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Abstract—Ensemble-based methods have been widely used
in uncertainty quantification, particularly, in reservoir history
matching. The search for a more robust method which holds
high nonlinear problems is the focus for this area. The Ensemble
Kalman Filter (EnKF) is a popular tool for these problems,
but studies have noticed uncertainty in the results of the final
ensemble, high dependent on the initial ensemble. The Ensemble
Smoother (ES) is an alternative, with an easier impletation
and low computational cost. However, it presents the same
problem as the EnKF. The Ensemble Smoother with Multiple
Data Assimilation (ES-MDA) seems to be a good alternative to
these ensemble-based methods, once it assimilates tha same data
multiple times. In this work, we analyze the efficiency of the
Ensemble Smoother and the Ensemble Smoother with multiple
data assimilation in a reservoir histoy matching of a turbidite
model with 3 layers, considering permeability estimation and
data mismatch.

I. INTRODUCTION

One of the main challenges for oil and gas industry is
to diminish uncertainty referred to a possible extraction of
hydrocarbon. The search for a geometric model that represents
the reservoir starts from the first data obtained before the
production, such as seismic and environmental geology, and
keeps being updated as long as new data is available. The
final model is expected to predict, through flow simulators,
the sensitive of the reservoir when different methods of oil
recovery are applied.

Reservoir characterization has been in focus for a sev-
eral years. One of this techniques is the automatic history
matching, where production has already been done for some
years, collaboratively with data observation, and the focus is to
improve the reservoir model, through its parameters, intending
to obtain similar simulated data with the ones collected during
the production period. To perform history matching, besides
the reservoir model, we need an optimization algorithm to
estimate such parameters. Among all methods applied in
reservoir engineering and history matching, we can cite the
gradient-based Gauss-Newton [11], Levenberg-Marquardt [11]
and BFGS [5]. However, computing the gradient of the objec-
tive function may not be easy. Therefore, recent researches
have focused in method based on the Kalman Filter (KF) [7],
a recursively filter for state estimation of a linear system.

The Ensemble-Kalman Filter (EnKF) is a Monte Carlo
implementention of the KF, where the mean of an ensemble
of states gives a good estimation of the model. The EnKF
avoids some limitations of the KF. One example is that EnKF

holds nonlinear systems. It was introduced by Evensen [4]
and it has a large application in the science industry, such as
economic science, geophysics, statistics and, more famous, in
meteorology. Its first application in reservoir history matching
was in 2001, by Lorentzen [8]. Later, in 2002, Nævdal [6]
published a study using EnKF to estimate permeabilities of
oil reservoirs. EnKF assimilates the data sequentially in time,
which can be inconvenient when the objective is to incorporate
the history matching in a flow simulator. Considering this
limitation of EnKF, the Ensemble Smoother (ES), proposed
by van Leeuwen and Evensen [12] does not assimilate data
sequentially in time. Instead, it computes a global update as a
result of assimilation of all data available. The major advantage
of the ES is that it avoids restarts the simulator at each time
step, which can be easier to implement and computational
cost reducing. Nevertheless, Reynolds et al. [10] showed that
every assimilation step of EnKF is similar to applying a
Gauss-Newton iteration with full step. It means that the ES
is similar to one iteration of Gauss-Newton. Hence, it may
not provide acceptable data matches when applied to reservoir
history matching. Based on this observation, Emerick and
Reynolds [2] proposed the Ensemble Smoother with Multiple
Data Assimilation (ES-MDA), which assimilates the same data
multiple times, expecting that data match is improved at each
data assimilation.

The first section of this work we formulate the problem
from a Bayesian point of view. The second section gives a
brief review of ensemble-based methods, focusing on EnKF,
ES and ES-MDA. In the third section is presented the reservoir
model used in this work and, in section five, we present and
compare the results obtained by checking the results of ES
and ES-MDA.

II. BAYESIAN FORMULATION OF THE PROBLEM

Let m be a Nm-dimensional random vector containing all
parameters of a model. The theoretical data related to m can
be described as

d = g(m) (1)

where d is a Nd-dimensional vector and the function g is the
function that relates m with d. In reservoir simulation, given a
vector d, the uncertainty between d and a certain model vector
m can be described as



d = g(m) + ε (2)

where ε = N (0, CD), CD is the covariance matrix of d. In
this case, we say that d ∼ N (g(m), CD). Thus, the probability
density function (PDF) of d is

f(d|m) = α1 exp

{
−1

2
(d− g(m))TC−1

D (d− g(m)

}
(3)

The Likelihood function of m, L(m), is defined by Equa-
tion 3, where d = dobs a vector of observations, L(m) =
f(dobs|m). Using Bayes’ theorem to write f(m|dobs):

π(m) = f(m|dobs) =
f(dobs|m)f(m)

f(dobs

=
f(dobs|m)f(m)∫

D
f(dobs|m)f(m)dm

= α2 L(m)f(m)

(4)

In Equation 4 α2 is a normalizing constant that guarantees
that

∫
D
π(m)dm = 1. Assuming that m is Gaussian with mean

mprior and covariance CM , we can write π(m) as

π(m) = α2 L(m)f(m)

= α exp

{
−1

2
(m−mprior)TC−1

M (m−mprior)

}
× exp

{
−1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)
}

= α exp {−O(m)}
(5)

where

O(m) = Om(m) +Od(m) (6)

with

Om(m) =
1

2
(m−mprior)TC−1

M (m−mprior) (7)

and

Od(m) =
1

2
(g(m)− dobs)TC−1

D (g(m)− dobs) (8)

Finding a vector m that minimizes O(m), also gives us
a maximum value of π(m). Thus, we say that O(m) is the
objective function that we want to minimize.

A. Maximum a Posteriori Estimate

Although the complete solution of the inverse problem be
the posterior probability distribution for the model parameters,
in reservoir simulation, the complete characterization of this
PDF is impracticable. However, there is an exception for
the linear model, with Gaussian distributon, as stated in the
previous subsection. Assuming that d = Gm, where G is the
sensitivity matrix that linearly relates d with m, it is known
that if m is a minimum of O(m), then ∇O(m) = 0.

∇O(m) = C−1
M (m−mprior)

+GTC−1
D (Gm− dobs) (9)

Adding and subtracting Gmprior to (Gm−dobs) and setting
∇O(m) = 0:

0 = C−1
M (m−mprior)

+GTC−1
D (Gm− dobs +Gmprior −Gmprior)

0 = C−1
M (m−mprior)

+GTC−1
D G(m−mprior) +GTC−1

D (Gmprior − dobs)

(C−1
M +GTC−1

D G)(m−mprior) =

GTC−1
D (Gmprior − dobs)

m−mprior = (C−1
M

+GTC−1
D G)−1GTC−1

D (Gmprior − dobs)

m = mprior

+ (C−1
M +GTC−1

D G)−1GTC−1
D (Gmprior − dobs)

(10)

We say that a vector m obtained from Equation 10 is
the maximum a posteriori estimate of m given a vector of
observed data dobs, and we denote by mmap.

Another possibility of computing mmap comes from the
matrix inversion property

(GTC−1
D G+ C−1

M )−1GTC−1
D

= CMG
T (CD +GCMG

T )−1 (11)

Thus, Equation 10 can be rewritten as

m = mprior

+ CMG
T (CD +GCMG

T )−1(Gmprior − dobs)
(12)

Note that computing mmap using Equation 10 needs to
solve a NM ×NM matrix problem

(C−1
M +GTC−1

D G)x = GTC−1
D (Gmprior − dobs) (13)

while Equation 12 requires the solution of the ND × ND

matrix problem

(CD +GCMG
T )y = (Gmprior − dobs) (14)

Since computational efficiency is closely related to the size
of the matrix problem, solvin Equation 14 seems to be more
efficienty when ND < NM , i.e., the number of observations
less than the number of model parameters, which is plausible
assuming reservoir history matching problems.



III. ENSEMBLE-BASED METHODS

In this section it is explained the concepts of the Ensemble
Smoother (ES). We first present the Ensemble Kalman Filter
(EnKF) and derive ES as a Kalman-Filter-Based method.

A. Ensemble Kalman Filter (EnKF)

The EnKF was proposed by Evensen [4] as a Monte Carlo
Method in which the mean and covariance are estimated from
an ensemble of states, which are updated sequentially in time.
Typically, the number of ensemble members is much smaller
than the number of the number of model parameters, whcich
are the unknowns of the problem. Hence, the covariance
estimate of the problem is most of the time a low-rank
approximation. This problem leads EnKF to search for a
solution of the problem in the space spanned by the initial
ensemble [3].

Let Ne be number of member of the ensemble and mj ,
j = 1, · · · , Ne model parameters members of the ensemble.
The approximation of the covariance matrix CM is given by:

CM ≈
1

Ne − 1

Ne∑
j=1

(mj − m̄)(mj − m̄)T (15)

where m̄ = 1
Ne

∑Ne

j=1mj . Based on Equation 12, we
want to formulate the EnKF update formula assuming the
approximation of the covariance matrix CM .

CMG
T ≈ 1

Ne − 1

Ne∑
j=1

(mj − m̄)(mj − m̄)TGT

≈ 1

Ne − 1

Ne∑
j=1

(mj − m̄)[G(mj − m̄)]T

≈ 1

Ne − 1

Ne∑
j=1

(mj − m̄)(dj − d̄)T

≈ CMD

(16)

where dj ∼ N (g(mj), CD). We say that the matrix CMD is
the approximation from the ensemble of the cross covariance
matrix between the model parameters and the theoretical data
of the ensemble members. Another approximation using the
ensemble of the Equation 12 is

GCMG
T ≈ 1

Ne − 1

Ne∑
j=1

G(mj − m̄)(dj − d̄)T

≈ 1

Ne − 1

Ne∑
j=1

(dj − d̄)(dj − d̄)T

≈ CDD

(17)

Substituting Equations 16 and 17 in 12, we get that the
update formula of the EnKF is

ma
j = mf

j + CMD(CD + CDD)−1(dj − du,j) (18)

The superscript a reffers to the analysis step and f to
the forecast step of EnKF. Because we want to analyse
the quantification of uncertainty of the model ensemble, we
assume some sampling errors by adding a perturbation in the
vector of observed data dobs for each ensemble member. Thus,
we define du,j = N (g(mj), CD).

For the problems with time dependent variables, such as
pressure and saturation, the theoretical data is represented by
dj = g(mj , pj). Thus, an augmented vector of state is defined
as

y = [mT pT ]T (19)

In this case, it is possible to use all equations derived before
to assimilate data sequentially in time for each time step for
the Ny-dimensional vector y

yn,aj = yn,fj + CY D(CD + CDD)−1(dnj − dnu,j) (20)

where the superscript n indicates the time step assimilation
and

CY D =
1

Ne − 1

Ne∑
j=1

(yj − ȳ)(dj − (̄d))T (21)

where ȳ =
∑Ne

j=1
1
Ne
yj

B. Ensemble Smoother

Van Leeuwen and Evensen [12] proposed the Ensemble
Smoother (ES) based on EnKF, but assimilating all data only
once, avoiding restart reservoir simulation in each time step,
which can improve time consuption and ease implementation.
Because all data are assimilated simultaneously, we only need
to consider the model parameters vector m, intead of the
augmented vector y, as in EnKF. It makes ES as a parameter
estimate method [2]. Its formulation is similar to the EnKF,
and we write the analyzed vector of model parameters as in
Equation 18.

C. Ensemble Smoother with Multiple Data Assimilation

The Ensemble Smoother with Multiple Data Assimilation
(ES-MDA) was introduced by Emerick and Reynolds [2]
aiming to improve the quality of history matching of data.
It uses the ES as basis, but assimilating all data Na times,
expecting that quality of matching becomes better in each
iteration. The only difference between ES and ES-MDA in the
analysis update is that we need to premultiply the covariance
matrix CD by an inflant factor αj , j = 1, · · · , Ne.

m̃a
j = m̃f

j + CMD(αjCD + CDD)−1(dj − du,j) (22)

In this formulation, du,j ∼ N (dobs,
√
αjC

1/2
D ) and the

unique assumption under α is that

Ne∑
j=1

1

αj
= 1 (23)



If αj is chosen satisfying Equation 23, it is ensured that

E[m̃a
j ] = mmap (24)

mmap defined in Equation 10, and

cov(m̃a
j ) = Cmap (25)

where Cmap, defined in Equation 10, is

Cmap = (CD +GCMG
T )−1 (26)

The ES-MDA algorithm follows:
1. Choose the number of data assimilations Na and the

coefficients αi, i ∈ {1, · · · , Na};

2. For i = 1 to Na:
a) Run the ensemble from time zero.
b) Perturb the observation vector dobs for each ensem-

ble member using du,j = dobs +
√

(αi)C
1/2
D zd,

j = 1, · · · , Ne and zd ∼ N (0, Id).
c) Update the ensemble using Equation 22.

IV. TURBIDITE RESERVOIR MODEL

The turbidite reservoir model used in this work is presented
in [1]. It is built using four single-valued B-Spline curves to
delimit the width and thickness boundaries. The curves are
connected with semi ellipses and, as long as turbidite lobes
are commonly found in deep water, we use a bottom surface
to simulate the submarine ground. The model is depicted in
Figure 1.

(a) Right side view. (b) Left side view.

(c) Upper view. (d) Bottom view.

Fig. 1. Turbidite lobe reservoir model.

To perform well-tests in the reservoir model, it is assumed
some simplifying hypothesis listed below:

• At time t = 0 the reservoir is in equilibrium, i.e., pressure
is the same in all layers;

• Homogeneous in each layer and isotropic reservoir;
• Single-phase and isothermal flow with constant viscosity;
• Rock formation with low and constant compressibility;
• Constant production rate q.

V. UNCERTAINTY ANALYSIS

In this section we analyze the performance of two ensemble-
based methods: the Ensemble Smoother (ES) and Ensemble
Smoother with Multipe Data Assimilation (ES-MDA). For
both methods we used an ensemble with Ne = 50 members.
For the ES-MDA, we used Na = 10. All members are vectors
containing the permeability in each layer of the turbiditide
reservoir. We make a comparison of each method by analyzing
the result data from each ensemble and the observed data and
the value of the data mismatch for each ensemble member.
This data mismatch is computed using such equation:

Od(mj) =
(dobs − g(mj))

TCD(dobs − g(mj))

Nd
(27)

where Nd is the number of data. More information about the
choice of objective function, see [9].

Figure 2 shows the result of computing Od(mj) for all
ensemble members. The solid red lines with asterisks refers
to the ensemble computed for the members obtained with ES-
MDA. The solid black lines with small balls refers to the
ensemble obtained with ES. The main focus of ES-MDA is to
improve the data match of ES with more assimilation of data,
considering that ES assimilates all data only once [2]. Thus,
it is expected that data match is not good. For the ensemble
obtained with ES-MDA, we can see that Od achieved smaller
values. As observed by [2], 4 assimilations is enough to attain
good results in reservoir history matching.

The good data match produced by ES-MDA can be observed
comparing Figures 5 and 6. For both figures, the solid black
lines refers to all ensemble members and the solid red line
with asterisks is referred to the observed data. Figure 5 shows
the resulting ensemble computed using ES. The uncertainty
between the initial and final ensemble is reduced, but it is still
have a considerable uncertainty level. Conversely, ES-MDA
obtained good results with low uncertainty level.

Another comparison we can make is the value of Od(mj)
for the initial and final ensemble members for each method.
Figure 3 shows the values of Od(mj) for the initial and the
final ensemble members obtained with ES. One can notice that
Od for the final ensemble is almost the same for the initial one.
Figure 4, on the other hand, shows that ES-MDA can reduce
the uncertainty of any ensemble member, diminishing Od and,
thus, improving data match.

VI. CONCLUSION

In this work we analyze the performance of the Ensemble
Smotther and Ensemble Smoother with Multiple Data As-
similation. The reservoir model used is a turbidite lobe with
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Fig. 2. Comparison between final ensemble members for ES and ES-MDA.
The solid black line with small balls refers to ES and the solid red line with
asterisks refers to ES-MDA
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Fig. 3. Comparison between initial and final ensemble members fo ES. The
solid black line with small balls refers to the initial ensemble and the solid
red line with asterisks refers to the final ensemble. The value of Od of the
18th member of the initial ensemble reached 0.1.

three layers with homogeneous permeability in each layers.
The observations leads us to conclude that the process of
assimilating data multiple time of ES-MDA improves the data
match substantially. The unique global update of ES seem
to be not enough to provide a good update to the model
parameters. The results shown here are in agreement with the
ones presented in [3], where multiple ensemble-based methods
is tested in a simple, but highly nonlinear model. There,
ES-MDA also presented the best data match and uncertainty
reduction among all methods.
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(b) Final Ensemble.
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(d) Final Ensemble.

Fig. 5. Pressure data match for the turbidite reservoir model with ES. The top figures show the data match for pressure and the bottom ones show the data
match for the logarithmic derivative of pressure. The solid black lines refers to the ensemble members and the solid red line with asterisks refers to the
observed data.
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(b) Final Ensemble.
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Fig. 6. Pressure data match for the turbidite reservoir model with ES-MDA with Na = 10. The figures and lines shown here has the same meaning as in
Figure 5.


