
Development of Embedded Algorithm for Visual
Simultaneous Localization and Mapping

Onias C B Silveira∗, Joao G O C de Melo∗, Leandro A S Moreira†, Luiz R L Rodrigues§ and Paulo F F Rosa‡
∗Department of Electrical Engineering

Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil, 22290-270
†Graduate Program in Defense Engineering

Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil, 22290-270
Email: rpaulo@ime.eb.br

‡Department of Computer Engineering
Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil, 22290-270

Email: rpaulo@ime.eb.br
§Indústria de Material Bélico - Fábrica de Comunicação e Eletrônica, Rio de Janeiro, RJ, Brazil, 20931-670

Email: renault.fmce@imbel.gov.br

Abstract—The Simultaneous Localization and Mapping
(SLAM) problem is recurrent in today’s robotics. One challenge
of it is the extensive computational cost to create complex maps in
real-time. Various applications, mainly search and rescue operate
in GPS denied scenarios, with possible difficulty communicating
with an external base. A portable SLAM system capable of being
run in a microcomputer would greatly help such operations.
This paper mentions the unfinished into this topic and discusses
further steps that shall be taken in the upcoming months.

Index Terms—SLAM, visual-SLAM, robotics, Embedded Ap-
plication, Real-Time SLAM

I. INTRODUCTION

A recurring problem in today’s robotics is the simultaneous
localization and mapping (SLAM) of an unknown environ-
ment. Over the years, many solutions to this problem have
been proposed using different algorithms and sensors. One of
these ways is using visual information from the surroundings,
and as camera’s technologies advances, rich visual information
can be available from low-cost sources. Thus, visual SLAM
has become a field of huge interest.

Solving the problem of both estimating the pose of the robot
and building the map of its surroundings is a challenge due to
the accumulation of probabilities and the need to keep storage
of the information retrieved previously. Such a complex task
requires great computational power, turning it still a challenge
to perform SLAM in embedded computers. Modern advances
in microcomputers give them better capacity of parallelism of
threads and better processing speed.

In search and rescue operations, human agents might be
forced to go inside buildings they do not know, sometimes
hindering their communication with external bases and deny-
ing their GPS signal. A lightweight robust system capable of
executing real-time SLAM would be of great use in these
situations. Thus, the main goal of this work is to execute real-
time SLAM in an unknown environment, using limited sensors
and portable equipment, as in Fig. 1.

Fig. 1: Diagram of the finished product: a lightweight com-
puter processes visual feed from camera and executes SLAM
algorithm.

Our laboratory takes part in SLAM research for several
years [1], but focusing on the execution of SLAM in a
embedded computer is a novel approach for us.

The paper is organized as follows: Section II reviews related
literature, focusing on each topic explored in our work. Section
III describes our methods and algorithms used. Section IV
depicts the setup and gives an analysis of the microcomputers
adopted and Section V presents the results achieved so far.
Section VI shows our conclusion about the research done
until now and discusses the future steps and our expectations
towards them.

II. RELATED WORKS

The definition of the SLAM problem as in Thrun, [2],
is for an agent to acquire a map of its environment while,
simultaneously, locating itself in the same map. Usually, the
map or the location are obtained from previously knowing
the other, a different approach must be used. Due to this
uncertainty, probabilities are used to represent estimations of
measured data. The more data collected through time, the
bigger the error gets, as in fig. 2. One way of solving this
issue is by using loop closures, which verifies if the region of



the map being analyzed already belongs to a certain region
previously mapped. If it is, the accumulated errors of this
regions are diminished and good accuracy can be achieved.

Fig. 2: Structure of a SLAM system. The error increases at
each iteration until a loop closure is detected. Figure adapted
from [3].

There are various ways to acquire points for the SLAM map,
as for each sensor used there are several different algorithms
that use them. Fig. 3 illustrates this, listing some algorithms
that use LiDAR - Light Detection And Ranging and visual
sensors.

Fig. 3: Diagram of various SLAM algorithms for different
approaches of observing the agent’s surroundings.

Our physical limitations must be taken into account when
choosing the sensor and algorithm. Table I shows four different
kinds of sensors - LiDAR, Monocular camera, Stereo cameras
and RGB-D camera - and compares them to each other. As we
desire a lightweight solution with as little computational cost
as possible, the monocular approach seems, at first glance, the
best choice for our application.

Before defining which sensor and algorithm will be used, it
is important to understand the advantages and disadvantages
of each solution with comparisons, as in [4]. Their data was
collected from a moving robot in a closed environment, using
three different sensors: 2D LiDAR, monocular and ZED stereo
cameras. The ground truth was standardized for all tests, as
a rectangle of sides 5 meters x 9 meters. The computer used
had a Intel Core i7 6500U processor and a NVIDIA GeForce

TABLE I: Advantages and disadvantages of different types of
sensors.

Advantages Disadvantages
LiDAR - High precision - High cost

- Less data to process - Emission of Laser
Monocular - Low cost - Does not give scale

- Less data to process
Stereo - Low cost - More data to process

- Gives scale
RGB-D - Gives scale - Emission of LASER

- More data to process

GTX 950M graphics processor with 12 GB of RAM memory,
assuring good algorithm execution time.

Their results showed that ORB-SLAM [5] and RTAB map
[6] presented the best camera-based solutions, with ORB-
SLAM having an average error of only 15.9 cm and a
standard deviation of 4.7 cm. Hence, a monocular solution
is viable. But it also comes with its downsides, mainly the
lack of real-world scale in the created map. Sensor fusion
between camera and an Inertial Measurement Unit (IMU)
could improve the estimation of displacement between frames.
ORB-SLAM, however, does not execute sensor fusion with
IMU and does not execute in real-time in microcomputers,
due to their limited processors.

A. Visual Odometry

Due to the performance on microcomputers, the use of
Visual Inertial Odometry (VIO) was considered. It consists in
estimating the pose of an agent by analyzing the changes in
its movement and in the feedback from its sensors, such as the
camera (VO), [7], and IMU (VIO). Differently from SLAM, it
focuses on solving the problem of localization in an unknown
environment, not mapping it as well. [8] shows a performance
comparison between a visual odometry trajectory and the
odometry obtained from a full SLAM system. Although the
lack of loop closure clearly affects the trajectory, its general
idea is shown with both algorithms.

In an experiment with a mini-helicopter designed to operate
in GPS denied spaces [9], VO was compared to VIO and GPS.
The addition of IMU in the visual odometry greatly corrected
the deviations of regular VO, as the resulting trajectory of VIO
was just as precise as the ground truth (GPS). But, before
thoroughly researching and testing VIO algorithms, ORB-
SLAM shall be tested further, quantifying its performance on
small devices and evaluating ways to enhance its speed.

B. ORB and ORBSLAM

ORB-SLAM uses features extracted from images using
Oriented Fast and Rotated Brief (ORB) to execute real-time
SLAM. It is considered state-of-the-art in SLAM algorithms,
having solutions for monocular [5], RGB-D and stereo [10]
cameras. ORB algorithm [11], is an open-source feature
extractor. It uses Features from Accelerated Segment Test
(FAST) to detect keypoints and Binary Robust Independent
Elementary Features (BRIEF) to classify them. [12] compares
the algorithm to other established methods, such as SIFT



(Scale Invariant Feature Transform) and SURF (Speeded Up
Robust Features) and shows that ORB achieves the fastest
performance with equivalent accuracy.

As for the ORB-SLAM itself, it works with three threads
running simultaneously. The first thread is dedicated to receive
new frames and extract keypoints from it. The second is the
Local Mapping, which, by receiving keyframes found in the
previous thread, locates them in the map and stores in the
computer. The third thread is designed to check for loop
closures and, if it detects any, it updates the map.

III. PROBLEM STATEMENT AND PROPOSED SOLUTION

The objective of this work is to have a SLAM algorithm able
to run real-time on a microcomputer. Having both hardware
and sensor limitations, it is important to chose wisely the algo-
rithm used. We will investigate if ORB-SLAM is suitable for
real-time applications when used on microcomputers. To do
so, first we shall select our microcomputer contenders. Table
II compares three candidates: Raspberry Pi 3B+, Jetson Nano
and Zybo Zynq-7000. It also lists the hardware specifications
of a reference computer. The absence of a graphical processing
unit on the Zynq would be replaced by its Field Programmable
Gate Array (FPGA).

TABLE II: Microcomputers that will be used on tests.

RAM CPU GPU
Raspberry Pi 1GB DDR2 A53 @1.4GHz Videocore-VI
Jetson Nano 4GB DDR4 A57 @1.43GHz 128-core Maxwell
Zybo Zynq DDR3 A9 @650MHz FPGA Artix-7
Reference 8GB DDR3 Intel i5 @2.6GHz Ivybridge Mobile

The tests will consist in running the algorithm with videos
from well-known datasets and videos made by us, in the refer-
ence and the microcomputers, and compare their performance
and the quality of map created. By analyzing each different
thread of the algorithm, we hope to optimize it achieving real-
time execution in the selected platforms.

IV. EXPERIMENTAL SETUP

To achieve our goal, important changes are needed in the
ORB-SLAM algorithm, aside from implementation of IMU
readings. The creation of new datasets will be explained,
followed by how the cameras were calibrated, then how the
generated point clouds were saved and finally the alteration
for live video frame input is discussed.

A. Creating Datasets

The EuRoc datasets [13] were used as a base. They consist
of three important files:

• directory of where the images are;
• a .txt file with the timestamps of each image;
• a .csv file correlating each timestamp with each image

file.
To create a dataset from any video, a python script was

wrote using Open source computer vision (OpenCV) library
[14]. It opens a video file and runs through each frame,
saving them in one directory, and incrementing an array that

corresponds to the timestamp. The image file name is the time
of each frame, in nanoseconds. With the timestemp of each
frame and its corresponding file, the .csv and .txt files are
saved.

B. Calibration

A .yaml file contains both camera calibration data and
ORB parameters, being essential in running ORB-SLAM. The
camera calibration settings are the physical parameters of the
camera, and they interfere on how the image received must be
distorted to form a closer version to the real world. Another
calibration that must be made is to transform the coordinates
from the IMU into the coordinates of the camera, in order to
unify the measurements into a unique reference frame.

For this experiment, the standard calibrations settings were
preserved, as we assumed that our camera has similar distor-
tions to theirs.

C. Saving the Point Cloud

A key factor in the project is to save the navigated map for
further use. Thus, saving the point cloud is a good starting
point. This point cloud file would also help evaluating the
created map in comparison to the real one. The ORB-SLAM
algorithm only shows the point cloud while the video feed is
being run, so a method that writes point clouds calculated and
saves them in a .pcd file was implemented in the class System
of the code. To actually save the map, this method is called
after the sweep of the frames of that data set.

D. Live-Video Feed

Another adjustment that needs to be made to evaluate actual
real-time performance is capturing the video at the same time
as running the SLAM. To do so, gstreamer shows itself to be
a good candidate, as it can read, process and send a video file
trough a personalized pipeline. Instead of reading a file and
consulting its timeframe, the SLAM algorithm would be the
end of gstreamer’s pipeline, receiving the timeframe and the
frame itself on the go.

V. RESULTS

To test the creation of a dataset based on EuRoc, a one
minute video of a person walking down a corridor was
recorded. After running the script mentioned in the previous
section and running ORB-SLAM, a few things could be
observed: (i) after the tracking is lost it will pause and only
continue if the software detects a loop closure, (ii) sudden
changes in both lighting and area captures by the camera will
probably cause the software to lose track of the mapping and
(iii) the faster the camera movement, worse the mapping on a
single sweep of the space.

The result of the mapped corridor can be viewed at fig. 4.
Due to harsh changes in the environment and light captured
by the camera, tracking was lost midway through the video.
Fig. 5 shows the map created with one of the EuRoc datasets.
It is a drone flying many loops inside a closed space. As so,
the point cloud has many important details about the room,



such as the staircase on the middle left and a board on the top
corner.

Fig. 4: Upper view of the point cloud of the dataset created
by us. It was filmed by a human walking down a corridor for
one minute.

Fig. 5: Upper view of the point cloud of one the EuRoc
datasets. It was filmed by a drone flying around the room
for over two minutes.

Important features from the maps can be retrieved, e.g. the
corner in the hallway, and the board in the top left and the
stairs in the left wall in the closed room. If detail is wanted, a
rendering software can be used to refine the data. For now,
what we want is to assist the human operator to navigate
without having to remember every room he has been through
in his operation, which we can, as seen from the images.

Performance-wise, for the reference computer, the average
tracking time was 0.035s and the mean tracking time was
0.038s, meaning that it had real-time performance - each frame
lasted 0.05s (20 fps).

VI. CONCLUSION AND NEXT STEPS

To achieve our goal, extensive literature review was made,
enabling us to choose monocular ORB-SLAM, what we
believe is one of the state-of-the-art algorithms in real-time
SLAM. Literature with good results in fusing monocular
cameras with IMU showed us that IMUs are a viable options
to correct the absence of scale.

The structure needed for the first tests with embedded ORB-
SLAM have been set, as now we can create a dataset from

whichever video we want and analyze both the performance
of the code and the point cloud generated by the algorithm.

After the good results using the reference computer, work
is going to put into running the modified ORB-SLAM in the
Raspberry Pi 3B+ and the other microcomputers. Firstly, the
performance will be evaluated with the software as it is. Then,
possible alterations to achieve the same frame rate as the video
feed include (i) disabling the two videos shown (point cloud
and frames with keypoints), (ii) optimizing the ORB detection
algorithm, mainly switching FAST for FASTER or other more
efficient methods or (iii) disabling the loop closure feature of
the algorithm - its the only optional thread. Achieved real-
time efficiency, IMU sensor data will be fused together with
ORB-SLAM to give the map real world scale.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

REFERENCES

[1] A. d. O. P. Barcelos, F. S. Vidal, and P. F. F. Rosa, “Active stereoscopic
camera to build an occupancy grid for autonomous navigation,” in 2014
IEEE 23rd International Symposium on Industrial Electronics (ISIE),
June 2014, pp. 1162–1167.

[2] S. Thrun, W. Burgard, D. Fox, and R. Arkin, Probabilistic Robotics,
ser. Intelligent Robotics and Autonomous Agents series. MIT
Press, 2005. [Online]. Available: https://books.google.com.br/books?id=
k yOQgAACAAJ

[3] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp.
99–110, June 2006.

[4] M. Filipenko and I. Afanasyev, “Comparison of various slam systems
for mobile robot in an indoor environment,” in 2018 International
Conference on Intelligent Systems (IS), Sep. 2018, pp. 400–407.

[5] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[6] M. Labb and F. Michaud, “Online global loop closure detection for large-
scale multi-session graph-based slam,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2014, pp. 2661–
2666.

[7] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics Automation Magazine, vol. 18, no. 4, pp. 80–92, Dec 2011.

[8] L. Clemente, A. Davison, I. Reid, J. Neira, and J. Tards, “Mapping
large loops with a single hand-held camera,” in Proceedings of Robotics:
Science and Systems, Atlanta, GA, USA, June 2007.

[9] Chaolei Wang, Tianmiao Wang, Jianhong Liang, Yang Chen, and
Yongliang Wu, “Monocular vision and imu based navigation for a
small unmanned helicopter,” in 2012 7th IEEE Conference on Industrial
Electronics and Applications (ICIEA), July 2012, pp. 1694–1699.

[10] R. Mur-Artal and J. D. Tards, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, Oct 2017.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International Conference on Computer
Vision, Nov 2011, pp. 2564–2571.

[12] S. A. K. Tareen and Z. Saleem, “A comparative analysis of sift,
surf, kaze, akaze, orb, and brisk,” in 2018 International Conference
on Computing, Mathematics and Engineering Technologies (iCoMET),
March 2018, pp. 1–10.

[13] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial
vehicle datasets,” The International Journal of Robotics Research,
2016. [Online]. Available: http://ijr.sagepub.com/content/early/2016/01/
21/0278364915620033.abstract

[14] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

https://books.google.com.br/books?id=k_yOQgAACAAJ
https://books.google.com.br/books?id=k_yOQgAACAAJ
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract

