Design Exploration of Machine Learning Data-Flows onto
Heterogeneous Reconfigurable Hardware

Westerley C. Oliveira, Michael Canesche, Lucas Reis, José Nacif, Ricardo Ferreira

'Departamento de Informdtica — Universidade Federal de Vigosa (UFV)
Avenida Peter Henry Rolfs — 36.570-900 — Vigosa — MG — Brazil

{westerley.oliveira,michael.canesche, lucas.t.reis, jnacif,ricardo}Qufv.br

Abstract. Machine/Deep learning applications are currently the center of the
attention of both industry and academia, turning these applications acceleration
a very relevant research topic. Acceleration comes in different flavors, including
parallelizing routines on a GPU, FPGA, or CGRA. In this work, we explore
the placement and routing of Machine Learning applications dataflow graphs
onto three heterogeneous CGRA architectures. We compare our results with the
homogeneous case and with one of the state-of-the-art tools for placement and
routing (P&R). Our algorithm executed, on average, 52% faster than Versatile
Place&Routing (VPR) 8.1. Furthermore, a heterogeneous architecture reduces
the cost without losing performance in 76% of the cases.

1. Introduction

Machine learning and deep learning applications such as convolutional neural networks
(CNN), matrix multiplications, and others are currently at the center of researchers’
attention everywhere. They are used for the most diverse purposes, such as image
classification, speech recognition, among others [Krizhevsky et al. 2012, Jo et al. 2017].
Different techniques are used to perform this task, such as parallelizing events on a
GPU or an FPGA. Furthermore, domain-specific architectures as systolic arrays are
very efficient in parallelizable architectures widely used to compute matrix multiplica-
tions [Liu et al. 2020]. However, systolic loses the flexibility to gain efficiency. A coarse-
grained reconfigurable architecture (CGRA) loses effectiveness for specific tasks but pro-
vides flexibility to a broad range of applications.

This paper focuses on the data-flow graph (DFG) mapping onto CGRAs that, like
FPGAs, provide the customization capability of low-level logic systems but with a more
straightforward setup/design process. These advantages come from the fact that CGRAs
are composed of more complex processing elements (PEs) that can be programmed at
the word-level instead of bit-level like in FPGAs [Liu et al. 2019]. Besides all the flex-
ibility of the CGRA, it can be costly depending on the chosen individual PE design or
on the whole CGRA grid architecture. For example, PE’s with more interconnection op-
tions are usually more expensive. Thus, architectures with less of those would end up
cheaper. Most CGRA architectures are homogeneous, meaning that every PE can execute
any instruction, which can be very expensive. In this work, we perform experiments on
heterogeneous architectures to check whether they are suitable to achieve the same tasks
with similar performances and lower costs than the homogeneous ones. Our contribution
is to provide a design exploration of homogeneous and heterogeneous CGRA for ma-
chine learning data-flows, which are the biggest demand for accelerators nowadays. We

propose three heterogeneous architectures. The essential resources are multipliers. The
homogeneous architecture is our baseline to evaluate the trade-offs: interconnections,
mapping time, buffer resources, and multiplier placement. Our main question is whether
a mapping algorithm and a reconfigurable heterogeneous architecture can efficiently im-
plement typical machine learning data-flows. Furthermore, we would like to evaluate the
scalability of the mapping for medium size data-flows.

The paper is organized as follows. Section 2 provides a brief description of the
data-flow graphs, and Section 3 presents the CGRA architectures. In section 4, we discuss
the placement algorithm and how we classified the solutions. Section 5 shows our results
and provide a few examples. In Section 6 we compare with others works. And finally,
in section 7, we discuss our findings, concluding the paper, and addressing directions for
future work.

2. Background

This section provides the basic concepts, and it is organized as follows. First, Section 2.1
presents the matrix multiplication data-flow, which is the most common ML workload.
Section 2.2 shows the convolution, which is also a critical ML workload. Section 2.3 in-
troduces the systolic architectures and the trade-offs matrix size, performance, and mem-
ory bandwidth. Finally, Section 2.4 draws some insights on embedding tree patterns in
mesh architectures.

2.1. The ML data-flow graphs (DFGs)

The graphs we worked with, as mentioned before, come from the most computationally
intensive parts of machine learning applications.

Each node can be, for example, a multiplier, an adder, a multiplexer, among a few
others. Figure 1 (a) shows an example of the data-flow graph for a 2x2 matrix multiplica-
tion C' = A x B. Every clock cycle, two new matrices A and B are set as the data-flow
inputs, and a new result C' is produced. The latency depends on the multiplier and adder
latencies. Figure 1 (b) shows a table that summarizes the number of I/Os, multipliers,
adders, maximum fan-out for an n X n matrix, where n ranges from 2 to 8. The number
of inputs, outputs, multipliers, adders, and fan-out is 2n?, n?, n?, (n® —n?), and n, respec-
tively. Therefore, the 4 x 4 NVidia tensor core has 64 and 48 adders, plus 16 adders to
perform D = A x B+ C.

The data-flow graphs that compose our set of benchmarks were selected among
algorithms kernels that are often used in machine learning applications, such as matrix
multiplications and convolutions. Also, we selected binary trees since it is a typical re-
duction pattern in ML.

2.2. Convolutions

The convolution operation has been considered one of the essential operations in im-
age processing systems and other applications that use convolution neural networks
(CNN) [Joetal. 2017, Krizhevsky et al. 2012]. However, the number of computations
grows very fast according to the size of the convolution kernel. This has made re-
searchers [Wei et al. 2017, Chen et al. 2014, Jo et al. 2018] strive to reduce the cost of
these operations.

Call) (b11) (a12) (b21) (b12) (a21) (b22) (a22)

) g) i)) i)] ! 1/0s mults | adders | fan-out

* ‘:‘ / * ‘;‘ / * \‘ * \‘ / * ‘\‘ e * g‘ * g‘ * 3‘ 3x3 27 27 18 3
\ / AN J/ AN / \ / AN / AN / AN / \ / 4)(4 48 64 48 4
\,/ M \/ 5x5 75 125 100 5
) T) T4+ T+) 6x6 108 216 180 6
h g b g) g : g 7x7 147 343 294 7
l l i l 8x8 192 512 448 8

cll) Cc12) Cc21) (22)

(@) (b)

Figure 1. (a)Dataflow graph for a full 2x2 matrix multiplication (b)Data summary
for matrix multiplications up to 8x8

The main idea behind the convolution is shown on Figure 2(a). On the 3x3 con-
volution, a 3x3 filter is applied on the elements of the original matrix. The elements are
multiplied element-wise and then summed up to return the result element that is present
on the convolved matrix.

Original Matrix

L2 200 2K 20000 20K 25 208 20 20N 2N 20 2 20 2 20K 2 2

1{1|1f{0f0 Convolved Matrix ‘ MULT ‘ ‘ MULT H MULT ‘ ‘ MULT ‘ ‘ MULT ‘ ‘ MULT ‘ ‘ MULT ‘ ‘ MULT ‘ ‘ MULT ‘
oj0fo0|0f0 2|2 I I I
31 - S I I A [I
0(0/0|1|1 2|1
o1l olofol —f o ‘ ADD ‘ ‘ ADD ‘ ‘ ADD ‘ ‘ ADD ‘
1{1/0|1|0 ‘ ADD ‘
3x3 Filter
1/0]1 1#1 + 150 + 11 +
ol1lo 0%0 + 1*1 + 1%0 +
0%0 + 0%1 + 0%0 = 3
0|1/0

(a) (b)

Figure 2. (a) Example of a 3x3 convolution (b) Convolution with K=3 data-flow
graph

A convolution DFG is a simple reduction tree of multipliers and adders, as shown
in Figure 2(b) for a 3 x 3 filter. The register layer on this example is present to balance
the latency of the reduction tree and the multiplier layer, so the whole DFG returns 1
result after 2 clocks. Having these in mind, Section 2.4 focuses on how to embed trees
in two-dimensional architectures. A reduction tree has small data reuse (factor 2) due to
a large number of inputs compared to the total number of operations. However, there are
opportunities for data reuse as a more significant number of convolution filters over the
same input data are presented in most CNN designs.

2.3. Systolic Array

The systolic array is a parallel computing architecture designed to perform a specific task,
such as matrix multiplications. It consists of a deeply pipelined network of PE’s that, with
aregular layout and local communication, can deliver a high throughput [Liu et al. 2018].

The data-flow of Figure 1 (a) can be implemented as a systolic array. However, it
requires O(n?) multiplier/adder units and O(n?) 1/O units to perform one matrix multi-
plication per cycle. Figure 3 (a) exemplifies a different approach for a 3x3 systolic matrix
multiplication with O(n?) multiplier/adder units and O(n) I/O units, which requires O(n)
cycles to compute a matrix multiplication. This approach reduces the I/O requirements.
The PE’s on the leftmost column receive the elements of each row of matrix A, which will
be multiplied by matrix B, stored in each PE. After that, the result is added to the upper
PE result and sent it to the next one. The bottom PEs will at each clock cycle release an
element of the result matrix C. An FPGA implementation for this design was presented
in [Wei et al. 2017].

In Figure 3 (b), we can see how the data-flow graph for this systolic implemen-
tation. The multipliers of the PE’s on the left are colored in dark grey and represent the
input nodes, while the adders of the bottom PE’s are the output nodes. Our approach is
more flexible, where both matrix multiplier designs (see Figure 1 and Figure 3) could
be implemented. It is also interesting to perform sparse matrix multiplication. Recent
work [Qin et al. 2020] shows that most matrices are irregular and sparse in deep learning
workloads, which could lead to weak mappings on systolic architectures. Also, matrix
multiply operations consume around 70% of the total runtime.

b b b
an [1 = ﬁ L] MULO
; ‘ ; | ; |
‘ MULO ‘ ‘ MUL1 [‘ MULz[\
MUL1 | ‘ ‘ ADDO ‘
Looo]| D{moer]| L wooe] - B
b21 b22 b23
a2] ‘ MUL2‘ ‘ ADD1 ‘ ‘ MUL4 ‘ ‘ADDS‘ |MUL6‘
; ‘ ; | ; ‘
‘ MUL3 ‘ ‘ MUL4 [‘ MUL5 ‘ l l l J
L.‘ ADD3 ‘ L_{ ADD4‘ L_‘ ADDS‘ ‘ ADD2 ‘ ‘ ADD4‘ ‘ MUL5 ‘ ‘ ADD6 ‘ ‘ MUL7 ‘
b31 b32 b33] \i\ 1
ai3 [‘ , ‘ — ‘ ADDS‘ ‘ ADD7‘ ‘ MUL8 ‘
‘ MUL6 ‘ ‘ MuL7 [‘ MuL8 ‘
L fooos) | Wfmoor| | Lfaoos) so0s
cil ci2 ci3

(a) (b)

Figure 3. (a) Configuration of a systolic array for matrix multiplication (b) Repre-
sentation as a data-flow graph

2.4. Trees

Data-flow graphs are not random graphs, and tree patterns are frequently found in parallel
algorithms to implement the reduce steps of map-reduce algorithms. The question is how
to embed a tree connection pattern in a fully-pipelined mesh architecture? In VLSI circuit
research, a well-known approach to balance delay times is the H-tree, which is a self-
similar fractal [Browning 1980], as shown in Figure 4(a). Although it has a symmetric
layout, the occupancy rate is low, where there are many bypassing cells. For a tree with 16
leaves and 31 nodes in total, the total area is 49 cells, and there are 6 long wires (cost = 1
due a bypassing cell) shown in bold in Figure 4(a). As the long wires or bypassing cells
are equally distributed, and the tree is fully balanced, there is no delay mismatch, and
therefore, there is no need to include buffers to equalize the pipeline path lengths.

JANVANRVANEVA

A AN AN AW AW AN AWAY
SCER
e
ANA
[\ ~/w-/m [\ [\~/w-/w [\

(a) (b)

Figure 4. (a) 7x7 mesh and the H-tree configuration; (b) Lee/Choi tree in a 6x6
mesh.

Lee and Choi [Lee and Choi 1996] propose an algorithm to reduce the total area,
as shown in Figure 4(b), where the same tree requires only 36 nodes in a 6 x 6 mesh.
Nevertheless, the Lee/Choi tree has different path lengths from the leaves to the root, and
it requires nine long routing wires, where two of them have cost = 2. When there is a
long wire in one pipeline path that converges to one node, we should insert a buffer in
the other path to equalize the delay. The black rectangular boxes at the bottom tree in
Figure 4(b) represent these delay buffers. The worst case is a buffer of size 2, at the third
level.

3. The CGRA

The CGRA is composed of an array of interconnected processing elements (PE’s) in a
mesh-like network. Unlike FPGAs, that work at a bit level, CGRAs work at a coarse
grain, meaning they work at the word level. This fact brings benefits such as reduced
mapping for more complex architecture, but on the other hand, very few commercial
architectures and design toolchains are available[Liu et al. 2019].

We can categorize CGRA architectures into homogeneous and heterogeneous. In
this case, homogeneous means that every PE present on the grid is identical to one another.
Thus, each of those PEs can perform the same kind of operations regardless of the grid.
In contrast, a heterogeneous configuration presents two or more different types of PE’s
that can also perform various types of operations.

It seems very straightforward that having a homogeneous configuration is the best
way to go because it is less restricted, allowing better placements to be performed. How-
ever, this increases the whole architecture cost since every PE should be able to perform
all operations. In this work, we propose a design exploration of three types of heteroge-
neous CGRA architectures and compare the results against the homogeneous case.

In our scenarios, the operation that causes a single PE to be more expensive is
the multiplication [Luo and Lee 2000]. Therefore we divided our PE’s into 2 groups, the
ones that can perform multiplication and those that can not.

In Figure 5(a), all the PE’s that are present are identical can perform multiplica-
tions, a grey-scale square represents those. Figure 5(b), however, shows multiplier PE’s
disposed as in a checkerboard, where nodes immediately adjacent to a special PE do not

have a multiplier. We also have a column-wise configuration presented in Figure 5(c) and
one on which the multipliers are set to be on the borders of the grid Figure 5(d). At this
point, it is worth noting that for all of these cases, the IO nodes of the data-flow graph
must be placed on the grid’s borders.

X | x| % | *

X | % | * | *
*
*

x| ¥ | * | *

X | ¥ | % | *
* | ¥ | x| *

*

*
x| X | * | *
X | x| % | %
X | ¥ | x| %

* X X | *k
(a) (b) (c) (d)

Figure 5. (a) a homogeneous grid; (b) checkerboard; (c) columns; (d) borders.

In addition to the heterogeneous setups proposed, we also perform a design explo-
ration of three different interconnection architectures. Mesh, the most simple, in which
each PE can communicate with its 4 immediate neighbors without extra wires. Mesh-
plus can jump one cell in each direction, in addition to the four connections present in
mesh. And on the hexagonal configuration, each PE’s can access 6 other PE’s around it,
resembling a honeycomb pattern. Figure 6 illustrates these architectures.

AVAYAYAVAV,

(a) (b) (c)

Figure 6. (a) Mesh; (b) Mesh-plus; (c) Hexagonal;

4. Mapping
We divided the mapping problem into two phases, as described in the following. First, to
find a suitable placement solution for each proposed data-flow graph, we used a simulated

annealing (SA) approach that aims to minimize the wire-length used, similar to previous
approaches [Mei et al. 2003].

This was done by checking, at each iteration of the algorithm, if the cost of swap-
ping two nodes would increase or decrease the total length cost of the solution, always
keeping track of the positions of the graph’s multipliers and 1Os.

After that, we proceed to the routing phase, which aims to validate the solution
by identifying a viable routing that demands the least amount of delay buffers per PE,

since that is crucial to the total cost of the architecture, even more than the total wire-
length [Nowatzki et al. 2018].

For most data-flow edges, the routing is straightforward as the nodes are placed in
adjacent cells. Therefore, only a small subset of edges require a routing strategy, where
we implement the maze routing algorithm.

5. Experiments and Results

Table 1 summarizes the benchmarks we used in our experiments. A graph for a binary
tree benchmark is denoted, for example, tree_n_X_t_X, where the number following n
indicates the number of nodes on each connected component. The number following t is
the number of connected components. So, following this notation, tree_n_31_t_3 is a graph
with 3 binary trees of 31 nodes each. Next, we have systolic matrix multiplications and a
classic matrix multiplication like the one shown in Figure 1. Last, we have convolutions
ranging from 2 X 2 matrices to 5 X 5 matrices.

Table 1. List of benchmarks.

Benchmarks Nodes Mults Benchmarks Nodes Mults

tree_n_15_t_1 15 8 matmul22 8 4
tree_n_31_t_1 31 16 matmul33 18 9
tree_n_63_t_1 63 32 matmul44 32 16
tree_n_127_t_1 127 64 matmul55 50 25
tree_n_15_t2 30 16 matmul66 72 36
tree_n_31_t2 62 32 matmul22normal 24 8
tree_n_63_t_2 126 64 convolution22 11 4
treen_15_t_3 45 24 convolution33 26 9

tree.n_31_t_3 93 48 convolution44 47 16
tree_n_15_t 4 60 32 convolution55 74 25
tree_n_31_t 4 124 64

For all the benchmarks, the placement algorithm aimed to minimize the square
area used. For instance, considering a homogeneous grid and a graph with 18 nodes,
the smaller grid is a 5 x 5 architecture. The minimal size will be fixed by the minimum
number of I/Os, multipliers, and/or general-purpose PE’s for the heterogeneous ones.

Take for instance the heterogeneous borders model in Figure 5(d). If the side of
the grid has size N, one could place at most 4*(N-1) multipliers on its borders. Thus, if a
graph happened to have more multipliers than slots available, we had to nudge the grid’s
dimensions so it could fit. This happened, for example, on the bigger tree graphs where
there are many leaves as inputs.

5.1. Trees

An interesting result of our mapping approach is the pattern that the graph tree_n 4 t_15
took after the placement onto the homogeneous grid. The trees followed the H-tree pattern
starting from the root and then took a form almost like a puzzle piece. These “puzzle
pieces” then arranged themselves so that they could fit tightly into the grid, using it with
an occupation of 93.75% on an 8 x 8 grid against the occupation of 71.43% ona 7 x 12

grid for the H-tree configuration. Therefore, we reduce the area in 31.25% in comparison
to the h-tree. For the same instance, the Lee/Choi [Lee and Choi 1996] requires 12.5%
more area with buffer size 2. Our approach does not require buffers in this case. An
illustration of this solution is shown in Figure 7.

Figure 7. Puzzle-piece pattern for balanced trees on a homogeneous grid

5.2. Data-flows

As a reference to evaluate our simulated annealing implementation, we will compare to
the VPR tool [Murray et al. 2020], the state-of-the-art on SA for FPGA. However, our
target is a CGRA, although VPR was developed for FPGA, it still out-performs recent
CGRA mapping as presented in the CGRA-ME design exploration tool [Chin et al. 2018].
VPR was executed 1000 times for each graph, each time using a different random seed.
Other parameters were all set to the tool’s standard. Among the 1000 results, the one with
the lowest buffer size cost was chosen.

Figure 8 shows a comparison between the runtime (1000 executions) for our place-
ment and the one performed on VPR. It is notable that for all benchmarks, our algorithm
outperforms VPR. Especially for the larger graphs, such as tree_n_31_t 4, VPR ends up
being very slow, while we were able to perform the placement four times faster. All the
experiments were executed using the 16 cores, through openMP, of an Intel(R) Xeon(R)
CPU E5-2630v3 2.4GHZ compiled with GCC 5.4.0 and the -O3 option.

B Simulated Annealing VPR
40

30
20

10

] T AT T

VR TR SN NN {b\V\/ (1'{]’\'5 \"‘b‘\éo\r"bé"b Ugicy V"g?

Time for 1000 runs (seconds)

/
R \/Q;,/q:\/\o,/ \/65/\03/ Ny, \/\@ \é\\) & & q}\o \;\\o‘\\;\\o‘\\;\\o 3§
Q/(\/Q//Q/Q/Q/Q/Q//Q/i\/&@@@’b@oo\%(\\\o\&o\(\\\o\&o\
o7 2@
\@ @ \@\Se/\& (\o \& \@ \@ @@ 6@ S L L P

Figure 8. Runtime comparison between VPR and Simulated Annealing

The main goal of this work was to perform a design exploration of heterogeneous
CGRAs. Considering the minimal grid size, Figure 9(a), Figure 9(b) and Figure 9(c)
shows the minimum number of buffers needed for our algorithm and VPR (both on the
homogeneous grid). Note that for most of the cases, our algorithm performed as good or
better than VPR, except the mesh configuration. In Figure 9(d), we present a summary of
how many times our simulated annealing or VPR won, alongside the net count of those
results. For instance, considering the mesh-plus interconnection, our approach is better
in 6 out of 21 graphs, VPR is better in 2 cases, and we reach the same buffer size in 13
graphs.

B Simulated Annealing VPR W Simulated Annealing VPR

mesh buffers/homog

w & o o ~
mesh+ buffers/homog
O G -)

ZJJJ‘JJ‘JJJ J JJ_ 0__JJ I IJJ i

NN NN X X © >
SRRV RORS SV AV RS RO RV RN g «Q(&K&“’Q‘»gf’ R R RS Y A AV RV R RS U N RO
RTINS TN 0 \/{3@(0\@0 R ,ﬁ@o@“o@“o\\)\@\\)\so \(9/%\/%'5/\{1//\/,\9_)/%\/6’5/,\9_)/%\/ oINS \@%\@ 0\@ \@{ﬁ\ &F
Qo/o/ws/s/s/ﬁvys/s/@@ & & \4¢¢¢ PO R R P N '
27 @ 27/ 27 27 27 27 27 27 27 27 2
@’b S &S S & &L &z/\@ & @@ E (b) & &
(a)

W Simulated Annealing VPR

7

6 .
2 SA wins [VPR wins |Net count\
o
5 4 mesh 3 5 2
2
P mesh-plus 6 2 4 \
Q
R hex 13 3 10 |
iyl otbobbl kb el 22 [10 [12 |

oA | 1 | B

COS S I I TP 2SS P PP EE LD E
'\9‘)/’5\/6,5/']:\/\@/ /65/\9_)/1_;\/\93/6’\/\,\(\ \(Q @ \6\ @{1,}(\ §0 §0 \)\S o\\g
s> /<~/<\/<\/e///&&”é‘”é@@\ﬁ\ﬁ\@@\
00 0 a8 00 S a0 00 S S @ooo S

&L L@’ ,Qo E L E L E &

(c) (d)

Figure 9. Comparison between homogeneous Simulated Annealing approach
and VPR8 [Murray et al. 2020].

Our first experiment was the baseline to evaluate heterogeneous architectures, as
a homogeneous solution will be the lower bound. We compared the three heterogeneous
architectures (checkerBoard, cols, borders). Firstly, we looked at the buffer size needed
while using the three kinds of interconnections, as depicted in Figure 6. In this case, one
can infer that most of the graphs performed similarly to the homogeneous case with just a
few exceptions like tree_n_127_t_1, in which the borders architecture demanded one buffer
more than the homogeneous.

Next, we evaluated the buffer size needed on the heterogeneous architectures for
the three interconnection patterns. These results are displayed alongside the homoge-
neous case on Figure 10(a), Figure 10(b) and Figure 10(c). Note that for most of the
benchmarks, there is a heterogeneous setup that performs as good as the homogeneous.
In some cases, again, on the larger graphs, it is harder to outperform the homogeneous
case cost, but we still got results that are reasonably close to it. A summary with the
number of times that each heterogeneous configuration wasn’t able to perform as good
as the homogeneous is presented on Figure 10(d), where 2/21 for the mesh interconnec-
tion and the heterogeneous architecture checkerboard means that the homogeneous one
is only better than heterogeneous in 2 out of the 21 graphs. The last line in Figure 10(d)

summarizes these totals for each heterogeneous architecture. The border-based and the
checkerboard are more suitable for our benchmark set. This is an interesting result since
most of FPGA use column patterns as a heterogeneous design to place the memory and
DSPs.

mesh architecture buffer count mesh+ architecture buffer count
homog M checkerBoard cols1 borders homog M checkerBoard cols1 borders
8 8
6 6
4 4
2 1 2 ‘
0HHMH (A1 M [/ o LU Il | LI
N KT N RS S S, W R X3 R 2 O 2 0 2 2 R I N U IR e e N L RN]
\««,'?/5\'7/@'7/(9 4 ,(«;‘?%\‘7@‘7@‘?%\‘7@‘?;\'7/ NG ‘é@“ @s., ‘é@&’ &°;°&§n§§00“§0<@ \b/f.’\/éa/\fi\ ’\h/,.’\/%a/\h/f.,\/\h/f.’\/&'” & é\o\h §§’ \@)\@ \)\,LWQ\;\\Q@\;\\Q@\;\\QQ“\;\\Q@’
S
S0 00 S 0 00 0 eS0T L L LTSS S 0270 0 00 0 0 0 0S 0S 0SS & & & @”’&o\& ST
S

& EEEE L E L E &S S @@ EEEEEEE
Benchmark Benchmark
hex architecture buffer count (@)
homog M mChess cols borders

8

s chBoard loses cols loses borders loses
mesh 2/21 6/21 4/21

4 mesh-plus 6/21 7/21 4/21
2 hex 9/21 8/21 7/21

l \H 0l o l \H I I | L1 total 17/63 21/63 15/63
0

Yo p Ve e e n Y P S E LSS LA S
ENAR AR VAR VAR VAR VAR VAR YR YR g (\/6& 6‘0 6& 6& 6@ (\\O 4g\\) 4g\\) 40\0 4g\\)
EEEEEEEEELEE E &S S S
Benghmark
¢ (d)

Figure 10. Number of FIFO’s on heterogeneous architectures

6. Related Work

Most CGRA mapping approaches focus on a processing element (PE) architecture shared
by multiple instructions in a time-multiplexed fashion [Mei et al. 2003, Park et al. 2008]
for homogeneous architectures. In general, the architecture size is small, where the most
usual size is a 4 x 4 grid. Therefore, the maximum number of parallel operations is
4x4 = 16. Furthermore, the PE should have the capability to decode the instructions
from a local instruction memory, which consumes area and power. On the other hand,
fully pipelined architectures are configured once before the execution, and the PE will
be dedicated to evaluating a single operation, saving area, and power. Moreover, the
architecture sizes are more significant than 16 PEs, and the grid size bounds the maximum
number of parallel operations. Therefore, this work focus on fully pipelined architectures
(FPAs).

The mapping problem for FPAs is a hard problem. A recent
work [Nowatzki et al. 2018] shows that integer linear programming (ILP) and sat-
isfiability modulo theory (SMT) approaches are costly in terms of computation time,
which could take several minutes for small size graph (less than 20 nodes). These
approaches solve the exact problem. Heuristics could be used. Even by using a hybrid
approach (ILP plus heuristics) [Nowatzki et al. 2018, Weng et al. 2020] to solve the
mapping in a reasonable time (a few seconds) for homogeneous FPAs, the FPA should
have large buffers (more than 7 slots). Our approach shows that it is possible to saves

area by providing a design exploration of heterogeneous architecture and small buffers
sizes (2 or 3).

A design exploration framework named CGRA-ME was presented
in [Chin et al. 2018]. However, the main drawback is the maximum data-flow graph size
(Iess than 25 nodes) and the mapping time (minutes to hours). The mapping strategies
have two options: ILP and simulated annealing (SA). However, the SA implementation
is inefficient in terms of execution time. VPR [Murray et al. 2020] is state-of-the-art for
simulated annealing for FPGA. Our approach is also based on SA, and our results are
competitive to VPR in terms of quality and execution time.

7. Conclusion

The results for the heterogeneous setups shows us that it is possible to find good enough
placements, for the graphs tested in this work, that reduce the number of multiplier re-
sources on the CGRA grid, therefore reducing its overall cost. A few other experiments
that could be done and explored in future work consist of fixing some of the multipliers
and/or I/Os on a good position, found on a pre-processing stage. This could be done on
graphs that possess a regular and repetitive structure, such as the systolic array. This ap-
proach could guide the simulated annealing to a better or even an optimal solution. Future
work could also include data-flow merging, which identifies graph similarities to gener-
ate a dedicated and straightforward reconfigurable architecture by minimizing the routing
resources [Moreano et al. 2005]. We also plan to compare SA-based placement to ge-
netic [Silva et al. 2006] and divide-and-conquer search [Fontes et al. 2018] approaches.

Acknowledgment

This work was carried out with the support of the Coordernacido de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Financing Code 001. Financial support
from FAPEMIG, CNPq, and UFV.

References
Browning, S. A. (1980). The tree machine: A highly concurrent computing environment.
Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. (2014). Diannao:

A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM
SIGARCH Computer Architecture News, 42(1):269-284.

Chin, S. A., Niu, K. P, Walker, M., Yin, S., Mertens, A., Lee, J., and Anderson, J. H.
(2018). Architecture exploration of standard-cell and fpga-overlay cgras using the
open-source cgra-me framework. In International Symposium on Physical Design.

Fontes, G., Silva, P., Nacif, J., Vilela, O., and Ferreira, R. (2018). Placement and routing
by overlapping and merging qca gates. In Int Symp on Circuits and Systems (ISCAS).

Jo,J., Cha, S., Rho, D., and Park, I.-C. (2017). Dsip: A scalable inference accelerator for
convolutional neural networks. IEEE Journal of Solid-State Circuits, 53(2):605-618.

Jo,J., Kim, S., and Park, I.-C. (2018). Energy-efficient convolution architecture based on
rescheduled dataflow. IEEFE Transactions on Circuits and Systems I, 65(12).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.

Lee, S.-K. and Choi, H.-A. (1996). Embedding of complete binary trees into meshes with
row-column routing. IEEE Trans on Parallel and Distributed Systems, 7(5).

Liu, D., Yin, S., Luo, G., Shang, J., Liu, L., Wei, S., Feng, Y., and Zhou, S. (2018). Data-
flow graph mapping optimization for cgra with deep reinforcement learning. IEEE
Trans on Computer-Aided Design of Integrated Circuits and Systems, 38(12).

Liu, L., Zhu, J., Li, Z., Lu, Y., Deng, Y., Han, J., Yin, S., and Wei, S. (2019). A survey
of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and
applications. ACM Computing Surveys (CSUR), 52(6):1-39.

Liu, Z.-G., Whatmough, P. N., and Mattina, M. (2020). Systolic tensor array: An effi-
cient structured-sparse gemm accelerator for mobile cnn inference. IEEE Computer
Architecture Letters, 19(1):34-37.

Luo, Z. and Lee, R. B. (2000). Cost-effective multiplication with enhanced adders for
multimedia applications. In Int Symp on Circuits and Systems (ISCAS). IEEE.

Mei, B., Vernalde, S., Verkest, D., De Man, H., and Lauwereins, R. (2003). Adres:
An architecture with tightly coupled vliw processor and coarse-grained reconfigurable
matrix. In International Conference on Field Programmable Logic and Applications.

Moreano, N., Borin, E., De Souza, C., and Araujo, G. (2005). Efficient datapath merg-
ing for partially reconfigurable architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(7):969-980.

Murray, K. E., Petelin, O., Zhong, S., Wang, J. M., ElDafrawy, M., Legault, J.-P., Sha,
E., Graham, A. G., Wu, J., Walker, M. J. P, Zeng, H., Patros, P., Luu, J., Kent, K. B.,
and Betz, V. (2020). Vir 8: High performance cad and customizable fpga architecture
modelling. ACM Trans. Reconfigurable Technol. Syst.

Nowatzki, T., Ardalani, N., Sankaralingam, K., and Weng, J. (2018). Hybrid optimiza-
tion/heuristic instruction scheduling for programmable accelerator codesign. In Int
Conf on Parallel Architectures and Compilation Techniques (PACT).

Park, H., Fan, K., Mahlke, S. A., Oh, T., Kim, H., and Kim, H.-s. (2008). Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures. In Int Conf on
Parallel architectures and compilation techniques (PACT).

Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S., Das, D., Kaul, B., and
Krishna, T. (2020). Sigma: A sparse and irregular gemm accelerator with flexible in-

terconnects for dnn training. In Int Symp on High Performance Computer Architecture
(HPCA).

Silva, M., Ferreira, R., Garcia, A., and Cardoso, J. (2006). Mesh mapping exploration
for coarse-grained reconfigurable array architectures. In Int Conf on Reconfigurable
Computing and FPGA’s (ReConFig).

Wei, X., Yu, C. H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang, Y., and Cong, J. (2017).
Automated systolic array architecture synthesis for high throughput cnn inference on
fpgas. In Design Automation Conference (DAC).

Weng, J., Liu, S., Dadu, V., Wang, Z., Shah, P., and Nowatzki, T. (2020). Dsagen: Syn-
thesizing programmable spatial accelerators. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 268-281. IEEE.

