sophisticated approaches such as Yao et al [8].

D. State-of-the-art Comparison

Table I shows the results of our main approach, the
multimodal DCNN ensemble (MDE), and its two simplifica-
tions, the DCNN ensemble and the multimodal stream (both
explained at the beginning of this section). Our approaches
overcome the results of our two baselines (inception mod-
ule [10] and Yao et al [8]), as discussed before, and all
methods of the literature surveyed by Jordão et al. [13]. Our
method achieves, to the best of our knowledge, the state-of-
the-art in the seven datasets evaluated. We reiterate that many
efforts have been done to achieve modest improvements in
HAR based on wearable sensor data, which reinforces that
the Multimodal DCNN Ensemble and the DCNN Ensemble
provide notable improvements.

According to the results, in the MHEALTH and PAMAP2P
datasets, the DCNN ensemble shows superior results when
compared to the multimodal DCNN ensemble in both proto-
cols tested. We believe this is occurring because we had to
reduce the number of parameters in the MDE network for
these two datasets due to the limited computational resources
available to run our experiments. Thus, we use a smaller pool
of kernels and a fully connected with fewer neurons in the
stream fusion block in these datasets.

IV. CONCLUSIONS

In this work, we proposed a multiscale ensemble-based
approach of deep convolutional neural networks to address
sensor-based human activity recognition (HAR). Our approach
is able to learn individually the features of each sensor before
performing the fusion and to model multiple temporal scales of
an activity sequence. We demonstrate its suitability for HAR
on wearable sensor data by performing an evaluation on seven

important datasets. Our approach outperforms previous state-
of-the-art results and an Inception module network adaptation
used as a baseline to our convolutional kernel ensemble
premise. We demonstrate that our approach works directly
on the raw sensor data, with no pre-processing, which makes
it general and minimizes engineering bias. As future work,
we intend to study a dynamically way to choose the kernels
employed in the ensemble.

During the development of this work, a technical paper
entitled ´´Multiscale DCNN Ensemble Applied to Human
Activity Recognition Based on Wearable Sensors” containing
the contributions of this thesis was published in the pro-
ceedings of the 26th European Signal Processing Conference
(EUSIPCO) [25]. Additionally, we contribute as co-author
in the journal paper ´´Human Activity Recognition based on
Wearable Sensor Data - A Benchmark”, which created a
significant standardization of metrics and protocols on seven
important datasets and made an extensive evaluation of several
methods for human activity recognition based on wearable
sensor domain. Currently, this work is under major review
in the IEEE Sensors Journal and pre-printed in the arxiv.org
database [13].
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