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Abstract—Astronomy has entered the era of large digital sky
surveys, transitioning from a relatively data-scarce field of study
to a very data-rich one. The images coming from these new
surveys are hyperspectral (having up to a few dozen bands) and
noisy (due to limitations on telescope resolution and atmospheric
conditions), present faint and saturated signals, and can amount
to tens of terabytes. This unique set of characteristics make them
very attractive for trying out deep learning methods. In this
paper, we present a multiband image classifier for stars, galaxies
and quasars, and propose steps towards a semi-supervised scheme
that could enable the discovery of new objects.

I. INTRODUCTION

Unlike other natural sciences such as physics and biology,
in which various kinds of experiments can be designed to
validate theories, Astronomy relies almost entirely on images.
Each photon captured by the lens or the mirrors of a telescope
encodes information about its time of arrival, its spatial posi-
tion and its energy content. Those three pieces of information
should provide us with all there is that we can learn about the
universe.

The development of observational astronomy at first natu-
rally followed advances in photography. The first well-known
attempt at taking a picture of an object at the sky happened
in the 1830s. Later on, astronomers transitioned to using
telescopes, which become larger and capable of capturing
more photons at better spatial and temporal resolutions as
technology evolves. This results in increasingly large amounts
of images to process and analyze. Even nowadays, it is
common practice for experts to pick a few dozens or hundreds
of objects and then analyze their images by eye with the
aid of specific image processing tools. However, with the
newest generation of telescopes scanning our sky at rates of
the order of terabytes per night [1], this kind of manual work
is becoming unfeasible.

Much like observational astronomy, computer vision is also
transitioning from rather small-scale, task-specific to large-
scale, generalist techniques. Deep neural networks automati-
cally learn high-level information without the need for design-
ing specific feature extractors. All it needs to learn from data
is lots of it. And current sky surveys are already providing
us with a flood of high-quality data across a rich range of
positions, time intervals and bandwidths.

Some researchers believe that the next step towards more
data-driven science would be to recognize patterns in tabular
data generated by a few well-stablished pieces of software. But

couldn’t we do better if we just let machine-learning models
see the data in a more raw format – that is, in images?

In this short paper, we present a multiband image classifier
trained on labeled samples from the Southern Photometric
Local Universe Survey (S-PLUS) and propose steps toward a
semi-supervised classification scheme that could, among other
things, enable the discovery of new objects. The remainder
of this paper is structured as follows: in Section II, a brief
overview of related works is given; in Section III, our dataset,
its pre-processing pipeline and our models are described;
in Section IV, preliminary results achieved with these data
and these models are presented; and, finally, in Section V,
possibilities for further developments are enumerated.

II. RELATED WORK

The most usual approach to analyzing astronomical data
nowadays is running statistical or more traditional machine-
learned models on tabular data generated from raw telescope
images through a close-sourced, fixed pipeline. These data
are referred to as catalogs of objects. Each row of a catalog
includes an object’s unique identification, its sky coordinates,
and some of its physical properties, which are computed
from the images using physical or probabilistic models. Those
properties can be used to learn object classes, as in [2]. Two of
the main limitations of this approach are: (i) its dependence on
the quality of properties inferred through the pipeline, which
often have large uncertainties due to saturated or faint signals,
and (ii) its lack of information on the morphology of the
objects. In [3], authors try to include detailed morphological
information by fitting each object to a mathematical model,
but it is a very slow method, unfeasible for the large amounts
of data available.

Another approach is to analyze three-color composite im-
ages. Based on the kinds of properties that are to be em-
phasized and analyzed, bands from multispectral images are
combined into a fake but representative RGB image. There are
a few well-stablished algorithms for this, such as the Lupton
algorithm [4]. A popular dataset of astronomical RGB images
is the one from the Galaxy Zoo [5], a crowdsourced project in
which volunteers classify galaxies based on their morpholo-
gies. Many works were built upon either the composite images
or the Galaxy Zoo dataset [6], [7]. Using three-color images
has obvious advantages, such as the possibility of fine tuning
powerful models pre-trained on large datasets. However, one



may ponder why not use all the bands available, specially after
so much effort was put in for designing proper instruments and
collecting all these data.

A third approach is to analyze spectroscopic data. They are
the most reliable ground truths and can be used to readily
identify known physical processes that happen at specific
wavelengths, which in turn can be used to separate objects
into fine-grained subclasses. The main drawbacks of spectra
are that they are considerably more expensive to collect, and
thus are way less abundant than images; and that, like catalogs,
they lack morphological information.

In this work, a method that uses all 12 bands available in our
images is presented. We compare it with approaches based on
catalogs, and verify that it is significantly more robust. To the
best of our knowledge, directly using multispectral images is
a novel approach to large-scale classification of galaxies, stars
and quasars.

III. METHOD

A. Dataset

Three classes of astronomical objects are considered: stars,
galaxies and quasars. Stars are the majority of point sources
we are able to see in night sky with naked eye. Galaxies are
systems of stars, gas and dust which are bound together by
gravitational forces. Because they are made of many stars,
they can look like extense objects. Quasars, or quasi-stellar
objects, are more mysterious: they are the brightest objects
known in the universe (with the exception of occasional stellar
explosions), but they seem faint because they are so much
further away than observable stars and galaxies. Quasars and
stars can look very much alike, and devising trusty methods
for distinguishing them is an active topic of research. It is
of great interest to be able to identify quasars because they
encode information about the distant universe.

Each object in our dataset is represented by three different
sources of data: 12-band images, photometric catalogs, and
spectroscopic catalogs. Our dataset corresponds to a region of
the sky known as Stripe 82, which is very well-studied and
has been imaged by various telescopes, making it ideal for
developing new techniques that may later be extended to more
regions of the sky. The multiband images and the photometric
catalogs were obtained from the first Data Release of the
Southern Photometric Local Universe Survey (S-PLUS) [8]
through a collaboration with researchers from the Institute of
Astronomy and Geophysics of the University of São Paulo
(IAG-USP), whereas the spectroscopic catalogs were down-
loaded from the Sloan Digital Sky Survey (SDSS) [9], whose
data is mostly public. Object classes derived from spectra are
used as ground truths for training and testing our models.

The multiband images from the S-PLUS are
11000x11000px images collected by five broad-band
filters, which are widely adopted by various sky surveys,
and seven narrow-band filters, which were designed by the
S-PLUS team to capture processes that happen at specific
wavelengths, trying to mimick what could be captured by a
spectrometer. These images, in their most raw format, would

be a pixelwise count of photons captured in each band. The
images made available by the S-PLUS team have already
been preprocessed in the telescope pipeline, which includes
tasks such as stacking images of the same area of the sky,
calibrating the signals between bands, and subtracting the
background signal. This yields images with 32-bit float
values, as opposed to the usual 8-bit unsigned integer images.

To use these images as inputs to deep learning models,
their values were scaled to the [0,1] range using the min-
ima and maxima per band. Moreover, information from the
catalogs (pixel coordinates and full-width half-maximum1 of
the objects) was used to generate square crops of the objects.
Knowing that 99% of the objects in our catalog have full-
width half-maximum smaller or equal to 20px, we found that
32x32px crops were adequate to frame the majority of the
objects, keeping enough context (e.g. visible dust around the
center) while avoiding cluttering. For the few objects that
ended up larger than 32px, a squared area of the size of the
object was cropped and resized to 32x32px.

The photometric catalogs are also generated in the pre-
processing pipeline of the telescope. This pipeline relies on
an astronomical tool that detects objects using traditional
approaches, such as background subtraction and adaptive
thresholding, which works sufficiently well for this case where
there is a dark background with bright point objects. Then,
it generates a catalog of detected objects with information
such as sky coordinates, magnitudes (a measure of bright-
ness) in each band, signal-to-noise ratios, and full-width half-
maximum. The 12 magnitudes (one per band) were picked as
our feature set.

The spectroscopic catalogs were downloaded from the
SDSS server and matched against the photometric catalogs by
searching for objects whose sky coordinates were equal within
a tolerance of one arcsec. This yields a single catalog includ-
ing photometric properties and spectroscopic object classes.
After the catalog matching step, our dataset was significantly
reduced: from the nearly three million objects detected in
S-PLUS images, only about 115.000 have a spectroscopic
counterpart. This was expected, given that collecting spectra
is an expensive and time-consuming procedure, and cannot
be performed in large scale. In this work, only the labeled
samples were used.

In previous machine-learning-based works, a subset of the
objects is selected, for instance, discarding objects that are
too bright or too faint, that have low signal-to-noise ratio, or
that are overlapping. This may give a false impression that the
models were accurate, when in fact they had not been trained
nor tested with harder examples. In this work, two datasets
are compared: a filtered set of objects whose magnitude is in
the range [16, 19], which excludes saturated and faint objects,
and the complete set. For the filtered set, the prevalence of
classes is 49% galaxies, 49% stars and 2% quasars, whereas

1The full-width half-maximum refers to the width of a Gaussian at half of
its maximum value; it is used to approximate the diameter of point sources
that do not have sharp edges.



for the complete set, it is 50% galaxies, 39% stars and 11%
quasars.

B. Models

Neural networks were used to train classifiers based on
catalogs and images. For catalogs, a simple fully-connected
network with two hidden layers having 512 nodes each was
chosen. We experimented with the number of hidden layers
and the number of nodes per layer, and empirically found the
values which yielded complex and expressive enough models
just before the onset of overfitting.

For images, ResNeXt [10] was chosen as our feature extrac-
tor and adapted to receive our 12-band image tensors as inputs.
It was our chosen architecture because it is a flexible, efficient
architecture that makes extensive use of grouped convolutions.
It has been shown in the AlexNet [11] that each convolution
group consistently learns specialized features, and this can be
helpful for larger numbers of bands (more experiments are
needed to evaluate whether it does help). Two variants of
the model were trained: one using only the filtered dataset,
and another using the complete dataset. The cost function
was adjusted to include class weights inversely proportional
to their prevalences. The following parameters were set for
the architecture: depth=29, width=16, cardinality=4.

All models were trained from scratch using the Adam
optimizer with initial learning rate of 10−4, reduced by a factor
of

√
10−1 when plateaus were reached. Data augmentation

was not used.

IV. PRELIMINARY RESULTS

Results are reported for models trained and validated on
the filtered set and on the complete set. The filtered set
contains 52K samples, whereas the complete set contains 115K
samples. In both cases, the sets were split into 80% train, 10%
validation and 10% test (test sets have not been used yet).
Tables I and II show confusion matrices for the validation sets
of image and catalog classifiers, respectively. Values inside
parentheses are for the filtered dataset, whereas values outside
of the parentheses are for the complete dataset. Even though
the classification task may seem more challenging when using
the complete dataset with saturated and faint examples, it can
be seen that both models get significantly better at classifying
quasars.

It is of extreme importance to be able to reliably classify
faint signals. For that reason, the performance of the models
was also evaluated across varying magnitude ranges. Figure
2 shows curves of accuracy as a function of magnitude.
Lower values of magnitude indicate brighter objects, whereas
higher values indicate fainter objects. Both for images and for
catalogs, results are reported only for the complete dataset. In
order to generate those curves, the objects in the validation set
were put into 22 bins according their magnitudes.

It is noticeable that the image classifier reaches nearly 100%
accuracy up until a magnitude of 19 for stars and galaxies,
that it remains more stable than the catalog classifier across
all magnitudes, and also that class weights helped the model

TABLE I
CONFUSION MATRIX FOR IMAGE CLASSIFIERS

galaxy star quasar

galaxy 0.94 (0.98) 0.03 (0.01) 0.03 (0.01)
star 0.02 (0.01) 0.95 (0.99) 0.03 (0.00)

quasar 0.10 (0.16) 0.11 (0.10) 0.79 (0.74)

TABLE II
CONFUSION MATRIX FOR CATALOG CLASSIFIERS

galaxy star quasar

galaxy 0.92 (0.91) 0.06 (0.08) 0.02 (0.01)
star 0.18 (0.13) 0.81 (0.84) 0.01 (0.01)

quasar 0.27 (0.36) 0.08 (0.07) 0.64 (0.57)

adjust to the least represented class. It can also be seen that the
accuracy for stars and galaxies in the image classifier degrades
after a magnitude of 21, presumably because of the larger
number of quasars in that magnitude range.

We realized that, in addition to class imbalances, intra-class
magnitude imbalances also significantly hurt the performance
of the models. Magnitude imbalance is expected: each class
of objects has a different nature and a different distribution
of brightnesses. However, some of this magnitude imbalance
could also be due to biases in the dataset, which need to be
more carefully considered. The confusion between quasars
and stars or faint galaxies is another challenge. Figure 1
shows an example of a quasar of magnitude 21 that was
misclassified as a star with 96% of confidence. Introducing
domain knowledge in the model could help it disentangle
representations. Further steps to try and mitigate problems
with imbalances and confusion are proposed in the following
section.

Fig. 1. A quasar that was misclassified as star

V. NEXT STEPS

In this short paper, we presented an alternative approach
for large-scale classification of astronomical objects, based on
raw telescope images instead of tabular data inferred from the
images. We believe that directly using the images to learn from
data is more powerful and scalable, and that their potential
should be explored together with modern data-driven machine
learning techniques. As this is a work in progress, there are



Fig. 2. Accuracy versus magnitude curves. Curve for catalog classifier on the
top, and for image classifier on the bottom.

tons of ideas that are still flourishing. We will highlight some
of them in this section.

Given that the majority of our samples are unlabeled, it
would make sense to try semi-supervised approaches. We
suspect that our labeled dataset is biased because objects for
which spectroscopic data is available have been handpicked for
decades, according to the research interests of the teams in-
volved in the surveys. Thus, including the unlabeled samples in
training is a priority. In addition to mitigating class imbalances,
we expect that it will also lessen magnitude imbalances. In
other words, in the unlabeled data there will be more examples
of bright quasars and faint galaxies, which were lacking in the
labeled data.

A straightforward step that is in progress is training a deep
model that receives all three million objects (labeled and
unlabeled) as inputs and learns their magnitudes. This way,
the model would be learning to generate catalogs from images,
that is, learning all the steps taken in the preprocessing pipeline
of the telescope. In a sense, this could mean that the model
would implicitly learn relevant physical processes. We’d like
to assess whether this model would yield representations that
could then be reliably used to separate the objects through

clustering. It is not clear yet how we would measure and
validate the performance of this approach.

We also intend to experiment more with training techniques
and convolutional architectures. A very common technique
that we have not employed yet is data augmentation. We can
use standard transformations such as flipping and rotating, or
a generative model. These augmentations would need to take
into account both class and magnitude imbalances. However,
we conjecture that higher performance gains could be achieved
in our case by tweaking architectures, making them more
efficient and sensible for the specificities of our dataset. For
instance, we know that our objects are basically point sources
(stars and quasars) or slightly elongated sources (galaxies),
both of which could be reasonably modelled only by Gaussian
kernels. We can use this prior knowledge to constrain the
convolution kernels, reducing the number of parameters of the
model while mantaining performance. We can also separate
image bands in groups and test multi-branch architectures
where each group of bands goes through an independent
set of convolutions. Cleverly chosen band groups may better
distinguish quasars from stars and faint galaxies. We seek to
explore these alternatives in further works.
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