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Abstract—Chronic kidney diseases cause over a million deaths
worldwide every year. One of the techniques used to diagnose the
diseases is renal scintigraphy. However, the way that is processed
can vary depending on hospitals and doctors, compromising the
reproducibility of the method. In this context, we propose an
approach to process the exam using computer vision and machine
learning to classify the stage of chronic kidney disease. An anal-
ysis of different features extraction methods, such as Gray-Level
Co-occurrence Matrix, Structural Co-occurrence Matrix, Local
Binary Patters (LBP), Hu’s Moments and Zernike’s Moments
in combination with machine learning methods, such as Bayes,
Multi-layer Perceptron, k-Nearest Neighbors, Random Forest and
Support Vector Machines (SVM), was performed. The best result
was obtained by combining LBP feature extractor with SVM
classifier. This combination achieved accuracy of 92.00% and F1-
score of 91.00%, indicating that the proposed method is adequate
to classify chronic kidney disease in two stages, being a high risk
of developing end-stage renal failure and other outcomes, and
otherwise.

I. INTRODUCTION

In 2015, Global Disease Burden Study found that kidney
disease is among the top 15 causes of death, comprising more
than 1 million deaths worldwide [1]. Chronic Kidney Disease
(CKD), also called chronic kidney failure, concerns the loss of
the kidney function. In the United States, it is estimated that
approximately 30 million adults have CKD [2]. There are 5
stages of CKD and it is measured by observing the Glomerular
Filtration Rate (GFR) or kidney damage indicator, or both,
during at least three months [3]. GFR number indicates how
much of the kidney function a patient has. Lower GFR values
means that the kidney disease is getting worse. Table I shows
how GFR values relate to CKD stages.

Hypertension, metabolic syndrome, and diabetes are the pri-
mary diseases that can increase the risk of an adult to develop
CKD [4]. Furthermore, a person may have aggravations due to
the CKD, such as cancer, bone disease, anemia and increased
risk of cardiovascular disease [5]. The early detection of CKD
might prevent the aforementioned CKD aggravations as well
as avoid further health problems by means of medications and
a healthier lifestyle [2].

Regarding the estimation of GFR followed by the detection
of CKD, there are two main methods for this purpose: (i) the
measurement of creatine elimination which takes blood and

TABLE I: CKD stages based in GRF values.

GFR estimated CKD stage % Kidney Function

> 90 ml/min 1

61 - 90 ml/min 2

31 - 60 ml/min 3

16 - 30 ml/min 4

≤ 15 ml/min 5

urine exams over a 24 hour period to compare the creatine
levels in both exams, and (ii) the dynamic renal scintigraphy
[6]. One advantage of the scintigraphy is that it can show the
corporal activity in regions of interest [7].

Gates’ method is the standard method applied to estimate
the GFR in scintigraphy exams [8]. First of all, we have
the dynamic renal scintigraphy images, then the kidney and
the background radiation regions are manually marked. After
that, the renal activity is measured using the marked regions
by counting the intensity of the pixels in each one of the
images for each kidney from the original scintigraphy images.
Finally, GFR is estimated using the Gates’ algorithm which
is calculated employed the value of the intensity of the pixels
[9]. Those pixels intensity counts generate a curve of renal
activity versus time, which is called renogram.

The process of manually marking the regions of interest
(ROI) is time consuming, tedious and depends on the specialist
skill. Consequently, the results are dependent on the person
processing the exam, which can compromise the reproducibil-
ity of the method [10]. Thus, methods have been proposed to
support the definition of ROIs. Nonetheless, those techniques
still involve the process of counting the intensity of the pixels
to estimate the GFR, added with the segmentation error. In
[11], the authors applied adaptive edge-based active contour
techniques to automatically segment the kidney in scintigraphy



exams. However, the technique requires that the operator
provides a starting point for the segmentation algorithm. In
[12], another semi-automatic method for segmentation of renal
scintigraphy images using gradient map, adaptive threshold
and region growing was proposed. Nevertheless, it is necessary
an input provided by the operator in order to correctly segment
the kidneys. In [10], their automatic segmentation approach
could not segment a patient kidney with poor renal function.

In this paper, we propose a new approach for diagno-
sis support of CKD classes from scintigraphy images using
computer vision, with a focus on the severity of the CKD.
Our approach considers two classes, being: (i) higher risk of
developing kidney failure, and (ii) lower risk. To the best
of our knowledge, this is the first attempt to aid in CKD
diagnosis with neither need for segmentation methods nor
input of operators.

To evaluate the proposed method, an analysis was made of
several combinations of features extractor and classifiers. The
feature extractors considered were Gray-Level Co-occurrence
Matrix (GLCM), Local Binary Patterns (LBP), Hu’s Moments
(HM), Structural Co-occurrence Matrix (SCM) and Zernike’s
Moments. The classifiers considered were Bayes, Multi-layer
Perceptron (MLP), k-Nearest Neighbors (kNN), Random For-
est (RF) and Support Vector Machines (SVM).

This paper is organized as follows: Section II presents our
methodology in details. Section III shows the experimental
results and discussion, followed by the conclusion and future
works in Section IV.

II. METHODOLOGY

The proposed approach flowchart is depicted in Figure 1
and it consists of 5 stages explained in details in the next
sections. In summary, in the first stage, we have the exam
images of the patients as input. Then, those images go through
the pre-processing stage resulting in a reduced set of 15 images
for each exam. After that, the attributes vectors are generated
during the feature extraction stage. Finally, those vectors are
classified in Class 0 or 1 by machine learning methods.

This study aims at aiding in the diagnosis of the CKD stage
through the classification of scintigraphy images of a patients’
exam to determine the need for specialized monitoring.

A. Acquiring images

The images used in this study are from the Database of
Dynamic Renal Scintigraphy [13]. The training dataset is from
the drsprg dataset, which contains scintigraphy images of 107
patients’ exams previously classified in one of the five CKD
stages, depending on GFR estimation from collected blood
samples.

In drsprg dataset, each exam took 30 minutes and the stored
exam consists of 180 images of size 128×128 pixels that were
captured every 10 seconds over the exam procedure. Both
anterior and posterior projections were captured as well. We
noticed that 5 patient’s exams do not have all the 180 images,
to wit, patients numbered 25 (CKD 1), 55 (CKD 2), 65 (CKD
2), 81 (CKD 3) and, 106 (CKD 5); those ones were removed
from the experiment in order to keep it standardized.

A patient classified in CKD 3 or above has higher risks of
mortality [14] or other outcomes, i.e. bone disease, and the
patients from this group have more sensibility to side effects
from drugs [15]. Therefore, we have considered working with
two classes. The Class 0 comprehends the CKD stages 1 and
2, and the Class 1 the remaining CKD stages: 3, 4 and 5.
Thus, Class 1 indicates whether the patient needs specialized
monitoring due to further disease progressions, and Class 0,
otherwise. Hence, we have 44 samples from Class 0, and 58
from Class 1.

B. Pre-processing

All 180 images of each patient’s exam have been blurred
through the application of a mean filter. After that, the set
of 180 images was divided into 15 subsets, then, each subset
represents a 2-minute frame taken from the exam, and contains
12 images each. Finally, an average image of each one of those
15 subsets was generated. The average image is the sum of a
subset of 12 images, and divided by the total of images (12).
The 2-minutes period that was chosen is a common practice
in the literature, one can see details in [8], [12].

Fig. 1: Methodology of the proposed approach for Chronic Kidney Disease classification.



C. Feature extraction

The goal in feature extraction techniques is obtaining at-
tributes and characteristics from an input image. Those meth-
ods work on different perspectives of the image primarily
on moments and texture. For this work, we applied the
feature extractors: GLCM [16], LBP [17], HM [18], Zernike’s
Moments [19] and SCM [20], which return 9, 108, 7, 6 and
8 attributes, respectively.

For each feature extraction method, each patient resulted
in 15 vectors of features. Those vectors were concatenated,
so that a patient is represented by one vector. For example,
SCM extracts 8 features per image so the patient’s representing
vector comprehends 120 features.

The proposed approach uses all the mentioned feature
extractors to obtain different significant characteristics that
may facilitate the classification among CKDs without the need
for the segmentation of scintigraphic exams.

D. Classification

We adopted different classifiers in order to find the best
configuration for supporting the diagnosis of CKD. Then,
we chose classifiers that are from different types and self-
configurable. From the concept of probability and statistics,
we use the Bayes classifier [21]. MLP [22] is an architecture
of artificial neural network. KNN [23] is based on instances,
while RF [24] is based on the Decision Tree Method. The
SVM classifier [25] is based on the Statistical Learning
Theory.

In regards to the classifier’s parameters, they were selected
through the random search algorithm on hyperparameters
configurations for the classifiers aiming to obtain the best
performances. For SVM, the kernels linear, polynominal and
radial basis function (RBF) were considered. After the hyper-
parameters optimization, 10-fold cross-validation was done.
The number k = 10 was chosen so that there were more sam-
ples, bringing the model closer to reality. All the experiments
were performed on the training dataset.

E. Evaluation Metrics

In order to evaluate the classifiers, four evaluation metrics
were used: Accuracy (Acc), Precision (Pre), F1-Score (F1) and
Recall (Rec), which are obtained by means of the confusion
matrix, where True Positives (TP) represents the number of
times that the classifier predicts a patient that has a lower risk
of mortality, i.e. Class 0. False Negatives (FN) informs the
total of misclassified patients as high CKD stage, while False
Positives (FP) indicates how many patients in Class 1 were
classified as Class 0. Finally, True Negatives (TN) presents
the number of patients of Class 1 that are predicted correctly.

III. RESULTS

In this session, we compare the achieved results by the
combination of different feature extractors and classifiers
considered in our approach. The tests were performed on an
iMac with Intel Core i5 processor, running at 3.2 GHz, and
16GB RAM.

Figure 2 graphically presents the classification results, con-
sisting of mean value and standard deviation, for all combi-
nations of classifiers and extractors. Accuracy and F1-Score
metrics express the database’s similarity to the number of
false-negative and false-positive results. Looking at Figure 2,
we conclude that both metrics presented similar values in most
combinations plotted. MLP and SVM classifiers obtained the
best performances when combined with LBP, as seen in Figure
2b, and with Zernike, as shown in Figure 2f.

(a) GLCM (b) LBP

(c) HM (d) SCM - Laplacian

(e) SCM - Sobel (f) Zernike

Fig. 2: Accuracy and F1-Score for each combination of feature
extractor with classifier.

Table II shows average value and standard deviation of
Accuracy, Precision, F1-Score, Recall, training and testing
times from the best combinations of feature extractors with
classifiers. The greatest values of Accuracy and F1-Score were
reached by the combination of LBP with SVM-Linear, obtain-
ing 92.05% and 91.89%, respectively. While the combination
of Zernike with SVM-RBF got the best values of Precision
and Recall, achieving 93.40% and 92.42%, respectively.

According to Table II, the combination of Zernike’s method
with SVM-RBF achieved the shortest training time, which
was an average of 0.005s. MLP classifier obtained the highest
training time, reaching 12.356s, when combined with LBP.

In addition, regarding the same data, SVM-RBF in com-
bination with Zernike was the fastest, performing this step
in 0.003s. MLP classifier was the slowest classifier in the
classification step when combined with LBP, returning a
testing time of 0.011s.

IV. CONCLUSION AND FUTURE WORK

In this article, a new approach to aid in the diagnostic of
chronic kidney disease using scintigraphy images is proposed.
In addition, an analysis was performed combining several
types of classifiers and feature extractors.



TABLE II: Acc, Pre, F1, Rec, training and testing times obtained by the best combinations of features extractors and classifiers.

Feature extractor Classifier Setup Acc (%) Pre (%) F1 (%) Rec (%) Training Time (s) Testing Time (s)
LBP SVM Linear 92.05 ±6.04 92.74 ±5.88 91.89 ±6.13 92.25 ±6.06 0.031 ±0.001 0.005 ±0.000

Zernike SVM RBF 91.96 ±7.93 93.40 ±6.60 91.84 ±7.96 92.42 ±6.67 0.005 ±0.001 0.003 ±0.000
LBP MLP - 91.94 ±8.03 92.20 ±8.06 91.85 ±8.12 92.25 ±8.03 12.356 ±0.544 0.011 ±0.003
LBP SVM RBF 90.03 ±6.82 90.77 ±7.03 89.81 ±6.90 90.00 ±6.97 0.031 ±0.001 0.006 ±0.000

According to the results shown, we can conclude that the
combination of LBP with SVM-Linear is suitable to classify
the CKD in two classes. This combination reaches 92.00%
in Accuracy, 92.00% in Precision, 91.00% in F1-score and
92.00% in Recall, showing that is possible to classify CKD
stage using only images, without the necessity of manually
marking the kidneys region. Then, the patients can be classi-
fied in higher risk of mortality and kidney failure, or lower
risk of aggravation of the kidney function.

For future improvements, first, we intend to apply statistical
tests. Secondly, we aim to expand the study to the original
5 CKD stages. Besides, since Zernike and LBP brought the
best results, a combination of both might be worthwhile to
enhance the results, making use of Zernike’s advantage to
discriminate shapes, and LBP’s capability to process textures.
Furthermore, Convolutional Neural Networks (CNN) can be
applied as feature extractors with several architectures, such as
VGG16 [26] and MobileNet [27], and other machines learning
methods can be used, such as Optimum-Path Forest.
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