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Abstract— Virtual Reality (VR) applications provide an im-
mersive experience when using panoramic images that contain
a 360-degree view of the scene. Currently, the equirectangular
image format is the widely used pattern to represent these
panoramic images. The development of a virtual reality viewer
of panoramic images should consider several parameters that
define the quality of the rendered image. Such parameters
include resolution configurations, texture-to-objects mappings
and deciding from different rendering approach, but to select
the optimal value of these parameters, visual quality analysis is
required. In this work, we propose a tool integrated within Unity
editor to automate this quality assessment using different settings
for the visualization of equirectangular images. We compare the
texture mapping of a skybox with a procedural sphere and a
cubemap using full-reference objective metrics for Image Quality
Analysis (IQA). Based on the assessment results, the tool decides
how the final image will be rendered at the target device to
produce a visually pleasing and high-quality image.

I. INTRODUCTION

Images captured in the 360-degree surroundings of a single
point are capable of replicating the entire visual information
available from that position. Specific cameras are designed to
capture such images as the Samsung Gear 360◦, which cap-
tures panoramic images and stores them in a suitable format
for 360-degree visualization. These images are stored in a spe-
cific format to facilitate image processing. The equirectangular
format is the most common one. Furthermore, equirectangular
images are used in Virtual Reality applications to provide
an immersive user experience and allow users to explore the
virtual environment from a first-person perspective.

Virtual Reality (VR) devices use a different picture for each
eye to simulate depth and increase the sense of presence in
the application. Even with the recent technological advance-
ments, VR technology still encounters technical challenges
such as offering a high density of pixels per Field of View
(FoV) degree. Besides, the human eye has a resolution of 60
pixels per degree, which indicates that a 100-degree capable
device should theoretically render the available content at 6k
resolution to increase immersion and realism [1].

A 360 image viewer renders its content in a sphere to place
visual elements as they would be observed by the user in a
real environment. The investigation for the best visual quality
involves selecting one in a given set of distinct formats each
one with different distortion levels along the existing 360
degrees. To determine the suitable format and resolution for a
360 image it is important to take into consideration the device

in which this image will be presented hence the requirement
of a tool that can simulate devices and analyze image settings
so it can give the most fitting choice.

There are two approaches for image quality assessment:
subjective and objective metrics. Subjective Image Quality
Analysis (IQA) employs human observers to evaluate and
score a sequence of pictures whereas Objective IQA builds
mathematical models for automatic image quality assessment.
Subjective IQA is accurate, but it is expensive and time-
consuming. On the other hand, objective IQA may provide a
cost-effective solution for image analysis and can be embedded
in VR applications. To build VR applications, various tools
have been proposed such as Unity Editor, Source and Panda3D
to name a few.

Unity Editor is a game development engine for computers,
mobile, console, virtual and augmented reality. It is both used
by small development groups as well as big corporations such
as Microsoft; it is also the most used development tool for
virtual reality. From its GitHub account1, Unity provides built-
in solutions for rendering panoramic images. The developer
is also able to create customized solutions through shaders,
i.e., code that is executed in the GPU and influences how 3D
elements are displayed on the device screen.

In this paper, we propose an equirectangular image quality
assessment tool which employs objective metrics integrated
into the Unity Editor. To make assessments close to real case
scenarios, our tool is capable of simulating visualization with
the field of view and resolution values provided by the user.
Figure 1 below presents the Unity Editor interface we built. By
configuring specific values for the field of view and screenshot
(image) resolution, it is possible to simulate the viewport of
a given device. For instance, a 101-degree field of view and
1440 x 1480 resolution is close to the user view inside a VR
application running on a Samsung S9 device. The screenshot
direction field lets the user insert three-dimensional vectors
indicating the direction each screenshot will be pointing to.
Finally, a report and graphs are generated according to the
chosen metrics.

The rest of the paper is organized as follows: Section II
reviews the most relevant work in equirectangular images and
IQA. Next, the proposed method is detailed in Section III. Fur-
thermore, the preliminary experimental results are presented

1https://github.com/Unity-Technologies/SkyboxPanoramicShader



Fig. 1. Proposed tool embedded in Unity interface.

and discussed in Section IV. Finally, conclusions and future
work perspectives are given in Section V.

II. RELATED WORK

VR applications differ from other vision applications due
to their innate concern to provide content to all possible VR
viewpoints. Furthermore, VR headsets can isolate the spectator
both visually and acoustically from the real world [2]. Spheri-
cal panoramic content may be presented in different projection
types: equirectangular (ERP), rectilinear, doughnut, cube-map,
and multiview [3]. Moreover, the format of the 360-degree
image plays a vital role in the resolution and uniformity of
such images [4]. For example, equirectangular images have
a high resolution on the poles and high uniformity on the
equator line; On the other hand, cube-map images have a high
density on the edges and high uniformity in each face of the
diagonal [5]. For all these projection types, the quality of the
images selected to create a panoramic view is crucial to present
the panoramic content.

Image Quality Analysis (IQA) assesses the quality of the
images in the creation of panoramic view. IQA is categorized
into two types, i.e., subjective analysis and objective analy-
sis [6]. The most reliable strategy to evaluate image quality
is through subjective analysis. In this case, human observers
assess a set of pictures and score it on a scale from 1 (worst) to
5 (best), this technique is called MOS (Mean Opinion Score)
and it calculates the average score given a set of scores for
each sample. Pinson et al. compared and analyzed various
methodologies for subjective video quality assessment [7].

These test methods include single or double stimulus methods.
In single stimulus methods, only one impaired video stream is
used for assessment. In double stimulus, however, a reference
videos is also provided to the user for comparative analysis [7].

Although subjective IQA methods are precise, they are in-
convenient and expensive, especially when a VR environment
is evaluated because it is more immersive. Thus, a comple-
mentary objective metric would be useful and less expensive.
Objective metrics are defined as Full-Reference (FR), No-
Reference (NR), and Reduced-Reference (RR) [8]. In FR-
IQA methods, a non-distorted reference image is available
to evaluate the test image. In RR-IQA methods, a reference
image with only selective information is available to compare
and measure the quality of the distorted image. Whereas in
NR-IQA methods, there is no reference image available to
compare, the only image available is the one in which quality
is measured.

Prior work on 360-degree IQA is discussed in Quality
metric for spherical panoramic video [3]. In this work, we
focus on Full-reference IQA. Recent advancements in FR-
IQA methods are comprehensively discussed in FR stereo
image quality assessment using natural stereo scene statis-
tics [9]. We propose an FR quality assessment tool for the
selection of images before using them to render on the target
device. Despite our focus on image quality assessment of 360-
degree spherical panoramic images, our proposal only assesses
screenshots obtained from texture projections inside Unity3D.
Therefore, our final target are 2D images as a result of such
projections; which is intuitive because still 360-degree images
or video-sequences are encoded and transmitted in the 2D
format under sphere-to-plane projection.

Similar work can be found at [10] as it proposes a tool
for equirectangular assessment as well. The main difference
in regards to our current paper is that [10] considers this
assessment a problem of Full-Reference (FR) IQA while this
work approaches this problem as a No-Reference (NR) IQA.
It is debatable if using a skybox as a reference image is better
than evaluating different images without reference. At first, it
is difficult to claim that skybox rendering is the best format
for all cases. However, it is challenging to capture subjective
feelings using objective metrics alone.

III. PROPOSED METHOD

In this work, we propose a full-reference objective IQA tool
to analyze viewport-based patches of panoramic images. Our
implementation runs as a customs inspector script in Unity
that mimics how the final image is going to be rendered at
the target device. Different rendering implementations can be
tested using the same equirectangular image. We also describe
our implementation of converting an equirectangular image
into a cubemap format.

Our solution is a fully-automatic way to compare different
rendering configurations of spherical images. After choosing
an equirectangular image, a target resolution, a field of view
in degrees, a set of viewing directions and a set of rendering
solutions, different images patches are generated according



to an approximated viewport inside the panoramic exhibition.
Each image patch is evaluated according to objective metrics
using a reference patch. In order to compare different ren-
dering implementations, we chose Skybox rendering as the
reference image, considering its widespread usage in game
and virtual reality applications.

The standard implementation of a spherical image viewer
makes use of a sphere with inverted normals. Due to their
characteristics, equirectangular images are distorted at poles,
while cubemaps are distorted at their corners [4]. That is
why it is interesting to test an image in different formats. In
this section, we describe a shader-based implementation to fit
equirectangular images in a cubemap visual representation.

A. Projecting 360◦Images to UV Mapping

Panoramic images comprehend the entire field-of-view of
the user. Considering the equirectangular format, some map-
ping implementations are listed below:

1) Utilize a sphere mesh to render the 360-degree image
inside it;

2) Utilize a Skybox to render the 360-degree image on the
background;

3) Map the 360-degree image to UV positions of a cubic
mesh.

Each mapping possibility has its advantages and disadvan-
tages in terms of resolution offered by angular direction and
general distortion of the 360-degree image.

B. Mapping Equirectangular Images to a Sphere

For mapping equirectangular images to sphere, we adopt the
standard UV mapping technique for spheres which is based on
the latitude/longitude approach. That means we need to find
a three-dimension coordinate (x, y, z) for a set of nxm UV
coordinates (u,v).

Given n longitude values, the angular size T can be obtained
by using:

T =
2π

N
. (1)

Considering a sphere, an angular position αi represents the
ith longitude value:

αi = i ∗ T, (2)

The sine and cosine of the angle T define the X and Z
axes positions of the sphere points which belong to the cross
section of the sphere. In such manner, assuming a sphere of
radius R, the X and Z axes positions can be computed as:

xi = R ∗ sin(αi), (3)

zi = R ∗ cos(αi). (4)

In a longitudinal cut, the R-ray of a cross-section varies
along the height of the sphere. For this reason, angular size
K considering a total of M latitude values can be calculated
as:

K =
π

M
. (5)

The mth latitude value αym can be obtained by equation:

αym = m ∗K (6)

The Y axis position ym for each sphere point can be
obtained by considering unit radius using:

ym = cos(αym), (7)

The radius Rym obtained in a cross section at latitude m is
defined as:

Rym = sin(αym) (8)

Applying equation 8 in equations 3 and 4 we get positions
X and Z of the vertices of the sphere according to a longitude
n and latitude m coordinates resulting in equations 9 and 10.

x(m,n) = sin(αym) ∗ sin(αn), (9)

z(m,n) = sin(αym) ∗ cos(αn). (10)

y(m,n) = cos(αym), (11)

C. Mapping Equirectangular Images to a Skybox

A skybox is rendered when no 3D element is rasterized by
the virtual camera. In the rasterization process, it is necessary
to identify a UV coordinate for each pixel (or fragment)
rendered on screen. Skybox shaders usually utilize 3D textures
to store the six faces of a cube through a graphical function
called tex3D.

Mapping an equirectangular image to a skybox involves
finding the UV vector value given a normalized direction.
Considering the vector (x, y, z) as the normalized direction,
equation 12 can be used on a vertex shader.

uv = (arctan (
x

y
), arccos (y)) (12)

Thus, when mapping to a sphere UV coordinates are pro-
jected into 3D space and when mapping to a skybox the
opposite happens: normalized 3d space positions continuously
seek equivalent UV coordinates.

D. Mapping Equirectangular Images to a Cubemap

The first step to use a Cubemap is to generate a cube. The
standard cube generated by Unity, however, does not have
enough vertices for precise UV mapping. It happens as UV
mapping is a sine/cosine function whereas rasterization inside
of a triangle obtains UV values through linear interpolation of
its vertices, thus causing distortions.

For better results, we divided each triangle into four parts.
From a cube of 10 vertices and 12 triangles, we obtained a
4090 vertices/triangles cube.



As we generate each new vertex, it is possible to calculate
its respective UV coordinate using equation 11. Noticeably,
the cubemap view is equivalent to the discretization of the
continuous UV mapping approach in a skybox, i.e., it is
calculated per vertex instead of being applied on pixel basis.

E. Image Quality Analysis Metrics

With regards to the metrics, the goal of the objective image
quality assessment is to develop a quantitative measure that
can determine the quality of any given image. It is difficult,
though, to find a single objective and easy-to-calculate mea-
surement that matches the visual inspection and is suitable for
a variety of application requirements. To address this problem,
we use three different metrics which are: Mean Square Error
(MSE), Structural Similarity Index (SSIM) and Peak Signal-
to-noise ratio (PSNR). The image which has the smallest MSE,
and highest SSIM and PSNR, is assumed to have better quality.
MSE can be computed as:

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

e(m,n)2. (13)

Similarly, SSIM assumes that neighboring pixels in an
image have strong inter-dependencies and these dependen-
cies carry important information about the structure of the
objects [11]. SSIM can be calculated as:

SSIM(x, y) =
(2 ∗ µx ∗ µy + C1) ∗ (2 ∗ σxy + C2)

(µ2
x + µ2

y + C1) ∗ (σ2
x + σ2

y + C2)
, (14)

where µX and µy are the mean intensity value, σ2
x and σ2

y

are the variance of the corresponding images, whereas σxy is
the covariance of image X and Y . Also, C1 = (k1L)

2 and
C1 = (k2L)

2 are stability parameters, where K1 = 0.01 and
k2 = 0.03.

Peak Signal-to-noise ratio (PSNR) is the most used metric
for image quality assessment and can be computed using MSE
as:

PSNR = 10 ∗ log10
(2n − 1)2

MSE
. (15)

IV. EXPERIMENTAL RESULTS

This section presents the implementation details as well as
and qualitative and quantitative evaluation of the proposed
method.

A. System Architecture

Figure 2 shows the connected components in the archi-
tecture of the proposed method. The proposed architecture
contain two layers: a Unity layer and a Python layer. The Unity
implementation involves a C# configuration layer in Unity
editor to generate images. Moreover, the python layer is used
for calculating the objective metrics for each of the Unity-
generated images. To make efficient communication, cross-
tiered communication among layers takes place through the
creation of new processes within the Unity editor.

To make the user experience pleasant, an editor interface
was developed in the form of a custom unity inspector, that is,

Fig. 2. Architecture of the proposed quality assessment tool.

a custom view of our component in C#. In this component,
users can define multiple preferences for the output image.
These preferences include field of view angles, width and
height as well as directions of the image to be created,
comparison metrics to be used, and define whether graphs or
a report will be generated at the end of the process.

Furthermore, the python layer is responsible for evaluating
the pairs of images generated by the Unity layer. These images
are evaluated using the scikit, numpy, and matplotlib libraries
and the result of each metric is saved in a report at the end,
which summarizes all the results.

B. Qualitative and Quantitative Evaluation

The proposed tool was developed using Unity 2017.3.1F
and python 2.7. This custom editor tool can be imported
into any Unity project through a unitypackage, a standard
format from Unity to distribute resources and tools. When
adding VR360QualityTool script to a GameObject, the inter-
face depicted at figure 1 is presented. The field ’Screenshot
Directions’ allows to define one or more target directions,
as explained in section III. For our experiments, we used
directions toward right D0 = (1.0, 0.0, 0.0), upside D1 =
(0.0, 1.0, 0.0) and forward D2 = (1.0, 0.0,−1.0), respectively.
Each direction can be visualized in figures 3, 4 and 5.

Different rendering approaches were used in our experi-
ments: Skybox (used as reference), a sphere-based shader (S),
a cubemap shader (Ce) with an interpolation error, and a nor-



(a) Skybox 0; (b) Cubemap 0; (c) Sphere 0; (d) Cubemap (Error Corrected);

Fig. 3. Example of images rendered in D0 using: a) Skybox image is used as reference; b) result image rendered using cubemap; c) rendered using sphere.

(a) Skybox 1; (b) Cubemap 1; (c) Sphere 1; (d) Cubemap (Error Corrected);

Fig. 4. Example of images rendered in D1 using: a) Skybox image is used as reference; b) result image rendered using cubemap; c) rendered using sphere.

(a) Skybox 2; (b) Cubemap 2; (c) Sphere 2; (d) Cubemap (Error Corrected);

Fig. 5. Example of images rendered in D2 using: a) Cubmap image is used as reference; b) result image rendered using cubemap with error; c) rendered
using sphere.

TABLE I
METRICS RESULTS EXAMPLE

Direction 0 Direction 1 Direction 2
S Ce Cf S Ce Cf S Ce Cf

MSE 50.27 551.27 1.29 39.99 41.89 0.70 27.88 18.60 2.40
SSIM 0.93 0.93 0.99 0.93 0.97 1.00 0.87 0.96 0.99
PSNR 31.12 20.72 47.01 32.11 31.91 49.66 27.88 35.43 44.33

mal cubemap shader (Cf ). The distorted cubemap was created
intentionally to prove our method is capable of identifying
such errors. It occurs in triangles which have UV coordinates

between 0.9 to 0.1. Instead of interpolating to the chosen
direction, this cubemap interpolates to the opposite direction
(0.7, 0.6 ... 0.1, x) and compresses the whole image in a tight



image region. Both cubemap implementations are employing
equirectangular conversion as explained at subsection III-D.

To perform the quality assessment each image is compared
to its respective direction in the reference image. Figures
3a, 4a and 5a are produced by Skybox rendering which
is used as reference for each evaluated direction. The skybox
rendered image patch is compared with those obtained with
the spherical rendering S in figure 3c, with cubemap rendering
Ce which contains interpolation error in figure 3b and with
cubemap rendering Cf in figure 4b. Figures 3, 4 and 5 shows
all images used as input for our proposed evaluation system
and their results can be seen at table I.

After processing the images, the results are summarized in
the generated report, as demonstrated by the table I. Cubemap
Cf rendering approach had the best results in all directions
for all metrics. Since the UV mapping of Skybox rendering
is similar to the UV mapping of the cubemap approach, they
tend to generate more similar images for a same direction.
In contrast to this, cubemap Ce presents a very noticeable
distortion region for directions D0 and D1 as depicted in
figures 3b and 4b. As a result the MSE value for both
directions are very degraded. Thus we can conclude that MSE,
SSIM and PSNR are good enough to identify images patches
with shader errors given a reasonable reference image.

Despite the absence of rendering errors in the sphere shader
S, its metrics values are surpassed by the cubemap Cf . This is
explained by the difference between the distortions of a sphere-
based and a Skybox-based rendering. The equirectangular
mapping requires a sinusoidal UV mapping. Considering that
the sphere has a sinusoidal mapping in its vertices, the UV
coordinates are interpolated linearly inside each triangle. On
the other hand, skybox mapping employs a sinusoidal mapping
inside the pixel shader and consequently affects every pixel
produced. However, for the end-user, such differences are not
perceptually remarkable.

After every iteration, our tool presents the metrics, for
example, the table I. The best rendering candidates are ranked
based on their performance in each metric and direction.

V. CONCLUSION

We proposed the development of an equirectangular image
quality assessment tool which uses objective metrics such as
MSE, SSIM and PSNR in order to facilitate choosing among
different image resolutions and mapping solutions.

Our tool is integrated into the Unity Editor as Unity is the
most used development engine for virtual reality applications.
Different UV mapping techniques were used to visualize
360◦ images: latitude/longitude in a inverted sphere; skybox;
and cubemap. We also demonstrated how to convert a equirect-
angular image into a cubemap texturing using a custom shader.

This Unity implemention assess image quality of already
implemented rendering approaches for equirectangular image
visualization by generating viewport-based image patches.
A python layer applies full-reference objective metrics in
each image patch using a correspondent patch from Skybox
renderization.

One of the limitation of our tool is that the user needs to
simulate the target device by emulating a specific resolution
and field view. For future work, we plan to obtain viewport
patches directly from mobile devices where VR applications
can be executed. Thus, we also plan an embedded component
in the application that allows to reap results while running the
application on the mobile device. We also envisage to conduct
subject evaluations in order to pick better metrics for quality
assessment of image patches.
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