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Abstract—A hierarchical image segmentation is a set of image
segmentations at different detail levels. However, objects can be
located at different scales due to their size differences or to their
distinct distances from the camera. In literature, many works
have been developed to improve hierarchical image segmentation
results. One possible solution is to realign the hierarchy such that
every region containing an object (or its parts) is at the same
level. In this work, we have explored the use of random forest
and artificial neural network as regressors models to predict
score values for regions belonging to a hierarchy of partitions,
which are used to realign it. We have also proposed a new score
calculation witch considering all user-defined segmentations that
exist in the ground-truth. Experimental results are presented for
two different hierarchical segmentation methods. Moreover, an
analysis of the adoption of different combination of mid-level
features to describe regions and different architectures from
random forest and artificial neural network to train regressors
models. Experimental results have point out that the use of new
proposed score was able to improve final segmentation results.

I. INTRODUCTION

Recently, a huge amount of image data has been stored
and made available through the Internet, witch has attracted
more attention from the research community to tasks related to
image processing and analysis, more specifically, to computer
vision.

According to [1], a hierarchical image segmentation is a set
of image segmentations at different detail levels in which the
segmentations at coarser detail levels can be produced from
simple merges of regions from segmentations at finer detail
levels. Hierarchical segmentation methods such as [1], [2]
could be used as basic tool in many computer vision tasks [3]–
[5].

A simple way to understand the concept of hierarchical
image segmentation is shown in Figure 1, which represents
the result of a hierarchical segmentation by a tree. The
image segmentations are produced by cuts in the performed
at each level of the hierarchy. It is observed that the first
hierarchical level was composed of only one region. In the
second hierarchical level the previous region was presented
in more detail, so it was possible five regions. In turn, on

1M.Sc. dissertation

the third level it was possible to visualize the details of the
previous regions.

Fig. 1. Example of a result obtained from a hierarchical image segmentation
method, represented by a tree, and its segmentations at different levels of
detail

The final results of hierarchical image segmentation can be
also represented as contour map, e.g., Ultrametric Contour
Map – UCM [6], (contour) saliency map [7]). This kind of
representation allows a good visibility of results encompassing
all hierarchical levels (see Fig. 2), and allows to obtain a
particular segmentation (at a certain observation scale) through
a simple thresholding.

In literature, many works have been done recently [8]–[11]
to demonstrated that scale-awareness seems to be helpful in
improving final results in many computer vision tasks. Specifi-
cally in hierarchical image segmentation, many challenges still
exists, such as, the presence of multiple objects (or part of
objects) at different scales in a hierarchy of partitions. In an
attempt to solve many challenges, Deep Convolutional Neural

(a) (b)

Fig. 2. Example of result obtained by a hierarchical image segmentation
method: (a) original image, (b) representation by UCM.



Fig. 3. Example of the realignment of hierarchies process

Networks (DCNNs) have been used to refined computer vision
systems [12].

In [13], the authors proposed to improve the final result of
a hierarchical algorithm by changing its alignment, in order to
put (almost) all objects (and their parts) at the same level (or
scale). For that, the authors first trained a random forest with
100 trees as a regressor to predicted the scale of a hierarchy
regions using one set of mid-level features. Then, they create
a set of regions that better balance between over and under-
segmentation, named anchor slice. Based on the anchor slice,
the original hierarchy is realigned adjusting the hierarchy, such
that every region in the anchor slice is at the same level (or
scale), an example is shown in Figure 3.

However, in [13] were used as regressor a random forest
with 100 trees and one set of mid-level features, so the
following question arose: “What is the impact on the results
of hierarchical segmentation after the process of realigning
the hierarchies when training random forests and neural
networks with different architectures and with different re-
gion descriptors?”. In order to answer this question in this
work, first we have used two different hierarchical image
segmentation methods: gPb-owt-ucm [2] and hGB [1]; and
we focus on evaluating: (i) impact analysis of the use of
distinct hierarchical methods; and (ii) different combinations
of mid-level features to describe regions. After that, we extend
that previous study with an in-depth analysis of regression
model behavior using two distinct approaches: (i) random
forest (RF); and (ii) artificial neural network (ANN) varying
the size and architecture details for each model, which were
trained and evaluated with different combinations of mid-level
features (in a total of 660 distinct models). In additional we
have also proposed a new score calculation to be used during
training step instead of the one proposed by [13]. Then we
have compared the resulting hierarchies (after realignment)
using both the traditional consensus evaluation strategy [2] and
a new proposal considering all user-defined segmentations in
the ground-truth.

The main contributions of this work include: (i) analysis of
how the process of realigning hierarchies impacts the segmen-
tation of images; (ii) analysis of the quality of the predictions
obtained by artificial neural networks and random forests to
label if a region is under-, over, or properly-segmented, as
well as the analysis of how they act in different architectures
and with different combinations of mid-level features; (iii)

analysis of how the use of different sets of features in training
influences the final segmentations of the process of realigning
hierarchies; and (iv) analysis of how the uses of all user-
defined segmentations present in the ground-truth for the same
image in the training process can influence the final results of
the process of realigning hierarchies.

II. THEORETICAL REFERENCE

Interpreting data contained in digital images is considered
a complex activity and, therefore, segmentation can be con-
sidered as an intermediate process necessary to make possible
the application of the interpretation in question [14].

There is a rich literature of hierarchical image segmentation.
But in this work, we only describe the hierarchical methods
used in: gPb-owt-ucm [2] and hGB [1], both widely used in
the literature.

gPb-owt-ucm [2] method was based on [15] method, witch
proposed a function to detect probables boundaries of the im-
age segments, named Pb. In [2], first, a multiscale version of a
Pb(x, y, θ) (mPb) detector is used to predict the probable of a
boundary in the θ orientation for a pixel (x, y) by the measure
of local brightness, color and texture. The adaptation of the
method developed by [2] to the context of multscales, consists
in executing the function Pb(x, y, θ) in different scales for
each channel of brightness, color and texture. After that a
sequence of Gaussian filters was applied to the resulting mPb
image and then a calculation of the eigenvector orientation
information of the segments is responsible for normalizing
and globalizing (gPb) the initial segmentation of the image.
After this point, the algorithm is already able to determine the
contours in the image. hen, an UCM is generated from the
boundaries of these initial regions.

The HGB method [1], [16], starts with simple regions
representing single image pixels, than it is able to produce
a hierarchy of partitions for the entire image.

For that, an image is transformed into an non-directed graph
G = (V,E), where V is a finite set of vertices, which represent
the pixels of the image and the edges E represent a measure
of dissimilarity between a pair of pixels. A color gradient is
calculated by the Euclidean distance in the color space RGB
and used as a feature of the pixels. The set E is a subset of
{x, y} ⊆ V | x 6= y} (which represents the 8-neighbors of
each pixel). If w is a function that maps E to R+, then w(u)
is the weight of the edge u measure of dissimilarity between
two pixels and (G,w) is a non-directed weighted graph.

Given a finite set V , a partition of V is defined as a set
P of non-empty disjoint subsets of V whose union is V .
Every element of a P partition is called a P region. Given
two partitions P and P ′ of V , it is said that P ′ is a refinement
of P , denoted by P ′ � P , if any region of P ′ is included in
one of P . A hierarchy of V is a sequence H = (P0, . . . , Pl)
of partitions of V , so that Pi−1 � Pi for any i ∈ 1, . . . , l}.

Machine learning is a subarea of artificial intelligence
witch has arisen to solve difficult problems, since it allows
a collection of input and output pairs to learn a function by



means of pattern extraction, capable of predicting the output
to new input data [17] .

Machine learning methods are divided into two broad cate-
gories of learning: (i) unsupervised; and (ii) supervised [18].
[17] defined another category beyond the other two, named
semi-supervised (iii).

The inputs to be passed through the learning process are
described by a series of features (or attributes) that can
be quantitative or qualitative. The branch of machine learn-
ing that deals exclusively with qualitative characteristics is
called pattern recognition, whereas statistical learning operates
exclusively on numerical data [19]. In statistical learning,
the characteristics of an input are organized into a vector
[x1, x2, . . . , xn]T ∈ Rn, constituting the space of character-
istics in that each axis corresponds to a specific characteristic.
Already qualitative characteristics, must be converted into
quantitative.

The set of data used in the learning process is usually in
the form of a set of data labeled z = [z1, z2, . . . ,N ], zj ∈ Rn.
The label indicates the class or value of zj that is expected,
and is represented by yj ∈ Ω, j = 1, . . . , N. The data set can
be organized as an array with N rows (entries) by n columns
(features), with an extra column (or vector) containing the
labels.

In this way, a classifier or regressor can be defined as any
D function capable of assigning a label to an input data, that
is, D : Rn 7→ Ω. Usually an input x ∈ Rn is labeled with the
highest scoring class or value.

III. RELATED WORKS

Exploiting scaling information has proved useful for many
image segmentation tasks, such as segmenting semantic im-
ages [12], for contour detection [11] and improving the
hierarchies resulting from segmentation methods [13].

In order to achieve the best hierarchical targeting result,
[20], proposed flatten the hierarchy in a single segmentation.
Commonly, to find the best result of hierarchical segmentation,
horizontal cuts are used in hierarchies. In their work, [21],
[22] proposed to explore the use of non-horizontal cuts in
hierarchies. In this way it is possible to obtain the best
partitions regardless of the hierarchical level they are in. Using
this same reasoning, finally, [13] proposed to modify the final
result of a hierarchical algorithm, in order to modify the scales
of observation, that is, to modify the hierarchical levels in
which the regions meet, so that (almost) all objects (and their
parts) can be at the same level (or scale).

In [2], the authors proposed a benchmark to evaluate seg-
mentations and their boundaries. This benchmark adopts the
following evaluation metrics: Segmentation Covering (SC),
Probabilistic Rand Index (PRI), Variation of Information (VI)
and F -measure. The ground-truth used in the calculations are
based on a majority voting procedure among the several user-
defined segmentations present in the ground-truth, creating
then, a single segmentation.

Fig. 4. Realign approach

IV. METHODOLOGY

The realignment approach used in this work is illustrated in
Fig. 4, which is divided in two steps: training step, in which
a regressor is generated; and testing step, when the obtained
regressor is used to predict regions scores that are used in
realignment process.

During training step, a set of training images is used (4a) to
produce the corresponding set of hierarchies (4b). After that,
all regions of the hierarchies are described with a set of mid-
level features and their scores values are also calculated (4c).
We calculated the scores similar to [13], [23] and used a new
score calculation proposed in this work in order to compare
both. Then, these scores and features are used to train a
regression model (4d).

During testing step, for each test image (4e) the correspond-
ing hierarchy is produced (4f). Then, the same set of mid-level
features used in training are described for every region of the
hierarchy (4g). After that, these features are used with the
trained regression model in order to predict the score value
for each region (4h). Finally, based on the scores predicated, a
anchor slice was identified and used in the realignment process
(4i) to produces a final hierarchy (4j) (analogously to [13],
[23]).

A. Features Extraction

The mid-level features were extracted from all regions of
each hierarchy is the same used by [13]: shape features (such
as area, perimeters, etc.), graph features (such as cut, ratio cut,
etc.) and gestalt features (such as texton similarities, brightness
similarities, etc). Moreover, we have also explored features
to encode color properties, such as color mean, and color
histogram [24].

Here ‘c’ stands form color based features, ‘s’ is used to
represent region shape features, ‘g’ stands for graph features,
and ‘t’ is used to represent gestalt features.

B. Score Calculations

The calculation of score value Sk
i used in [13], [23] con-

sisting of, for each region Rk
i of hierarchy, its corresponding

ground-truth region Gk
i is identified and used to compute

the overlap with the Intersection over Union (IoU) Sk
i by



Eq. 1. As suggested by [13], [23], only the first user-defined
segmentation found for image k in the ground-truth was used.

Sk
i =

|Gk
i | − |Rk

i |
max

(
|Gk

i |, |Rk
i |
) (1)

in which |Rk
i | and |Gk

i | represent the size of region Rk
i and

the size of its corresponding ground-truth region Gk
i , respec-

tively for image k. The most-overlapping human-annotated
segment is taken as the corresponding ground-truth region.

In this work we proposed a new score calculation Υk
i by

Eq. 2, which considers all user-defined segmentation found in
the ground-truth.

Υk
i =

1

Nk

Nk∑
j=1

|Gk
ij | − |Rk

i |
max

(
|Gk

ij |, |Rk
i |
)
 (2)

in which |Gk
ij | represents the size of j-th user-defined seg-

mentation found in the ground-truth region (Gk
ij) for image k,

Nk stands for the total number of user-defined segmentations
for image k; and |Rk

i | has the same definition of Eq. 1.
Both Sk

i and Υk
i return a score value in a interval [-1, 1];

so, when the score is a negative value, it indicates that the
region Rk

i is under-segmented, while a positive value stands
for over-segmented, and when the score is close to 0 indicates
a properly segmented.

C. Regression model generation

Firstly, a random forest (RF) with 100 trees was trained
similar to [13], to provide comparability with previous works;
after that, aiming to analyzing the impact of the features on the
hierarchies produced after the realignment, we trained other
RF with 100 trees varying the set of features: ‘c+g+s’, ‘c+s’,
‘c+t+g+s’, and ‘t+g+s’. It is worth mentioning, that for these
firsts experiments we produce the hierarchies using gPb-owt-
ucm [2] and hGB [1].

In this work we have also evaluated the impact of the
adoption of different types of regression models to predict
regions scores. For that, we have explored random forest
(RF) and artificial neural network (ANN) as approaches for
generating the regression models. A total of 660 regression
models were trained and evaluated. For these experiments we
produce the hierarchies using hGB [1].

With the purpose of exploring the use of RF to predict
regions scores we trained models with the following sizes (in
number of trees): 25, 50, 100, 200, and 400, for each model we
varied the set of features: ‘c’, ‘s’, ‘t’, ‘g’, ‘g+t+s’, ‘g+t+s+c’.
Each regression model was trained and tested 10 times, to
obtain the average results.

The ANN is a very flexible model that adapts itself to a
given data distribution, so it can dynamically pick the best
type of regression (e.g., linear, logistic, polynomial) to use.
Actually, neural networks are reducible to regression models
– a neural network can “pretend” to be any type of regression
model. For instance, a very simple neural network with only
one input neuron, one hidden neuron, and one output neuron

can be trained to be equivalent to a logistic regression. Thus,
in order to explore the uses of ANN to train the regions scores,
we trained models with two and three layers. For each amount
of layers we explore the following number of neurons: 02, 05,
and 10. For each model, we varied the set of features: ‘c’, ‘s’,
‘t’, ‘g’, ‘g+t+s’, ‘g+t+s+c’. Each regressor model was trained
and tested 10 times, to obtain the average results.

After we trained the regressors, we evaluated the quality of
each of them.

In this work we have also proposed a new score calculation
defined by Eq. 2. Then, we used the same set of features and
architecture that have produced the best regressor (of the 660
regressors trained so far) to train and test a new regression
model to predict regions scores based in Eq. 2. After, we
evaluated the quality of this regressor and compare it with
the best regressor obtained before.

D. Hierarchy realignment

After training the regression approach, they are used to
make predictions. During testing step, each region of the
hierarchy receive a predicted score in [−1,+1] indicating
if that region is under-, properly- and over-segmented. The
anchor slice corresponds to regions that received a score
indicating nearly properly-segmented. After that, a local linear
transform (the same used in [13], [23]) is performed on
contour map representing the hierarchy, and the anchor slice
is aligned to scale value of 0.5 (for the convenience and later
use).

V. EXPERIMENTAL RESULTS

BSDS500 dataset [2] was used, which includes 500 images
(200 for training, 100 for validation, and 200 for testing).

As segmentation evaluation measures, we adopted: (i) Seg-
mentation Covering (SC); (ii) Probabilistic Rand Index (PRI);
(iii) Variation of Information (VI); and (iv) F -measure for
boundary (Fb); all four computed at Optimal Dataset Scale
(ODS) and Optimal Image Scale (OIS) see [25] for a review
of these measures and scales. Note that for all measures a
large value is better, except for VI.

In the fist experiment, we evaluated the behavior of the
realignment of hierarchy method proposed by [13] using the
result of different hierarchical image segmentation methods
and different set of features. Average results obtained for
regression made with random forest are shown in Table I.

In case of gPb-owt-ucm method, it was possible to observe
that the realignment of hierarchies was performed using the
color, graph and shape characteristics, that the average of

TABLE I
AVERAGE RESULTS FOR REGRESSION WITH RANDOM FOREST.

SC ↑ PRI ↑ VI ↓ Fb ↑
ODS OIS ODS OIS ODS OIS ODS OIS

gPb-owt-ucm no realignment 0.59 0.65 0.83 0.86 1.69 1.48 0.73 0.76
gPb-owt-ucmalignment(c+gr+s) 0.58 0.64 0.82 0.85 1.75 1.49 0.69 0.76
gPb-owt-ucm alignment(c+s) 0.55 0.61 0.79 0.83 1.81 1.58 0.69 0.74
hGB no realignment 0.43 0.62 0.74 0.80 2.34 1.88 0.49 0.50
hGB alignment(c+ge+gr+s) 0.38 0.53 0.75 0.81 2.45 1.89 0.50 0.50
hGB alignment(ge+gr+s) 0.39 0.53 0.74 0.81 2.45 1.89 0.50 0.50
hGB alignment(c+s) 0.43 0.62 0.74 0.80 2.34 1.88 0.49 0.50



Fb comparing with the segmentations that did not undergo
the realignment process. In case of HGB method, it was
possible to observe that the average values of Fb OIS were
maintained in all cases and in the tests that the color, texture,
graph, shape and color characteristics were used, and the
characteristics graph, and shape, there was an improvement
of the average value of Fb ODS and the average value of PRI.
The average value of VI remained the same in the case with
the characteristics of color and shape.

In order to better understand the impact of the use of
different machine learning methods for training and prediction
the scores, in the second experiment RF and ANN were
trained, totaling 660 regressors with different sets of features
and different architecture (quantity of trees in the random
forests, and amount of neurons and layers in the neural
networks). For this experiment, the training database was
divided as follows: 150 images for training and 50 images
for the predictions (tests). The hierarchical segmentations used
were obtained by the HGB [1] method. In total, in each
execution, 361,218 regions were used during training, while
121,271 regions were used for predictions. Then, the quality
of each regressor was evaluated by mean squared error (MSE).
Average results obtained are shown in Table II.

For RF, the best results are related to models with a large
number of trees (400); while, for ANN, the best results are
related to models with two and three layers containing only
02 or 05 neurons per layer. Top results for both regressors (RF
and ANN) were obtained with mid-level feature combination
‘g+t+s’; and best overall MSE was equal to 17.4% – achieved
by one of the ANNs with three layers containing 02 neurons
per layer (ANN/3L/2N using ‘g+t+s’).

After, another experiment was carried out in order to eval-
uate the realignment results using the regressor that obtained
the best result on the second experiment (i.e., ANN/3L/2N).
Therefore, the best regressor obtained was used to predict
the scores of regions beloging to hierarchical segmentations
produced for the BSDS500 test set and then these hierarchies
were realigned. Finally, to better understand the results ob-
tained from the realignment of the hierarchies, some individual
comparisons were made between the segmentations before and
after the realignment. Average results obtained are shown in
Table III.

The Fb measure presented an improvement of 8∼10% for
ODS value and an improvement of 16% for OIS, while PRI

TABLE II
AVERAGE MSE FOR PREDICTIONS WITH RF AND ANN MODELS.

Feature combination
g+t+s g+t+s+c g t s c

RF/25T 0.185 0.185 0.218 0.187 0.199 0.203
RF/50T 0.181 0.182 0.217 0.184 0.196 0.199
RF/100T 0.179 0.180 0.215 0.182 0.194 0.198
RF/200T 0.179 0.179 0.214 0.181 0.193 0.197
RF/400T 0.178 0.179 0.214 0.181 0.193 0.197

ANN/2L/2N 0.197 0.179 0.248 0.180 0.220 0.193
ANN/2L/5N 0.186 0.198 0.195 0.178 0.262 0.196
ANN/2L/10N 0.260 0.247 0.355 0.189 0.248 0.241
ANN/3L/2N 0.176 0.182 0.195 0.189 0.205 0.193
ANN/3L/5N 0.200 0.209 0.195 0.179 0.563 0.196
ANN/3L/10N 0.236 0.279 0.236 0.212 0.289 0.218

TABLE III
SEGMENTATION EVALUATION MEASURES BEFORE AND AFTER

REALIGNMENT WITH DIFFERENT FEATURE COMBINATIONS.

SC ↑ PRI ↑ VI ↓ Fb ↑
ODS OIS ODS OIS ODS OIS ODS OIS

No realignment 0.43 0.62 0.74 0.80 2.34 1.88 0.49 0.50
Realigned (g+t+f) 0.37 0.53 0.74 0.81 2.45 1.89 0.53 0.58
Realigned (g+t+f+c) 0.37 0.53 0.74 0.81 2.45 1.89 0.53 0.58
Realigned (g) 0.42 0.53 0.74 0.81 2.45 1.89 0.54 0.58
Realigned (t) 0.36 0.53 0.74 0.81 2.45 1.89 0.53 0.58
Realigned (f) 0.37 0.53 0.74 0.81 2.45 1.89 0.53 0.58
Realigned (c) 0.39 0.53 0.74 0.81 2.44 1.89 0.53 0.58

measure presented an improvement of only 1.25% for OIS
value. The other measures did not present any improvement
(and some even got worst, such as ODS values for SC and
for VI). This could be explained by the fact that, although
some individual results have improved a lot after realignment
process, others got worsened (or did not change at all).
Fig. 5 exhibits an example that has improved after realignment
process, along with one that has remained unmodified and
another which has worsened.

Using the score calculation proposed in this work by Eq. 2,
in order to assess the impact of using Υk

i (instead of Sk
i ),

another regressor with the same characteristics and architecture
of the best regressor obtained on the second experiment
(ANN/3L/2N with ‘g+t+s’) was trained. For that, the scores of
the test dataset was calculated. Then, the quality of this new
regressor was evaluated, and the test hierarchies were later
realigned. Finally, an evaluation of the realigned segmentations
that were generated was done. In Fig. 6 and Fig. 7, one can see
that images, with unmodified and worsened results presented
in Fig. 5, have now been improved. The new regression model
achieved a MSE of 10.5% (which represents a 40% reduction

SC : 0.16
PRI : 0.39
VI : 4.46
Fb : 0.55

SC : 0.56
PRI : 0.65
VI : 1.23
Fb : 0.70

SC : 0.32
PRI : 0.51
VI : 3.87
Fb : 0.44

SC : 0.32
PRI : 0.51
VI : 3.87
Fb : 0.44

SC : 0.35
PRI : 0.78
VI : 3.16
Fb : 0.58

SC : 0.27
PRI : 0.27
VI : 2.21
Fb : 0.0

Fig. 5. Examples of results: an improved result (first line); an unmodified
result (second line); and a worsened result (third line). From left to right: (i)
original image; (ii) first segmentation in the ground-truth; (iii) segmentation
before realignment; and (iv) segmentation after realignment. Both segmenta-
tions were obtained through a horizontal cut a scale value 0.5.



(a) Image (b) GT1 (c) GT2 (d) GT3 (e) GT4 (f) GT5

(g) No realign (h) Using Sk
i (i) Using Υk

i
SC : 0.32
PRI : 0.51
VI : 3.87
Fb : 0.44

SC : 0.32
PRI : 0.51
VI : 3.87
Fb : 0.44

SC : 0.77
PRI : 0.82
VI : 1.16
Fb : 0.54

Fig. 6. Example of segmentation results before and after the realignments
using both Sk

i and Υk
i .

in relation to the previous best MSE value of 17.4% obtained
using Sk

i ).
Finally, we also analyzed the resulting hierarchies after

realignment with the newly trained regressor, using both the
traditional consensus evaluation strategy [2] and an approach
in which all user-defined segmentations in the ground-truth
are used.

The evaluation strategy proposed by [2] obtain a single
segmentation based on a majority voting procedure among
the several user-defined segmentations present in the ground-
truth. Again, this could favor over- or under-segmented results
depending on the number and quality of those segmentations.

In this work, we have also proposed to evaluate the final
segmentation results which is the one obtained through a
horizontal cut a scale value 0.5 (which corresponds to the
anchor slice) using each one of the segmentations present in
the ground-truth separately. At the end, we have taken an
average of each segmentation measure for each image. The
results are shown at Table IV which also presents the results
when the maximum value of each segmentation measure
for each image is considered (instead of the average). As
one can see, except for Fb, all other measures have shown
improvements.

(a) Image (b) GT1 (c) GT2 (d) GT3 (e) GT4 (f) GT5

(g) No realign (h) Using Sk
i (i) Using Υk

i
SC : 0.35
PRI : 0.78
VI : 3.16
Fb : 0.58

SC : 0.27
PRI : 0.27
VI : 2.21
Fb : 0.0

SC : 0.72
PRI : 0.89
VI : 1.29
Fb : 0.66

Fig. 7. Another example of segmentation results before and after the
realignments using both Sk

i and Υk
i .

TABLE IV
SEGMENTATION MEASURES FOR DIFFERENT EVALUATION STRATEGIES

AFTER REALIGNMENT PROCESS USING Υk
i .

Evaluation strategy SC ↑ PRI ↑ VI ↓ Fb ↑
Consensus evaluation [2] 0.53 0.81 1.89 0.58
Evaluation using all GT segmentations (avg) 0.56 0.83 1.81 0.46
Evaluation using all GT segmentations (max) 0.63 0.88 1.45 0.53

VI. CONCLUSION

In this work, we explored the use of random forests to
predict the best scale value for given region, which is then
used to realign the entire hierarchy.

Experimental results are presented for two different segmen-
tation methods (gPb-owt-ucm and hGB) and with an analysis
of the impact when different combination of mid-level features
to describe regions are used.

In order to improve and better understand our results,
we have explored different regression approaches to predict
score values from a hierarchy of partitions generated from an
image by a hierarchical image segmentation method. Those
score values should be near 0 when the regions is properly
segmented, while score values should be near to -1 or +1
for regions that are under- or over-segmented, respectively.
Thus, predicted scores could be used to created a partition
containing regions properly segmented that can be used to
realign the hierarchy, , to make adjustments to the hierarchy
representation such that every properly segmented region ends
up at the same final predefined level (or scale).

In this work, we have presented an analysis of regression
model behavior using random forest and artificial neural net-
work, using distinct architecture and 06 different combinations
of mid-level features.

We have also proposed and evaluated a new score calcu-
lation, witch considering all user-defined segmentations that
exist in the ground-truth. Experimental results have demon-
strated that its adoption was able to improve final segmentation
results.

Finally, we have evaluated the resulting hierarchies (after
realignment) using a new proposal which considers all user-
defined segmentations that exist in the ground-truth. This new
assessment strategy could be seen as an alternative to the
traditional one which is based on a consensus generated by
a majority voting procedure among the several user-defined
segmentations present in the ground-truth.

As future works, we intend to study a technique that allows
to represent all user-defined segmentations that exist in the
ground-truth in a single annotation. In addition, we intend
to apply the technique of realigning hierarchies in video
segmentation.
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chical segmentations with graphs: Quasi-flat zones, minimum spanning
trees, and saliency maps,” Journal of Mathematical Imaging and Vision,
vol. 60, no. 4, pp. 479–502, May 2018.

[8] L. C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to
scale: Scale-aware semantic image segmentation,” in IEEE CVPR 2016,
2016, pp. 3640–3649.

[9] Z. Hao, Y. Liu, H. Qin, J. Yan, X. Li, and X. Hu, “Scale-aware face
detection,” in IEEE CVPR 2017, 2017, pp. 1913–1922.

[10] Z. Jie, X. Liang, J. Feng, W. F. Lu, E. H. F. Tay, and S. Yan, “Scale-
aware pixelwise object proposal networks,” IEEE TIP, vol. 25, no. 10,
pp. 4525–4539, 2016.

[11] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, “Scale-aware
fast r-cnn for pedestrian detection,” IEEE Transactions on Multimedia,
vol. 20, no. 4, pp. 985–996, 2018.

[12] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE TPAMI, vol. 40,
no. 4, pp. 834–848, 2018.

[13] Y. Chen, D. Dai, J. Pont-Tuset, and L. Van Gool, “Scale-aware alignment
of hierarchical image segmentation,” in IEEE CVPR 2016, 2016, pp.
364–372.

[14] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice-
Hall, Incg, 2001.

[15] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color, and texture cues,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 5, pp. 530–549, May 2004.
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