
A visual approach for user-guided feature fusion
Gladys M. Hilasaca

University of São Paulo (ICMC-USP)
São Carlos, SP, Brazil

Fernando V. Paulovich
University of São Paulo (ICMC-USP)

São Carlos, SP, Brazil

Abstract—Dimensionality Reduction transforms data from
high-dimensional space into visual space preserving the existing
relationships. This abstract representation of complex data en-
ables exploration of data similarities, but brings challenges about
the analysis and interpretation for users on mismatching between
their expectations and the visual representation. A possible way
to model these understandings is via different feature extractors,
because each feature has its own way to encode characteristics.
Since there is no perfect feature extractor, the combination of
multiple sets of features has been explored through a process
called feature fusion. Feature fusion can be readily performed
when machine learning or data mining algorithms have a cost
function. However, when such a function does not exist, user
support needs to be provided otherwise the process is impractical.
In this project, we present a novel feature fusion approach that
employs data samples and visualization to allow users to not
only effortlessly control the combination of different feature sets
but also to understand the attained results. The effectiveness of
our approach is confirmed by a comprehensive set of qualitative
and quantitative experiments, opening up different possibilities
for user-guided analytical scenarios. The ability of our approach
to provide real-time feedback for feature fusion is exploited
in the context of unsupervised clustering techniques, where
users can perform an exploratory process to discover the best
combination of features that reflects their individual perceptions
about similarity.

A traditional way to visualize data similarities is via scatter
plots, however, they suffer from overlap issues. Overlapping
hides data distributions and makes the relationship among data
instances difficult to observe, which hampers data exploration.
To tackle this issue, we developed a technique called Distance-
preserving Grid (DGrid). DGrid employs a binary space parti-
tioning process in combination with Dimensionality Reduction
output to create orthogonal regular grid layouts. DGrid ensures
non-overlapping instances because each data instance is assigned
only to one grid cell. Our results show that DGrid outperforms
the existing state-of-the-art techniques, whereas requiring only
a fraction of the running time and computational resources
rendering DGrid as a very attractive method for large datasets.

I. INTRODUCTION

Nowadays, data is a critical component for intelligent
decision making. For example, business analysts use data
for decision making and observe a remarkable increase in
the adoption of visualization as an important tool to guide
decision making. Visualization provides an effective bridge
for analysts to make sense of the data, and unveil interesting
insights [1]. A way to involve users in an analysis process
using visualization is known as Visual Analytics (VA). VA
provides a visual interface between automated techniques and
users to effectively combine their strengths [2], [3]. This

Gladys M. Hilasaca - Ph.D. thesis

duality results in a closely communication between users and
machines, where computational results are communicated by
visualizations and user feedback is expressed by interactions.

One of the most common techniques in VA is Dimen-
sionality Reduction (DR) [4]–[6]. DR transforms data to a
lower-dimensional space, so that salient structures or patterns
are perceived while exploring data similarities. However, DR
might provide a non-understandable visualization for users,
because they might also have other insights on similarities.
Hence, there is a disconnect between how users and machines
perceive data similarities. One possible way to model user
understandings are via different feature extractors. An image
can be described with different characteristics such as color,
texture, shape, and so on. Among these features, we would
like to find the best feature for a specific task. However, each
feature provides complementary information, and there is no
perfect one. A possible solution is to integrate all features
in a process known as feature fusion. A simple strategy is
to concatenate all features into one single feature vector [7].
Another strategy is weighing features automatically. Typically,
the learned weights aim to improve an objective function. For
example, [8] optimize an error function that decides which
feature to combine through a deep learning model. Usually,
this combination improves an optimization function associated
with an evaluation metric (e.g. accuracy). However, when
an optimization function is not available or there is some
subjectivity associated, the most reliable source are users.

Since the similarity between data instances is on the eye of
the viewer, it is desirable to incorporate users understanding
and control the semantic of similarities. In this thesis, we
introduce User-guided feature fusion. Our goal is to generate
an interpretable feature fusion using a visual representation
and an initial weighting feature combination, which is defined
by users according to their point of view. In this process, first
a sample of each feature is selected, and they are mapped
to a common space preserving the distance relationships of
the individual feature, therein an alignment of all features are
performed to ensure consistency among features. This mapped
sample is used to configure the weights for the feature fusion
process. Then, the sample and the initial weights configuration
are the input for a local affine transformation. This trans-
formation propagates the user-defined semantic of similarity
to the whole data ensuring that user-defined understanding is
preserved.

When analyzing the similarity between instances, scatter
plot is usually used. However, scatter plot might produce

layouts with overlapped graphical elements and suffers from
occlusion problems, which can hamper exploratory data anal-
ysis. To address such limitation, some approaches employ
post-processing strategies [9], [10] or put constraints on the
projection process [11] to remove the overlapping. However,
they make poor use of the visual space, creating layouts
with void areas. In order to make better use of the available
space, distance preserving grid techniques have been devised
to arrange the graphical elements into grids, using as much
as possible the visual space. Currently, the state-of-the-art
approaches to produce distance-preserving grids solve assign-
ment problems [12], [13] or use permutations to optimize
cost functions [14], [15]. Although precise, such strategies are
computationally expensive, limited to small datasets. However,
in the era of Big Data, there is a clear need of simple and
efficient techniques for creating grid layouts. In this thesis,
we introduce a novel approach, called Distance-preserving
Grid (DGrid) that combines DR techniques with a space-
partitioning strategy to create orthogonal regular distance-
preserving grids. Our process maps points from R2 to a grid.
The grid is split in half on the axis with more elements. Next,
we assign the first half of the points to the top or left grid. The
remaining half is assigned to the bottom or right half of the
grid. This process is repeated recursively until there is only
one point in each grid cell. Despite its simplicity, the quality
of the produced layouts and the running times render DGrid
as a very attractive method for large datasets.

II. OUR CONTRIBUTIONS

The main goal of this thesis is to allow users to control
similarity relationships according to properties in different
features via visual representations. Specifically, we investigate
the following hypothesis:

“Visual representations will support users to control simi-
larity relationships for feature fusion matching users’ point
of view, in comparison to methods without using these
representations.”

The contributions of this thesis are threefold:
• A novel visual approach for feature fusion, users visually

correlate features to match their point of view regarding
similarity. To the best of our knowledge, this is the
first time that visual representations are exploited as a
mechanism for feature fusion;

• A novel distance-preserving grid layout technique, that
preserves distance and neighborhood, while running in
a fraction of time in relation to current state-of-the-art
techniques;

• A framework to explore multimedia data that allows real-
time tuning of the semantics of the similarity between
instances to match user’s expectations and the navigation
of large collections into different levels of detail.

In Section III and IV, we present our two approaches
with their respective evaluations. Finally, in section V, our
conclusion is presented.

F1

Fh

D F2

S1

Sh

S2

R1

Rh

R2

Feature
Extraction

Sampling Dimen.
Reduction

Merge

V1

Vh

V2

LAMP

R

V

Visualizationα1
α2

αh

α1

α2

αh

Data Mining
tasks

Sampling and mapping Propagation of the user-defined feature fusion

Fig. 1. Overview of our process for feature fusion. Initially a sample
is extracted, combined and visualized. Based on this, the user can test
different weights to fuse the features and observe the outcome. Once
sample combination reflects the user expectation, the same weights
are used to combine the complete sets of features that can them be
used on subsequent tasks, such as clustering.

III. USER-GUIDED FEATURE FUSION

Our approach for feature fusion employs a two phase
strategy to support users on defining combinations that reflect
a particular point-of-view regarding similarity relationships.
In the first phase, samples S1,S2, . . . ,Sh are extracted from
each different set of features F1,F2, . . . ,Fh and merged so that
each set Si presents the same objects but represented using
the different types of features. Each sample Si is then mapped
to a vectorial representation Ri ∈ Rm preserving as much
as possible the distance relationships between the instances.
These vectorial representations are then combined to generate
a single representation R = α1R1 +α2R2+ . . .+αhRh, which
is then visualized.

The user can then change the feature weights and observe
the outcome. Once the sample visualization reflects the user
expectations, that is, once the proper weights α1,α2, . . . ,αh
are found, the second step takes place and the defined weights
are used to combine the complete set of features. In this
process, the vectorial sample representations R1,R2, . . . ,Rh and
the samples S1,S2, . . . ,Sh are used to construct models to map
each set of feature Fi to a vectorial representation Vi ∈ Rm.
Since these vectorial representations are embedded in the same
space, they can be combined using the weights α1,α2, . . . ,αh,
obtaining the final vectorial representation V that matches
the user’s expectations defined by the sample visualization.
Figure 1 outlines our approach showing the involved steps.
Next, we detail these steps, starting with the sampling and the
dimensionality reduction.

A. Sampling and Mapping

Since users employ the sample visualization to guide the
feature fusion process, it is important to have all possible data
structures from the different features represented. Therefore,
we recover samples from each different set of features so as
to faithfully represent the distribution of each individual set.

In this process, we can extract samples from each set
F1,F2, . . . ,Fh separately using a cluster-based strategy. After

extracting the sample sets S1,S2, . . . ,Sh, we merge their in-
dexes into a unified set of indexes. Then we recreate the sets
S1,S2, . . . ,Sh to have the instances with the indexes contained
in the unified set of indexes. Therefore, all sample sets have
the same instances q, which is mandatory for the sample
visualization given that we visualize the combination of all
features R. Also we guarantee that the structures defined by
the different types of features are represented by the samples.

After recovering the samples, we map them to a common
m-dimensional space, obtaining their vectorial representation
R1,R2, . . . ,Rh ∈ Rm so that we can combine them to obtain
R ∈ Rm (for the sample visualization). In this process, each
set of samples Si is mapped to Rm preserving as much as
possible the distance relationships. We do this by minimizing

Est(Si) =
1
q2

q

∑
i

q

∑
j

(
δ (si

i,s
i
j)−||ri

i− ri
j||
)2

(1)

where si
i and si

j are instances in Si, δ (si
i,s

i
j) is the distance

between them, and ri
i and ri

j are the vectorial representations
in the m-dimensional space of si

i and si
j, respectively.

Besides preserving distance relationships, our mapping pro-
cess aims to align the vectorial representations so that ri

i is
placed as close as possible to r j

i ∀ j ∈ [1,h] without affecting
the distance preservation of the individual mappings. This is
necessary since the unified sample representation is calculated
as a convex combination of these representations, that is,
R = α1R1,α2R2, . . . ,αhRh, with ∑αi = 1, and misalignments
could result in meaningless unified representations. We first
calculate the normalized average distance matrix ∆ = 1

h ∑
h
i ∆Si

by combining the distance matrices of all sets of features,
where ∆Si is the distance matrix calculated from Si. Then we
map ∆ to the m-dimensional space using the Equation (1). The
idea is to use this average representation as a guide to align
the vectorial representations R1,R2, . . . ,Rh minimizing

Eal(Si) =
1
q2

q

∑
i

q

∑
j

(
d(ri,r j)−||ri− ri

j||
)2

(2)

where d(ri,r j) is the distance between two instances of the
average vectorial representation.

Joining Equation (1) and (2) we define the function we
optimize in our mapping process to preserve, as much as
possible, the distance relationships of the original features
S1,S2, . . . ,Sh in the vectorial representations R1,R2, . . . ,Rh ∈
Rm while aligning them. This function is given by

E(Fi) = λ ·Est(Si)+(1−λ) ·Eal(Si) (3)
where λ is used to control the importance of the distance
preservation and the alignment to the produced vectorial repre-
sentations. λ is a hyperparameter and can be changed to define
a good tradeoff between distance preservation and alignment.
To minimize Equation (3) we use stochastic gradient descent
with a polynomial decay learning rate.

B. Weighted Feature Combination

Given the sample vectorial representations R1,R2, . . . ,Rh we
build a set of functions using the process defined in [16] to
map each feature set Fi into its vectorial representation Vi ∈ Rm

preserving as much as possible the distance relationships while

obeying the geometry defined in Ri. In this process, each
instance f i

j ∈ Fi is mapped to the m-dimensional space through
an orthogonal local affine transformation T i

j :Rqi→Rm, where
qi is the dimensionality of Fi.

The affine transformation T i
j (f) = f M + t associated to f i

j
is defined so as to minimize:

∑
k

βk‖T i
j (s

i
k)− ri

k‖2 (4)

where βk = ‖si
k− f i

k‖−2, with si
k the original feature represen-

tation of the k-th sample in Si.
The sample vectorial representations R1,R2, . . . ,Rh dictates

the geometry of the embeddings V1,V2, . . . ,Vh. Since they
are aligned by the mapping process defined in the previous
section, the linear combination V = α1V 1,α2V2, . . . ,αhVh can
be performed to obtain the final embedding V that incorpo-
rates the structures defined by each set of features, weighted
according to the user’s point-of-view. For more information
about this affine transformation and how the sample vectorial
representation controls the final results, please refer to [16].

C. Experimental Validation

In this section, we evaluate our mapping and feature com-
bination processes using different datasets in order to show
that the sample manipulation effectively controls the complete
feature fusion. Next, we describe the employed datasets, detail
how we extract features, and present our evaluations.

Datasets
We use five datasets in our tests, named STL-10 [17],

Animals [18], Zappos [19], CIFAR-10 [20] and Photogra-
phers [21]. These datasets come from different domains.

Features
We use 4 distinct methods to extract features, representing

low-level and high-level image components. For the low-level
features, we represent (1) color with LAB color histogram;
(2) texture with Gabor filters [22]; and (3) shape with HoG
technique [23]. For the high-level, we extract deep-features
from the pool5 layer using a pre-trained CNN CaffeNet [24].

Quantitative Evaluation
To confirm the quality of our approach, we quantitatively

evaluate our mapping and feature combination processes. For
the mapping process evaluation, the five datasets are sampled
10 times randomly reducing them to 5% of their original sizes.
We sample the data since we cannot execute the mapping
process with large datasets since its memory footprint is
O(n2). Each different feature from the dataset has its own
dimensionality. To ensure a common dimensional space, we
calculate the intrinsic dimensionality for each of them and
choose the smallest value. This value is used to do the
mapping. The minimum values of intrinsic dimensionality are
57, 71, 91, 41, and 83 for STL-10, Animals, Zappos, CIFAR-
10, and Photographer datasets, respectively.

We use stress and alignment error to evaluate the mapping
process (see Equation 1 and Equation 2, respectively). We

E
rr

or

Stress
Alignment

10-3

10-1

10-7

10-5

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

λ

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 2. Comparison for distance preservation and alignment error with varying
λ . The best trade-off is achieved in the range [0.45−0.65]. Line connects the
mean values of all box plots.

summarize our results in Figure 2 varying the value of λ .
The stress boxplots (in orange) decrease as λ increases. On
the other hand, alignment boxplots (in blue) have the opposite
behavior. This is the expected outcome since larger values of
λ preserve the distance relationships, whereas smaller values
align the data.

Setting λ = 1 preserves as much as possible the original
distance relationships. This is reflected by the average stress
Est = 0.0009, but it does not ensure a good alignment (Eal =
2.03). On the other hand, λ = 0 delivered almost a perfect
alignment (Eal = 0.0001), but it does not enforce the distance
preservation (Est = 0.03). In this work, we are interested in
the best trade-off between distance preservation and alignment
so that the alignment is obtained without penalizing the
overall distance preservation of the mappings. According to
our experiments, we achieved this in the range λ = [0.45,0.65],
where both stress and alignment errors are nearly 0 for our
experiments (see Figure 2).

For visual analysis, we generate 2D representations of the
samples using our mapping process and setting the target
dimensionality to two. We show the result for the Zappos
dataset in Figure 3. Here, the points are colored according
to image classes. The stress and alignment error values are
shown at the top-left corner of each scatterplot. To show the
influence of different λ in the mapping process, we vary
it in the range [1.0,0.2]. The first column shows the result
produced using λ = 1.0, best preserving the original distance
relationship. Notice that the visual representations of each
different feature are misaligned among themselves. The second
column depicts results with λ = 0.8. Now, the 2D mappings
start to align (points of representing images of the same class
are placed in close positions). We observe a small increase in
the stress error, but the alignment error decreases considerably
compared to the first column (see the second measure at
the top-left corner). The same behavior is verified in the
remaining columns. The last column almost completely aligns
all features. As expected, as lambda decreases, the distance
preservation also decreases, and the alignment improves. How-
ever, the stress changes are minimal. Hence, our approach is
capable of making a good alignment between features while
preserving distance relationships. For qualitative results please
refer section 5.2 from the thesis document.

E = 0.0060 E = 0.0069 E = 0.0084 E = 0.0118 E = 0.0197st st st stst

st st st stst

st st st stst

st st st stst

E = 0.0144 E = 0.0146 E = 0.0158 E = 0.0118 E = 0.0112

E = 0.0266 E = 0.0273 E = 0.0286 E = 0.0312 E = 0.0346

E = 0.0414 E = 0.0424 E = 0.0452 E = 0.0503 E = 0.0561

al al al alalE = 0.2264 E = 0.0255 E = 0.0218 E = 0.0215 E = 0.0201

E = 0.1872 E = 0.0218 E = 0.0213 E = 0.0213 E = 0.0206

E = 0.3075 E = 0.0234 E = 0.0226 E = 0.0206 E = 0.0198

E = 0.0679 E = 0.0270 E = 0.0253 E = 0.0218 E = 0.0201

al al al alal

al al al alal

al al al alal

λ = 1.0 λ = 0.8 λ = 0.6 λ = 0.4 λ = 0.2

ob
je

ct

 b
or

de
r

 t
ex

tu
re

 c

ol
or

Fig. 3. Resulting mapping process for the Zappos dataset. As λ decreases,
the features get more aligned (See column 5). Top-left numbers correspond
to stress and alignment error.

IV. DISTANCE PRESERVING GRID LAYOUTS

We propose Distance-preserving Grid (DGrid), a technique
to efficiently arrange layouts generated by DR techniques.
It employs a two step approach to generate uniform
grids that preserve, as much as possible, the distances
relationships of a given dataset. In the first step, the
data instances D = {d1,d2, . . . ,dN} ∈ Rm are mapped into
points on the plane using a multidimensional projection
technique, obtaining their 2D Cartesian Coordinates
P = {p1 = (x1,y1), p2 = (x2,y2), . . . , pN = (xN ,yN)} ∈ R2.
Then, a grid G = {g1,1,g1,2, . . . ,g1,u, . . . ,gu,1,gu,2, . . . ,gw,u}
with w rows and u columns, where w× u ≥ N, is created,
assigning each projected instance pi to a grid cell gp,q.

The reasoning behind our approach is that if the projection
P precisely preserves the distances relationships in D , and if
G preserves the geometry of P , G will preserve the distances
relationships in D . Consider that P has been obtained from
D . If the points in P are uniformly distributed over the
plane and are arranged following the number of rows and
columns of the target grid, the process to assign P to G
is trivial. In practice, the assumption that the projection is
uniformly distributed over the plane and follows the grid
pattern seldom holds. Seeking to approximate such constraints,
we recursively bisect the projection into non-overlapping par-
titions until the obtained partitions individually obey, as much
as possible, such constraints. Then, (sub)grids are derived
from each partition. For the first bisection, consider P as the
input projection, and (w,u) the dimension of the target grid.
If w > u, we split P horizontally, obtaining two partitions
P = P1 ∪P2, so that, the upper partition P1 contains
enough instances to completely fill half of the desired grid, that
is, |P1|= dw/2e×u. Otherwise, we split P vertically, so that
the left partition P1 contains enough instances to completely
fill half of the desired grid, that is, |P1|= w×du/2e.

To compute the cells’ indexes from the partitions, we

calculate during the bisecting process the indexes of the top-
left corner cells of each (sub)grid resulted from each partition.

The process of bisecting and calculating the top-left corner
indexes are successively applied until the resulting partitions
obey the uniform distribution and grid pattern constraints.
However, using this as a stop criterium would penalize the
computational cost of the overall algorithm since it is an O(N2)
procedure for a partition containing N instances. Instead, we
execute the bisecting and corner computation process until
each partition contains only one instance.

A. Experimental Validation

In this section, we present a quantitative evaluation of
the DGrid technique, comparing it against the state-of-the-art
in distance preservation grid techniques, Kernelized Sorting
(KS) [13], Self-Sorting Map (SSM) [15], and IsoMatch [12].
In this comparison we use three different quality metrics,
k-neighborhood preservation index (NPk), cross-correlation
(CC) [15], and energy function [12]. The k-neighborhood
preservation index was originally developed to evaluate pro-
jections, but here we use it to measure how much the neigh-
borhood in the dataset D is preserved in the grid G . NPk
ranges in [0,1], the larger the value the better the result.
The cross-correlation measures how well the placements of
the data instances in the grid correlate to the dissimilarities
among them. The cross-correlation ranges in [−1,1], the large
the better. In this work, we normalize the cross-correlation in
[0,1] using CC′ = (CC+1)/2 to easier the comparison among
the different metrics. Finally, the energy function measures
how well the pairwise distances between the data instances
are preserved by the corresponding distances in the grid. It
ranges in [0,1] with larger values rendering better results.

For the tests, we have selected all datasets from the UCI
Machine Learning Repository [25] with real-valued attributes
and sizes varying between 100 and 2,500 instances, allowing
the comparison of the techniques in different scenarios. We
only get real-valued datasets so that (Euclidean) distances can
be properly calculated, and we limited their sizes due to the
high computational complexities and running times of KS and
IsoMatch. Also, we have discarded the datasets with missing
values, resulting in 38 datasets.

Figure 4 presents boxplots summarizing the results of each
technique considering all the 38 datasets. For DGrid, we
report results using t-SNE and LAMP techniques to generate
the input projections. Although IsoMatch originally employs
ISOMAP as input, we also report results using t-SNE and
LAMP, so it is possible to compare DGrid and IsoMatch
isolating the projection contribution to the quality of the
produced results. DGrid, IsoMatch, and KS techniques are
deterministic, so we only run each technique once for each
dataset. Given the random initialization of the SSM technique,
we run it 30 times for each dataset. In Figure 4, the boxplots in
red represent the results of the projections (LAMP and t-SNE)
used as input by DGrid and IsoMatch techniques. They serve
only as baselines to show the correlation between projection
quality and grid quality. Notice that, the drop in precision

LAMP t-SNE DGrid
(LAMP)

IsoMatch IsoMatch
 (t-SNE)

SSM KS DGrid
(t-SNE)

IsoMatch
 (LAMP)

0.2

0.4

0.6

0.8

k−
ne

ig
hb

or
ho

od
 p

re
se

rv
at

io
n

in
de

x

Fig. 4. Boxplots of k-neighborhood preservation index. In this aspect,
the DGrid surpass (on average) current state-of-the-art techniques,
indicating its quality on preserving distance relationships. The box-
plots in red summarize the results of the input projection and serve
as baselines to show the correlation between projections and grid
properties. They are not intend for direct comparisons.

between the projections and the produced grids is expected
since the techniques we use do not create uniformly distributed
projections. Also note that direct comparisons only make sense
among grid layouts, not among grids and projections.

Regarding the k-neighborhood preservation index, the best
result was attained by the DGrid with t-SNE as input (NP =
0.52), better than the other more costly counterparts, IsoMatch
(NP = 0.36) and KS (NP = 0.50). DGrid presents not only the
largest mean but also the smallest spread regarding the best
and worst results. Comparing the different flavors of DGrid,
the results produced using the t-SNE are also considerably
superior than the results produced using the LAMP. This is
an expected outcome since the formulation of t-SNE favors
the preservation of small neighborhoods instead of a global
distance preservation as conveyed by the LAMP, which is con-
firmed by the boxplots of the projections in red. This indicates
the impact of the input projection on the produced grid, and
also shows that our strategy for assigning the projection to
grid cells satisfactorily preserves the input geometry. In this
example, we approximate the neighborhood size k to 5% of
the dataset size, setting k = (b

√
0.05∗Nc)2. The results for

the remaining metrics are in the Ph.D. thesis.
To complement the statistical analysis conveyed by the

boxplots, providing more detailed information, we show in
Figures 5 the resulting grids for some selected datasets.
Aiming at showing different aspects of each technique, we
choose datasets with varied distance distributions. In these
figures, the cells are colored according to different quality
metrics calculated for each cell. The cells colored in black are
empty. They exist because we have more cells than instances
in these examples. Notice that DGrid, KS, and IsoMatch place
all empty cells on the grid borders whereas SSM open spaces
inside the grid. The quality metric values are shown below
each grid, and the best results are highlighted using a bold font.
Although KS is marginally better in one case and presents the
same quality as DGrid in other cases, it is an O(N3) technique
and cannot address problems involving large datasets. DGrid
is much less expensive so not only small examples can be

Fig. 5. Resulting grids colored according to the k-neighborhood preservation index. SSM technique groups bad quality cells close to the empty cells,
showing the negative impact of empty spots on the produced layouts.

processed in a fraction of the time but also it can address
larger problems that neither KS nor IsoMatch are capable of.

Finally, we compared DGrid with SSM regarding the
running times. We removed the other techniques from this
comparison since they are computationally expensive. In this
test, we selected 10 datasets from UCI, varying the sizes
from 17,000 to 130,000 instances. Figure 6 summarizes the
results. Besides the boxplots for DGrid and SSM techniques,
the figure shows individual boxplots for the projection and the
grid assignment steps. In this example, we are using LAMP
to project the data. In average, DGrid is almost two orders of
magnitude faster than SSM, but better results can be obtained
if a faster projection technique is employed (the projection
step dominates the process). Considering the tested techniques,
DGrid presents the best tradeoff between running times and
quality of the produced grids, placing it among the state-of-
the-art techniques for generating distance preserving grids of
large datasets.

Projection
step

Grid
step

 DGrid
(LAMP)

SSM

10-1

T
im

e
(i
n
 s

ec
o
n
d
s)

100

101

102

103

Fig. 6. Running times boxplots. DGrid is almost two orders of magnitude
faster than the SSM technique, and the projection phase dominates its running
times.

V. CONCLUSIONS

In this thesis, we addressed the problem of feature fusion
when there is no objective function to optimize or when there
is a degree of subjectivity in the process. In particular, we
involve users in this process allowing them to control the
feature fusion process according to their expectations. This
process is performed on a sample of features from which users

define an initial weighted feature combination. Such weights
are propagated to combine the whole dataset. Experiments
show that the fusion of the complete dataset preserves the
initial user-defined semantic.

For visualization purposes, we proposed a novel approach
for generating grid layouts that preserve distance information,
called Distance-preserving Grid (DGrid). We provide a set of
comparisons, which show that DGrid outperforms the existing
state-of-the-art techniques. DGrid is two orders faster than
existing techniques and it is scalable for large datasets.

We integrate our approaches into a framework to explore
image collections that allows real-time tuning of similarity be-
tween images to matching user’s expectations and navigation
of large collections into different levels of detail.

This thesis also contributes to broader areas such as visual
analytics and visualization. In visual analytics, user’s interac-
tions are important in the analysis process. In our approach,
users perform weights combination in a very simple way and
they can explore different combinations interactively in real-
time. We also advance the state-of-the-art user-based visual-
ization by defining a new way to capture user understanding in
feature fusion. This complements traditional similarity-based
user interactions, where users individually manipulate points
from the visual representation [26]. On visual metaphors side,
scatterplots are a simple and intuitive way of visualizing 2D
point data. Scatterplots can display data trends, and can allow
outlier identification because regions with a higher density of
points will be grouped perceptually, which produce overlapped
data instances. DGrid and other grid-based techniques solve
overlapping problems assigning each point to a single cell.
Although DGrid exceeds state-of-the art grid techniques in
relation to complexity and precision in preserving distance
relationship, it can not replace traditional scatterplots, because
DGrid does not preserve data structure. Therefore, a technique
that maintains a trade-off between these two metaphors is
desirable. A possible solution is to deform the grid using
distance information to allow separation between groups. We
are developing this idea and tackling the limitations of this
thesis.

REFERENCES

[1] A. C. Telea, Data Visualization: Principles and Practice, Second Edition,
2nd ed. Natick, MA, USA: A. K. Peters, Ltd., 2014.

[2] D. A. Keim, J. Kohlhammer, G. P. Ellis, and F. Mansmann, Mastering the
Information Age - Solving Problems with Visual Analytics. Eurographics
Association, 2010.

[3] D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. Keim,
“Knowledge generation model for visual analytics,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1604–
1613, 2014.

[4] D. H. Jeong, C. Ziemkiewicz, B. D. Fisher, W. Ribarsky, and R. Chang,
“ipca: An interactive system for pca-based visual analytics,” Comput.
Graph. Forum, vol. 28, pp. 767–774, 2009.

[5] J. Choo, H. Lee, J. Kihm, and H. Park, “ivisclassifier: An interactive
visual analytics system for classification based on supervised dimension
reduction,” in 2010 IEEE Symposium on Visual Analytics Science and
Technology, Oct 2010, pp. 27–34.

[6] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf,
S. C. North, and D. A. Keim, “Visual interaction with dimensionality
reduction: A structured literature analysis,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 23, no. 1, pp. 241–250, Jan.
2017.

[7] U. G. Mangai, S. Samanta, S. Das, and P. R. Chowdhury, “A survey of
decision fusion and feature fusion strategies for pattern classification,”
IETE Technical Review, vol. 27, no. 4, pp. 293–307, 2010.

[8] G. Ma, X. Yang, B. Zhang, and Z. Shi, “Multi-feature fusion deep
networks,” Neurocomput., vol. 218, no. C, pp. 164–171, Dec. 2016.

[9] E. Gomez-Nieto, F. S. Roman, P. Pagliosa, W. Casaca, E. S. Helou,
M. C. F. de Oliveira, and L. G. Nonato, “Similarity preserving snippet-
based visualization of web search results,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 20, no. 3, pp. 457–470, March
2014.

[10] H. Strobelt, M. Spicker, A. Stoffel, D. Keim, and O. Deussen, “Rolled-
out wordles: A heuristic method for overlap removal of 2d data represen-
tatives,” Computer Graphics Forum, vol. 31, no. 3pt3, pp. 1135–1144,
2012.

[11] R. D. Pinho, M. C. Oliveira, and A. Andrade Lopes, “An incremental
space to visualize dynamic data sets,” Multimedia Tools Appl., vol. 50,
no. 3, pp. 533–562, Dec. 2010.

[12] O. Fried, S. DiVerdi, M. Halber, E. Sizikova, and A. Finkelstein,
“Isomatch: Creating informative grid layouts,” Comput. Graph. Forum,
vol. 34, no. 2, pp. 155–166, May 2015.

[13] N. Quadrianto, A. J. Smola, L. Song, and T. Tuytelaars, “Kernelized
sorting,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 32, no. 10, pp. 1809–1821, Oct 2010.

[14] G. Strong and M. Gong, “Data organization and visualization using
self-sorting map,” in Proceedings of Graphics Interface 2011, ser. GI
’11. School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada: Canadian Human-Computer Communications Society,
2011, pp. 199–206.

[15] ——, “Self-sorting map: An efficient algorithm for presenting multime-
dia data in structured layouts,” Trans. Multi., vol. 16, no. 4, pp. 1045–
1058, Jun. 2014.

[16] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato, “Local affine multidimensional projection,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2563–
2571, Dec. 2011.

[17] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS
2011, Fort Lauderdale, USA, April 11-13, 2011, 2011, pp. 215–223.

[18] C. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen
object classes by between-class attribute transfer,” in CVPR 2009, Max-
Planck-Gesellschaft. Piscataway, NJ, USA: IEEE Service Center, Jun.
2009, pp. 951–958.

[19] A. Yu and K. Grauman, “Fine-grained visual comparisons with local
learning,” in Computer Vision and Pattern Recognition (CVPR), Jun
2014.

[20] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[21] C. Thomas and A. Kovashka, “Seeing behind the camera: Identifying
the authorship of a photograph,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[22] L. Chen, G. Lu, and D. Zhang, “Effects of different gabor filter
parameters on image retrieval by texture,” in Proceedings of the 10th
International Multimedia Modelling Conference, ser. MMM ’04. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 273–.

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in In CVPR, 2005, pp. 886–893.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. MM ’14. New
York, NY, USA: ACM, 2014, pp. 675–678. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889

[25] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: {http://archive.ics.uci.edu/ml}

[26] G. M. H. Mamani, F. M. Fatore, L. G. Nonato, and F. V. Paulovich,
“User-driven Feature Space Transformation,” Computer Graphics Fo-
rum, 2013.

