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Abstract—The inspection of train and railway components
that can cause derailment plays a key role in rail maintenance.
To improve productivity and safety, service providers look for
automatic and reliable inspection solutions. Although automatic
inspection based on computer vision is a standard concept, such
an application challenges development community due to the
environmental and logistic factors to be considered. Previous
publications presented automatic classifiers to evaluate integrity
and placement of wagon components. Although the high classi-
fication accuracy reported, ineffective object detection affected
the general performance. Our object detector/tracker consists
of a descriptor based on the histogram of oriented gradients,
a support vector machine classifier, and a set of geometric
constraints, which takes in account the ideal trajectory path of the
wagon’s components of interest and the distances between them.
We detail training and validation procedures, together with the
metrics used to assess the performance of the system. Presented
results compare two other techniques with our approach, which
exhibits a fair trade-off between reliability and computational
complexity for the application of wagon component detection.

I. INTRODUCTION

Computer Vision has been largely used in many production
control and inspection systems in various fields, like Civil
Engineering [1]–[3], Automotive Industry [4]–[6], Manufac-
turing [7]–[9] and Agriculture [10]–[12]. In the rail industry,
the inspection of train and railway components that can cause
derailment is an important maintenance issue. Thus, the design
of automatic and reliable inspector systems is crucial to im-
prove productivity and safety. Although automatic inspection
by computer vision is already a standard concept, the task
in this case is not trivial, due to inherent conflicting aspects:
railway inspection facilities are subject to vibration, dust,
and changing climate conditions; while the decision pipeline
requires reliable stages of component estimation, detection,
and classification. Considering the great variety of components
of interest and the adverse environmental conditions, the devel-
opment of effective inspector systems is, indeed, challenging.
Extensive research is being done in regard to the inspection of
train and railroad tracks [13]–[15]. In previous works, Rocha

et al. [16]–[18], in a partnership with Vale S.A., developed and
refined an approach, based on Convolutional Neural Networks,
specific for inspection of the pad, one of the components in a
wagon wheelset.

This work is inspired by the achievements and difficul-
ties reported in [18]. Therein, the authors presented a pad
evaluation system of two stages: detection and classifica-
tion. Their detection approach is based on the Histogram
of Oriented Gradients (HOG) [19], while the classification
relies on Convolution Neural Networks (CNN) [20]. Although
classification results were encouraging for the case of manual
pad segmentation, when automatic segmentation is considered,
the performance of the whole processing chain decays signif-
icantly as a direct consequence of an inefficient detector.

Thus, we propose an improved method to detect wheelset
components of a wagon train. A HOG-based object detector
is used, but its predictions are refined using a set of geometric
constraints tailored to the characteristics and motion pattern
of the wagon elements.

The remainder of this paper is organised as follows. The
next section addresses the proposed detection and tracking
strategies used to identify axle boxes, the elements of interest
in our study. The section also describes the structural charac-
teristics of the input images of the system. Section III details
the training dataset used in the experiments, the methodology
applied to design the geometric constraints that are the base of
our component identification strategy, and the metrics used to
assess the performance. In Section IV our results are presented
and discussed. Section V concludes the paper, emphasising our
contributions.

II. DETECTION AND TRACKING

Figure 1 shows a shot taken from the typical viewpoint of
the video data used in our experiments. Outlined in red, on can
see the so-called truck (or bogie), which is a framework that
carries the wheelset, a modular sub-assembly of wheels and
axles. As show in Figure 2, in a truck, three main components



Fig. 1. Sample image of a train wagon with one of its trucks (outlined in
red) and two wheels bolts (outlined in green).

Fig. 2. A closer view of the truck: the axle boxes in green, the pads in red,
and the coil springs of the suspension in blue.

can be identified: the coil spring of the suspension (in blue),
the pads (in red) and the axle boxes (in green).

The proposal consists in the joint actions of an object
detector and a set of geometric constraints. Next we describe
the arrangement of components in the side view of a train
wagon, the particular structure of the axle box, and the theory
behind the adopted tracking strategy.

A. HOG-based detector.

An object detector is used to identify any new elements
of interest that appear in the monitored video frames (see
Section II-B). Such new elements are added to the list of
detected elements, which are tracked in the subsequent frames
as long as they remain on sight.

In this work, the object detector is based on HOG descrip-
tors [19]. For a given image patch, we compute a vector
of HOG descriptors, which will be used as input features
for a SVM [21] classifier that will find out whether the
patch represents our object of interest. We can detect the
occurrences of the object at various locations in an arbitrary
image by applying the sliding-window approach. In addition
to the high availability of implementations of the algorithm
and its prevalent use, other reasons behind this choice are
the fast training, ease of use, and low hardware requirements
when compared with another methodologies (e.g. Haar-like
features [22], and deep learning-based [23]–[29]).

B. The axle box as reference element

The axle box (Figure 4a) is chosen as the key-component to
our object detection strategy. The first reason for this choice is

that the characteristics of axle box bolts are easily identifiable
by the object detector. Moreover, such an element is always
present in the wagon truck structure, what makes it a good
and reliable reference point.

The fact that axle boxes always come in pairs can be used
to aid in identifying the train wagon by a simple matching
strategy. By considering just the side view, one train wagon
contains one pair of trucks, which, in turn, has one pair of
axle boxes each. So, each pair of elements can be grouped in
order to determine the wagon they belong to.

Another reason is that the positions of each pair of axle
boxes can be used as a reference to locate other elements
of interest in the truck. For example, by assuming geometric
regularity in the arrangement of wagon elements, expected
positions and dimensions of suspension and pads can be easily
determined (Figure 2).

Finally, grouping the pairs of axle boxes and identifying
the trucks and wagons to which they belong can aid in the
prevention of false positive detection cases. Furthermore, this
information can help tracking the elements of interest over
video frames. This property is used as base for the tracking
methodology presented in this paper, and will be further
elaborated in the next sections.

C. Axle boxes trajectory profile
In our experimental set-up, as the video camera remains

fixed and the movement of the wagon occurs parallel to the
image plane, one can infer that each axle box will occupy
some predefined spatial positions in the image, describing a
fixed linear trajectory path, what we refer as trajectory profile.

Let the vector

bi = (bx, by, bw, bh) (1)

represents the position and dimensions of the i-th box being
currently tracked, where bx and by are the horizontal and
vertical coordinates of the box centre, and bw and bh denote
the box width and height, respectively.

Thus, the trajectory path can be approximated by a line
equation

αbx + βby + θ = 0 (2)

where α, β and θ are the line parameters.
The assumption of a trajectory path enables a fine-grained

detection and tracking of new axle boxes. Any new element
detected whose distance between its centre coordinates and
the trajectory line is above some predefined threshold will be
ignored and, consequently, will not be tracked, decreasing the
risk of tracking errors in subsequent frames.

D. Distance between axle boxes
Analysing Figure 2, one can note a pattern in the distance

between axle boxes, which can be used to determine if two
axle boxes belongs to the same truck.

First, aiming to have a scaling-invariant figure, the ratio R
is computed as

R =
dlen
odim

(3)



where odim is the value of one of the dimensions 1 of the
box detected and dlen is the length being analysed (distance
between boxes).

By using R, the distance between two axle boxes can be
classified in:

• Intra-truck – between two consecutive axle boxes of the
same truck;

• Inter-truck – between axle boxes of different trucks in
the same wagon;

• Inter-wagon – between axle boxes of different wagons.
Figure 3a shows an example of a distance between axle

boxes of the same wagon, but in different trucks, while the
Figure 3b depicts another example with distances between
boxes of different trucks in different wagons and between
boxes of the same truck, respectively.

Due to the rigid arrangement of the axel boxes in the
structure of the wagon, false positive detection can be reduced
by checking whether the distance between the new and the
last detected boxes can be classified in one of the mentioned
categories. If not, the new element will be ignored. The
classification procedure also takes into account the previous
classes assigned to detected boxes to reduce error rates. For
instance, in Figure 3a, it is clear that the next axle box (not
visible yet) will belong to the class intra-truck, while in the
Figure 3b the box 3 may be either of class inter-truck or inter-
wagon, depending on its distance with relation to box 2. Such
strategy helps preventing high misdetection and tracking error
rates.

E. Axle box tracking

A tracking-by-detection approach was adopted to handle
the tracking of the axle boxes through video frames. Let us
define the list bF = (b1,b2,b3, ...,bM ) of the M axle boxes
(Equation 1) being currently tracked by the system in frame
F , and the list dF+1 = (d1,d2,d3, ...,dN ) of N axle boxes
in frame F + 1 found by the object detector (M > N ). The
correspondence of the boxes in bF and the ones in dF+1 is
determined by the box pairs with highest intersection over
union (IoU) index (Algorithm 1). Boxes in dF+1 not matched
to any of the boxes in bF , but in compliance with the geometric
constraints presented in Sections II-C and II-D will be added
to the list of tracked boxes bF+1. The boxes in bF with no
corresponding box in dF+1 will be handled by the method
described in the next section.

F. Position variance and occlusion handling

The performance of the object detector can deteriorate due
to changes in illumination exposure, camera vibration, object
occlusion (as a consequence of dust, employees passing, etc.)
and presence of motion blur, just to name a few factors. Such
deterioration leads to variations in the tracked positions or
even detection failure of elements already tracked. The fixed
structure of the wagon and the assumption of the trajectory

1Which dimension of the bounding box, height or width, is unimportant,
as all boxes are squares.

Algorithm 1 Algorithm to make the correspondence of the
boxes of two lists.

function CORRESPONDENCE(bF ,dF+1)
matches← [ ]
for all bm in bF do

candidates← [ ]
for all dn in dF+1 do

if dn intersects bm then
append dn to candidates

end if
end for
best match← null
best value← 0
for all c in candidates do

overlap← jaccard(c,bm)
if overlap > best value then

best value← overlap
best match← c

end if
end for
append (bm, best match) to matches

end for
return matches

end function

profile (Section II-C) enable position correction and occlusion
handling for tracked axle boxes applying simple strategies.

To address the position variance problem, consider kF as
the list of centre coordinates of N axle boxes detected in the
actual frame F (thus a subset of bF ) that matches some of the
boxes in dF+1.

The displacement vector ∆kiF that will update the position
of the i-nth box of kF is computed as:

∆kiF = (diF+1 − k
i
F ) + σ(diF+1 − θ

i
F+1) (4)

where θiF+1 is the intersection point of the trajectory profile
(Section II-C) and its perpendicular that contains the coordi-
nates diF+1, and σ is a correction factor. Then the updated
coordinates kiF+1 are computed as

kiF+1 = ∆kiF + kiF (5)

The function in (5) smooths the real trajectories draw by the
axle boxes, alleviating noisy position estimations.

The update ∆uF of the set uF of the M −N boxes that
do not have a corresponding detection in frame F +1 (caused
by occlusion or misdetection) is addressed by determining the
average of the displacement vectors ∆kiF

∆uF =
1

N

N∑
i=1

∆kiF (6)

Hence, the update of uF is given by

ui
F+1 = ∆uF + ui

F . (7)



(a)

(b)

Fig. 3. Examples of distance lengths between wheels bolts. top-down, left-right order: (3a) inter trucks; (3b) inter wagons and inter bolts of the same truck.

III. EXPERIMENTAL SET-UP

This section explains implementation details of the proposed
system and the routines designed to evaluate its performance.

Such routines consist in:

1) Building the dataset that will be used to train/test the
object detector;

2) Designing the geometric constraints of the tracking
system;

3) Computing performance metrics.

A. Dataset creation

To create the dataset, a large number of photos were taken
depicting the side view of wagons, as show in Figure 1.

For the creation of the set of positive examples, patches were
sampled from these images as show in Figures 4a and 4b. One
can note that the region comprises all the bolts of one axle
box. In all, approximately 65 positive patches were extracted
from different images of wagons. To build a robust detector,
these samples were further processed using techniques of Data
Augmentation: each sample was rotated 10 times, with steps
of 36 degrees, and gamma corrected with a factor ranging
from 0.35 to 1.4 with steps of 0.15, resulting in approximately
50,000 positive samples.

For the negative sample set, non-positive patches from
wagon photos were sampled at multiple scales (example in
Figure 4c). Additionally, other patches were randomly sampled
from high-resolution images publicly available in the internet.
These images were carefully selected to ensure that none
of them have bolts-like structures (example in Figure 4d).
Approximately 10,000 negative samples were obtained and
augmented by using the same gamma adjusting technique,
resulting in nearly 80,000 negative examples.

All sampled patches of the dataset were resized to 68× 68
pixels. From the whole dataset, 70% of images were used to
train the detector and the remaining 30% for testing.

Our database were created using sample images acquired
during the operation of the railway, with the permission of
our partner Vale S.A.. Due to internal policy of the industrial
partner, the data collected is a private intellectual property.

(a) (b) (c) (d)

Fig. 4. Examples of images of the dataset: (4a) and (4b) positive samples
of wheel bolts; (4c) negative sample from a wagon image; and (4d) negative
sample from a random image.

B. Geometric constraints

To select the geometric constraints that better fit the tracking
system, a short video containing typical moving wagons was
selected. Every axle boxe boundaries present in each video
frame were manually annotated. The annotations were used
as the reference data to the routines that will be presented in
the following.

The first routine is responsible for computing the ideal path
trajectory of every axle box across frames. While the reference
data supplies sufficient information to determine the trajectory
profile described in Section II-C, the objects found by the
trained object detector are used to compute the mean variance
of their centre coordinates from the ideal trajectory. The mean
variance is then used to determine the distance threshold.

Figure 5 depicts the region of interest (red outline) overlaid
by the path profile line (green line), the distance threshold
region (blue outline) and the detected axle boxes (dark-green
rectangles) with their centres (red dots). Ideally, the distance
threshold must be small enough to exclude any possible false-
positive detection, like the upper-left detection of the image,
but large enough to accommodate the position variation of the
detected boxes.

The second routine is responsible for determining the dis-
tances between axle boxes. Figure 3 shows the visual feedback
of such a script. The reference data are used to determine R
classification ranges as described in Section II-D.

C. Performance assessment

The performance assessment of the proposed system is
two-fold. First, we use the stratified cross-validation [30]



Fig. 5. Visual feedback of the path profiling script: the light-green line represents the ideal wheels bolts trajectory path; the blue lines denote the estimated
distance threshold; dark-green rectangles and red dots represent candidate bolt regions and their centres, respectively.

TABLE I
METRIC COMPUTED FOR EACH STAGE OF THE VALIDATION. EACH STAGE

REPRESENTS THE TRAIN/TEST SPLIT OF THE DATASET.

Stage Accuracy Precision Recall F-Score
Trainning

1 0.9992 1.0000 0.9938 0.9969
2 0.9991 1.0000 0.9931 0.9966
3 0.9990 1.0000 0.9925 0.9962
4 0.9990 0.9994 0.9925 0.9959
5 0.9994 1.0000 0.9950 0.9975

Test
1 0.9987 1.0000 0.9900 0.9950
2 0.9994 1.0000 0.9950 0.9975
3 0.9990 0.9975 0.9950 0.9962
4 0.9997 1.0000 0.9975 0.9987
5 0.9981 1.0000 0.9850 0.9924

methodology to evaluate result consistency of the proposed
object detector. Then, we compare the technique described so
far with other two similar systems:

• System 1 – uses the raw HOG object detection technique
for detection/tracking, as described in Section II-E, with-
out any geometric constraints;

• System 2 – applies HOG detection at each 10 frames to
update the estimates of the object tracker based on the
kernelized correlation filters technique [31].

The choice of such systems is justified as their use is con-
solidated in solving common Computer Vision problems [32]–
[36].The same dataset were used to compute the performance
metrics of all systems.

IV. RESULTS

A. Evaluation of the HOG-based detector

As stated in Section III-C, stratified cross-validation was
used to evaluate the performance of the HOG-based detector.
Five folds were used.

Table I shows the performance metrics of each train-
ing/testing split. Analysing the performance metrics, we can
verify the detector is consistent and performs well (all rates
above 0.9).

Although the geometric constraints are the base for this
research, note that the object detector plays an important role
in this methodology, and the quality of its predictions impacts
upon the overall performance of the system.

B. Geometric constraints evaluation.

To check the effectiveness of the geometric constraints
imposed, the path profile and distances classification ranges
were adjusted using the routines described in section III-B.

In our experiments, the classification ranges of the R ratio
used were:

• Intra-truck – [6.0, 7.0];
• Inter-truck – [12.0, 14.0];
• Inter-wagon – [9.0, 10.0].
In this work, an annotated bounding box and an estimated

bounding box match when they have an IoU of, at least,
50%. A match is considered an true positive (TP) detection.
If an annotated box does not have a corresponding matching
estimated box, the annotation is considered a false negative
(FN) detection, and if an estimated box does not have a
corresponding matching annotated box, the estimated box is
considered a false positive (FP) detection.

Performance metrics were computed for the proposed tech-
nique and the two systems mentioned in section III-C. The
results are shown in Table II. Analyzing these results, it can
be inferred that, although system 1 has a greater number of TP
detections and system 2 has a smaller number of FP detections
when compared with the proposed technique, our approach
achieves the better in-balance between true and false detection
rates than the other systems. For example our system deals
better with FP detections compared with system 1.

Our methodology also outperforms system 2 FN rate by a
factor of 1

3 . This is possibly due to the fact that, differently
from object detectors, object trackers work in the “instance
level” of the objects. In other words, each tracker will be
responsible only for the tracking of the object which it was
initialised. The detection of new objects will be handled by a
new object detector, that will run at some predefined interval of
frames (10 in this experiment). Although less computationally
expensive with relation to our approach and system 1, this
methodology still fails to detect and track a great number of
new elements, leading to an increased rate of false negatives.

V. CONCLUSION

In this paper, we have proposed a simple but effective
approach to detect and track wheelset components of train
wagons using computer vision techniques. The focus was on
a component of the wheelset called axle box. Our method con-
sidered the rigid structure of the wheelset, its motion pattern
and the usual disposition the axle box assumes in each video



TABLE II
COMPARISON OF THE PERFORMANCE METRICS COMPUTED FOR THE TWO

REFERENCE SYSTEMS AND OUR PROPOSED TECHNIQUE.

System 1 System 2 Proposed
Technique

TP 1597 1433 1593
FP 22 0 4
FN 76 240 80

Precision 0.9864 1.0000 0.9975
Recall 0.9546 0.8565 0.9522

Miss Rate 0.0454 0.1435 0.0478
Total o elements 1673
Total of Frames 650

frame. The detection of components uses descriptors based
on the histogram of oriented gradients and support vector
machines. Images of axle boxes (positive samples) and random
images (negative samples) formed the dataset. Techniques of
data augumentation were applied to expand the database to
cover more variations of axle boxes. The tracking of axle boxes
adopted a tracking-by-detection approach. We considered an
update of object position when a positive detection in the
current frame exhibits intersection over union above 50 % with
an object in the frame immediately before. Aiming to reduce
the false positive rate, and cope with false negative detection
and object occlusion, we proposed two geometric constraints.

The first constraint was based on the fact that the camera
point-of-view is fixed and the component movement describes
an almost linear trajectory. We defined a trajectory profile
of the axle boxes and a corresponding distance tolerance.
Any detection which the distance of its centre coordinates to
the trajectory profile is above the distance tolerance will be
discarded as a false positive detection.

The second constraint considered that the normalised dis-
tances between axle boxes are predefined according to theirs
positions in the train wagon. Those distances can be classified
in inter-truck, intra-truck and inter-wagon. If the distance of
a new detection to its neighbour object cannot be classified
into one of these groups, the detection is considered a false
positive and is ignored.

For the performance evaluation of our HOG-based detector,
we designed a specific dataset and applied the stratified cross-
validation methodology with five folds. Our results shows the
quality of our classifier’s estimates, an essential factor for the
overall tracking performance.

The performance evaluation of our geometric constraints
was made by computing performance metrics of the tracking
of axle boxes in a sample video. Those metrics were compared
with the metrics of two widely used tracking methodologies
in literature. The results show the promising effectiveness of
our strategy.

Note that the detection, tracking and constraint validation
stages are independent to each other, and other methodologies
can be applied to each one. The next step of our research
is to introduce modern strategies, like a deep learning-based
object detectors [23]–[29] or tracker [37], in one or more of
the stages in order to improve computational efficiency and

precision.
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