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Abstract—TIn later years, research in mobile robotic areas have
been experiencing a growth in interest due to its vast application
area. In an unknown environment, the robot’s location and
movement are essential for its operation. In addition, machine
learning techniques, along with signal or image processing, have
been applied to map the environment, locate and move the mobile
robot. This article proposes a low cost and efficient approach for
mobile robot localization. It uses a omnidirectional sonar with
machine learning and image processing. The feature extractors
used in this paper were: Structural Co-occurrence Matrix (SCM),
Statistical Moments, Central Moments, Hu Moments and Gray
Level Co-occurrence Matrix (GLCM). The classifiers used in
this study were: Bayes classifier, k-Nearest Neighbors (kNN),
Multilayer Perceptron (MLP), Optimum Path Forest (OPF) and
Support Vector Machines (SVM). The results showed that the
best accuracy was achieved with Central Moments as feature
extractor and OPF as classifier, achieving 96.61% and with a
test time of 100us.

I. INTRODUCTION

In mobile robotics, the localization has been one of most
researched subjects. Methods of machine learning, artificial
neural networks, convolutional neural networks (CNN) and
probabilistic localization have been used in many applications
that involves embedded robotics [1]-[6].

In mobile robotics applications, there are two main areas
of study: localization and navigation [7]. These areas are
interconnected and have fundamental importance in the robot
operation.

While the robot is doing tasks in an environment, during
a simple action of going from a point to another, the mobile
robot needs to know where it is, where it is going and what it
should do. The localization task is challenging and has several
studies in the literature.

In [1], the authors proposed a room-level localization with
multiple sets of sonar systems, which contains sixteen sonars
in total, and a laser radar to map construction. In [2], the
mobile robot localization is based on classification with reject
option in topological maps applied in omnidirectional images.

In [3], the use of probabilistic methods to perform the localiza-
tion and navigation tasks in indoor environment was proposed
making a use of a Kinect sensor. While in [5], a probabilistic
model is used to identify scenes and objects, and a hierarchical
model to process the robot’s location. In [4], radio-frequency
identification (RFID) is used to locate a mobile robot in an
indoor environment, and incidences matrices as map of the
paths. Futhermore, [6] proposed a Recurrent Convolutional
Neural Network (RCNN) model that uses the fusion of a 2D
laser signal with an inertial sensor signal to train and improve
prediction scenarios.

In this paper, the localization is performed in room-level,
dispensing the use of the laser radar and the Ring-Projection
Histogram (RPH) representation. Furthermore, it utilizes fewer
sensors than [1], specifically, it uses 10 sonars, not compro-
mising the localization system operation. By using omnidi-
rectional sonars, the architecture becomes simple than using
omnidirectional cameras or Kinect sensor. In addition, this is
an approach with less processing demand than a convolutional
neural network, since the embedded processors in mobile
robots are, usually, limited.

This paper presents an approach for mobile robot localiza-
tion, involving digital image processing and machine learning
methods in images from omnidirectional sonars. By using
images instead of signals, it is possible to do a morpholog-
ical analysis. Furthermore, an analysis is made between the
combination of several image feature extractors and classifiers
well known in the literature, emphasizing the accuracy and
the testing time, since they are essential properties in real
applications.

II. EXPERIMENT SETUP
A. Mobile Robot

The location strategy for mobile robots presented in this
paper makes use of an omnidirectional sonar. This sonar
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Fig. 1: Floor plan of testing local. Samples of the ultrasound images for each class, named from CO to C10.

Fig. 2: Mobile robot Vex EDR and the omnidirectional sonar
system.

consist of a embedded system with ten ultrasonic sensors HC-
SRO04. The sensors are read individually and sequentially. This
is done to prevent one sensor from interfering with another,
thus avoiding erroneous readings due to the phantom echo
phenomenon.

The goal is applied the system to indoor location, because
range sensors are between 0.2 to 4 meters. Sensors are oriented
with field vision of 360 degree. We mounting sonar on top
of robot model Vex EDR (see Figure 2). In this case, the
robot sends data to the computer with wireless communication
from telemetry commands. Therefore, we can send commands
to read sonar and move the robot. This robot moves by
differential speed. Details of the sonar calibration procedure
is described by [8], in which static objects were used in the
environment, and was performed one hundred measurements
at each preset fixed point.

B. Dataset

This dataset was generated in Industry Didactic Block.
Looking at Figure 1, have eleven classes named class O to
class 10. In each class was collected forty ultrasound images
with the robot in one direction only. Robot icon in topological
map illustrate the orientation used during experiment in each
path. We consider relevant physical characteristics of the
environment, such as: doors, walls and objects. The data was
collected during the vacation period, therefore, we do not
consider the presence of people. During the data collection,
we kept the doors opened or closed in some situations, in
order to simulate a routine situation.

C. Our Approach

Initially we started with the idea that the robot does not
know its location in the environment. Then, we will evaluate
the localization methodology using sonar images. Looking at
Figure 3, Step (1) represents the images coming from the
dataset that provides the input images for the following steps.
Step (2) corresponds to the preprocessing, in which we apply
extractors that will represent the ultrasound images by means
of a characteristic vector. For each feature set we generate
a vector of characteristics that will be evaluated with the
classifiers in the next step (3). In all was used five feature sets
and classifiers. Hold out technique was applied to evaluate the
data set with ten iterations. The data was partitioned in 286
ultrasound images for training and 154 for test. In this way we
will evaluate the results with the objective of identifying the
most promising configuration to embark on the robot location
system. The output of the system, Step (4), should be the
location of the robot on the map.

The following settings were used to evaluate the classifiers:
kNN was used with £ = 1, £ = 3 and k = 5; MLP with
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Fig. 3: Flow chart of the proposed approach for the mobile robot localization.

five hidden neurons and backpropagation algorithm; OPF was
used various distance metrics and SVM with kernels Linear,
RBF, Polynomial and Sigmoid. All classifiers were used with
toolbox OpenCV 2.49, except the OPF from LibOPF.

D. Evaluation Procedure

In the evaluation of the system, the training and test times
for each classifier were considered, in addition to three eval-
uation metrics, described below.

The metrics used are: Accuracy (Acc), Sensitivity (Se) and
Specificity (Sp). Accuracy is the correct prediction rate for the
entire data set, making no distinction whether it is positive or
negative. Sensitivity provides the proportion of true positives
(TP), that is, the ability of the system to accurately predict
the condition for their respective cases. Specificity presents
the proportion of cases classified as True Negative (TN), thus
obtaining the system’s ability to correctly predict the absence
of the condition in its related cases.

III. RESULTS AND DISCUSSION

This section presents the results obtained by analyzing the
machine learning methods with the best performance in the
localization task. The data were processed on a 2.5GHz iMac
computer, Core i5 with 4GB of RAM.
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Fig. 4: Confusion matrix of the combination Statistical Mo-
ments - Bayes.

Table I shows the result of the classification in decreasing
order of accuracy. However, only the five best results of the
combinations of feature extractors with classifiers were con-
sidered for further analysis, emphasizing the most effective.
In general, all classifiers obtained satisfactory performance in
Accuracy, above 90%. The combination of Statistical Moments
with Bayes Classifier obtained good result in Accuracy, Sensi-
tivity and Specificity, reaching values of 96.71%, 81.89% and
98.19%, respectively.

Nonetheless, when analyzing the confusion matrix of Figure
4, we noticed that the classifier significantly confused classes
C1 and C9. The numerical values were associated with a
gray scale to aid in better understanding. Such confusion
is related to the physical characteristics of the environment.
When we compare these two classes in the topological map
of Figure 1, we see that they are very similar because they
are classes located in the corridor of the building. The false
positives had a lower occurrence in the next configuration, so
the best performance was in fact the Central Moments and
OPF Euclidean configuration, since it was able to perform
better when distinguishing the classes. In this configuration,
we obtained Accuracy, Sensitivity and Specificity of 96.61%,
81.36% and 98.14%, respectively. It would be an undesirable
feature for the localization system to hit the other classes
well and misclassify between two specific classes physically
distant.

Discussing from the point of view related to extraction time
and classification (see Table II), we obtained times in the order
of milliseconds, relatively sufficient for the perfect functioning
of the robot. We can highlight the Central Moments with
extraction time of 16ms, performing the training in 6.30ms
and the test of a sample in 100us.

The simulations were performed on a computer with pro-
cessing capacity at 2.5GHz. In real applications, as the pro-
cessing power in the robot is usually much lower in order
to save battery power, performing the training step on the
embedded system itself may take a long time. On the other
hand, a 256MHz microprocessor with a low RAM would take
much longer, which would make it slow to perform the task
of locating the robot. An advantageous option is to do the
training on a computer with greater processing capacity, then
only load the knowledge that was generated along with the
test algorithm.

We can attribute the good performance of the Central



TABLE I: Ranking of the five best results obtained in the feature extraction and classification, listed in descending order of
accuracy.

Feature Fxtractor S(t;lt:sl;iﬁer Accuracy (%) Sensitivity (%) Specificity(%)
Statistical Moments ~ Bayes 96.71£0.04 81.89+0.22 98.19+0.02
Central Moments OPF (Euclidean) 96.61+0.32 81.364+1.79 98.14+0.17
Statistical Moments ~ OPF (Squared Chi-Squared)  95.7740.58 76.74+3.19 97.67+0.31
Central Moments MLP 95.5040.71 75.23+3.95 97.524+0.39
Hu Moments OPF (Gaussian) 93.931+0.62 66.59+3.44 96.661+0.34

TABLE II: Average training and test time of the top four results.

Setup . . .. . .
Feature Fxtracior Classifier Extraction time (ms) Training time (ms) Test time (ms)
Statistical Moments ~ Bayes 15.040.00 0.10+0.30 0.10+£0.09
Central Moments OPF (Euclidean) 16.04-0.00 6.30+7.72 0.1040.09
Statistical Moments ~ OPF (Squared Chi-Squared) 15.0+0.00 64.10+4.65 25.20+£25.01
Central Moments MLP 16.0+£0.00 949.00+60.93 0.01+£0.01

Moments extractor to the fact that it is related to shape
characteristics in the object of interest in the image. In this
study, the object of interest is the sensory map drawn from
the signal of the ominirectional sonar. The sensory map as can
be seen presents different forms in each class. This justifies
the satisfactory performance obtained with the extractor in
question.

Finally, it is worth emphasizing that significant changes
in the environment may require a new training process. In
addition, we do not consider the presence of people in the
environment. In this way, the localization system evaluated
could, for example, be applied to specific sectors of an industry
in which the traffic of people is restricted.

IV. CONCLUSION

This work proposes a location system for autonomous
mobile robots using machine learning and an omnidirectional
sonar.

We use ultrasound imaging as input data for five extractors
and classifiers in different configurations. The objective was
to analyze which classifier obtained the best performance in
the localization task.

The signals used in this work come from a database
generated in the institution, referring to the omnidirectional
sonar. This database can still be used in future applications.

The results showed that the OPF classifier is the most
promising to embark on the proposed location system, since it
obtained the best accuracy (96.61%), sensitivity (81.36%) and
specificity (98.14%). In addition, he performed the training and
test in a relatively short and satisfactory time, respectively, in
6.30ms and 100us.

For future improvements, we intend to assembly signals
from the ultrasound with the ultrasound images, since both
approaches achieved excellent results. Besides, we aim to
perform the location of the robot in the same environment
using the RGB camera image processing. Another possibility

is combine the ultrasound images with the ones of the camera,
then evaluate the performance in the robot localization.
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