
Enhancing Programmability in NoC-Based Lightweight
Manycore Processors with a Portable MPI Library

João Fellipe Uller1, João Vicente Souto1, Pedro Henrique Penna2,3,
Márcio Castro1, Henrique Freitas2, Jean-François Méhaut3

1Distributed Systems Research Laboratory (LaPeSD)
Universidade Federal de Santa Catarina (UFSC) – Brazil

2Computer Architecture and Parallel Processing Team (CArT)
Pontifı́cia Universidade Católica de Minas Gerais (PUC Minas) – Brazil

3Laboratoire d’Informatique de Grenoble (LIG)
Université Grenoble Alpes (UGA) – France

joao.f.uller@grad.ufsc.br, joao.vicente.souto@posgrad.ufsc.br,
pedro.penna@sga.pucminas.br, marcio.castro@ufsc.brm

cota@pucminas.br, jean-francois.mehaut@univ-grenoble-alpes.fr

Abstract. The performance and energy efficiency provided by lightweight many-
cores is undeniable. However, the lack of rich and portable support for these
processors makes software development challenging. To address this problem,
we propose a portable and lightweight MPI library (LWMPI) designed from
scratch to cope with restrictions and intricacies of lightweight manycores. We
integrated LWMPI into a distributed OS that targets these processors and evalu-
ated it on the Kalray MPPA-256 processor. Results obtained with three applica-
tions from a representative benchmark suite unveiled that LWMPI achieves sim-
ilar performance scalability in comparison with the low-level vendor-specific
API narrowed for MPPA-256, while exposing a richer programming interface.

1. Introduction
Lightweight manycore processors emerged to address demands on high-performance
and energy efficiency [Francesquini et al. 2015]. On the one hand, to deliver high-
performance and scalability, these processors rely on a distributed memory architec-
ture and a rich Network-on-Chip (NoC). On the other hand, to achieve energy ef-
ficiency, they are built with simple low-power Multiple Instruction Multiple Data
(MIMD) cores and Scratchpad Memories (SPMs) with no hardware coherency sup-
port. Moreover, they exploit heterogeneity by combining cores with different capabili-
ties. Some industry-successful examples of lightweight manycores are the Kalray MPPA-
256 [de Dinechin et al. 2013a], the Adapteva Epiphany [Olofsson 2016] and the Sunway
SW26010 [Fu et al. 2016].

While the aforementioned architectural features make lightweight manycores
more scalable than other parallel processors in both performance and energy efficiency,
they introduce several challenges in software programmability. For instance, the dis-
tributed memory architecture requires a non-trivial software design to handle data ac-
cesses across multiple physical address spaces. Hence, software should explicitly fetch
data from remote memories to local ones to be manipulated [Francesquini et al. 2015].
Furthermore, the small amount of on-chip memory demands software to explic-
itly tile the working data set into chunks and locally manipulate them one at a



time [Souza et al. 2017]. Additionally, it is up to the software to take care of
data caching and replication to boost performance. Finally, the rich NoC exposes
mechanisms for asynchronous programming to overlap communication with computa-
tion [Hascoët et al. 2017]; and hand-operated routing to guarantee uniform communica-
tion latencies.

Currently, two approaches are employed to address programmability chal-
lenges in lightweight manycores: Operating Systems (OSes) [Kluge et al. 2014,
Asmussen et al. 2016, Penna et al. 2019] and baremetal runtime sys-
tems [de Dinechin et al. 2013b, Varghese et al. 2014, Richie et al. 2017]. The former is
meant to bridge critical programmability gaps imposed by hardware intricacies. The
latter aims to expose a rich, performance-oriented programming environment, narrowed
to the underlying architecture. While these two approaches are effective for some use
cases, they have a significant duality drawback. Application development directly on
top of OS interfaces yields to software portability across architectures, but the actual
programming interface provided is complex and delay the software development process.
In contrast, baremetal and vendor-specific runtime systems expose richer interfaces that
accelerate the development process, but they exclusively concern to the software stack
ecosystem of a specific lightweight manycore. As an immediate consequence, software
written on top of these higher-level interfaces end up to be non-portable.

The software stack for lightweight manycores lacks in programmability, once
it fails to provide support for both fast development process and software portability.
In this work, we address the programmability and portability challenges in lightweight
manycores by combining both approaches: a lightweight implementation of the Message
Passing Interface (MPI) standard (named LWMPI) on top of Nanvix, a Portable Oper-
ating System Interface (POSIX)-compliant distributed OS that targets lightweight many-
cores [Penna et al. 2019]. LWMPI is compatible with the MPI specification and can be
extended to support new features and other OSes with little effort.

To assess LWMPI with representative computing workloads, we carried out exper-
iments with three applications extracted from the CAP Bench suite [Souza et al. 2017].
All experiments were executed on the Kalray MPPA-256 processor, a baremetal
lightweight manycore. Our results unveiled that the proposed implementation delivers
similar performance scalability when compared with a vendor-specific low-level Appli-
cation Programming Interface (API) for the Kalray MPPA-256, while exposing a richer
programming interface.

The remainder of this work is organized as follows. In Section 2, we cover the
background on lightweight manycores. In Section 3, we present our proposal. In Sec-
tion 4, we detail our evaluation methodology. In Section 5, we discuss our experimental
results. In Section 6 we discuss related works. In Section 7, we draw our conclusions.

2. Lightweight Manycore Processors
In this section, we cover the background on lightweight manycore processors. First, we
present an architectural discussion on these processors and how they differ from other par-
allel architectures. Then, we discuss about the current support for software development
in lightweight manycores.

2.1. Architectural Blueprints
Lightweight manycores have an endeavour to deliver high performance and energy effi-
ciency in a single die. To achieve this, these processors rely on the following architectural



features: (i) thousands of low-power cores; (ii) MIMD capability; (iii) tightly-coupled
groups of cores (aka clusters); (iv) distributed memory architecture and small local mem-
ories; (v) reliable and fast NoCs for message-passing; and (vi) heterogeneous processing
capabilities in I/O and computing clusters.

To provide substantial insight on lightweight manycores, we consider in this
paper an industry-successful example of such type of processor: the Kalray MPPA-
256 [de Dinechin et al. 2013a]. Notwithstanding, the following discussion extends to
other lightweight manycores [Olofsson 2016, Fu et al. 2016]. Figure 1a presents an
overview of this processor. Overall, Kalray MPPA-256 integrates 288 cores disposed
into 20 clusters. Each cluster is composed of heterogeneous and limited hardware capa-
bilities to perform different roles. For instance, I/O Clusters have four Resource Managers
(RMs), four NoC interfaces, and 4 MB local Static Random Access Memory (SRAM) to
exchange data with external resources and internal clusters. Differently, Compute Clus-
ters have one RM, 16 Processing Elements (PEs), one NoC interface, and only 2 MB local
SRAM to run user workloads. Cores within the cluster share and have uniform access to
hardware resources.

Communication between clusters is exclusively achieved by explicitly exchanging
hardware-level messages through two NoCs. Specifically, The Control NoC (C-NoC)
enables synchronization and small control messages handover, whereas the Data NoC
(D-NoC) supports arbitrary-sized data exchanges. At this point, the I/O heterogeneity
among clusters becomes more evident. I/O Clusters have direct access to the attached
Dynamic Random Access Memory (DRAM) or a device, while Compute Clusters must
tile their data into messages and send them through the NoC using an I/O Cluster as an
intermediary to access these resources. To improve communication performance, Kalray
MPPA-256 features a built-in Direct Memory Access (DMA) engine in its NoC interfaces
to enable asynchronous communications and higher bandwidth for dense data transfers.

To summarize, the aforementioned set of architectural features grants important
distinctions between lightweight manycores and other well-known manycore processors:

• Manycore processors such as Intel Xeon Phi, Tilera TILE-Gx100 and Intel Single-
Cloud Computer do not have a constrained memory system, with a distributed
architecture and small local memories;

• Symmetric Multiprocessing (SMP) architectures based on Non-Uniform Memory
Access (NUMA) design are built with multiple CPU packages interconnected by
a dedicated hardware outside of the processor chips (e.g., NUMAlink); and

• Graphics Processing Units (GPUs) do not cope efficiently with MIMD workloads.

The paradigm breakthrough brought by lightweight manycores allows computer
systems to scale their performance and energy efficiency. However, challenges introduced
by their architectural intricacies to software programmability impact from low- to user-
level applications. Examples of these challenges are dark silicon [Haghbayan et al. 2017],
data prefetching and tiling [Francesquini et al. 2015], asynchronous communica-
tion [Hascoët et al. 2017], non-coherent caches [de Dinechin et al. 2013a] and applica-
tion deployment [Souza et al. 2017].

2.2. Software Development Support
There are two approaches currently employed to address programmability challenges in
lightweight manycores: OSes and baremetal runtime systems. In the following para-
graphs, we examine each of them, and we state where our work is positioned.



(a)

Interconnect

Application
Core

OS Service
Core

Idle Core

(b)

Figure 1. Kalray MPPA-256 (a) and distributed OS on a lightweight manycore (b).

OSes are meant to bridge critical programmability gaps in architectures. To this
end, they provide resource sharing and multiplexing mechanisms, as well as they ex-
pose rich abstractions to user-level applications. Inherently due to the architectural fea-
tures of lightweight manycores, OSes for these processors embrace a distributed design to
achieve scalability [Boyd-Wickizer et al. 2010]. Figure 1b pictures a distributed OS run-
ning on a lightweight manycore. In this approach, the OS is factored in a set of services,
each of which is deployed on a core of the parallel architecture. Cores that do not run
OS services are made available to user-level applications. Examples of such distributed
OSes are Barrelfish [Baumann et al. 2009], FOS [Wentzlaff and Agarwal 2009], He-
liOS [Nightingale et al. 2009], MOSSCA [Kluge et al. 2014], M3 [Asmussen et al. 2016]
and Nanvix [Penna et al. 2019].

In contrast to OSes, baremetal runtime systems aim at exposing a rich pro-
gramming environment that is narrowed for the underlying architecture. They are
provided on top of the hardware as libraries and are directly linked with applica-
tions. As an immediate consequence, baremetal runtime systems neither provide
low-level resource sharing nor multiplexing. For instance, they do not enable mul-
tiple applications to be concurrently deployed in the processor nor provide mecha-
nisms to time-share the hardware between different applications. Overall, runtime sys-
tems are usually shipped by manufacturers of lightweight manycore processors as a
cutting-edge performant programming environment. Examples of such runtime sys-
tems are NodeOS [de Dinechin et al. 2013b], libasync [Hascoët et al. 2017], Epiphany
SDK [Varghese et al. 2014] and CLETE [Richie et al. 2017].

Beyond the aforementioned approaches, we focus on a third alternative that we
see as complementary to both: we rely on an OS to provide rich hardware management,
sharing and multiplexing and we implement and deploy a high-level, industry-standard
runtime system on top of this OS. Indeed, this approach is currently employed in mul-
ticore architectures, where parallel programming environments are provided on top of
GNU/Linux, such as OpenMP and Cilk. However, in the context of our work, we highlight
two high-level runtime systems that concern distributed programming and consequently
are suitable for lightweight manycores. First, MPI is an industry-standard interface
for message passing programming. It exposes two-sided communication functions for
sending and receiving arbitrary-sized messages, either synchronously or asynchronously,
while its communicator abstraction allows multiple logical communication flows within a
distributed application. Besides, a one-sided communication version is available in more



recent implementations of MPI. Second, Partitioned Global Address Space (PGAS) is a
distributed programming environment that provides a global and shared address spaces
over a distributed memory configuration. To this end, PGAS implementations rely on a
logical partitioning of the address spaces of several processes and provide simple primi-
tives for reading/writing/synchronizing data from/to these logical partitions.

3. LWMPI: A MPI Library for Lightweight Manycores
Aiming at better programmability in lightweight manycores, we propose the LWMPI: an
MPI library for these processors. In contrast to alternative solutions, we made LWMPI
portable across different architectures thanks to a design and implementation that relies
on top of a POSIX-compliant distributed OS for lightweight manycores. In this section,
we present and detail the internals of our solution. First, we discuss the goals that guided
our design. Then, we uncover the architecture and implementation of LWMPI.

3.1. Design Goals
Lightweight manycores bring several challenges to software development, thereby mak-
ing easy-to-use interfaces an important requirement for this class of processors. These
challenges are not restricted to user-level programming, but also to basic software devel-
opment. Thus, solutions must meet users demands while dealing with strict architectural
constraints, especially memory issues. Hence, the main design goals of LWMPI are:

(i) portability: the library should be portable and applicable to various lightweight
manycores;

(ii) compatibility: the implementation must comply with the MPI specification;
(iii) extendability: it should be possible to add new functions or submodules to the

implementation with little effort; and
(iv) lightness: the implementation should be simple and lightweight to cope with re-

strictive resources of lightweight manycores.
To achieve these goals, we rely on important design decisions that we believe to

cope with the aforementioned challenges: (i) design our library on top of an OS to en-
able portability across different architectures; (ii) stick to the MPI standard to deliver
compatibility; (iii) follow a tier-based approach to keep encapsulation and to maintain
the top-level library isolated from OS-dependent implementation, thereby enabling ex-
tendability; and (iv) implement the library from scratch, rather than adapting an existing
heavy-weight solution like OpenMPI [SPI 2020] or MPICH [MPICH 2020] to keep our
solution light and suitable for lightweight manycores [Ho et al. 2015]. We developed our
library on top of Nanvix, a POSIX-compliant research OS that targets lightweight many-
cores [Penna et al. 2019]. To the best of our knowledge, Nanvix is the only open-source
distributed OS that runs on commercially available baremetal lightweight manycores, like
Kalray MPPA-256 [de Dinechin et al. 2013a] and OpTiMSoC [Wallentowitz et al. 2012].

3.2. LWMPI Architecture
Currently, LWMPI implements an initial subset of the MPI specification (version 3.1). We
opted for this partial support since fully implementing the entire standard would result in
a much bigger memory footprint, violating our fourth design goal, which is the lightness
of the solution, so important to cope with the restrictions of lightweight manycores.

Figure 2 presents the two-tier approach adopted by LWMPI1 on top of Nanvix.
The LibMPI tier is the top-level library and represents the entry point for user applica-
tions, encapsulating the standard specification. This layer exposes the library interface

1LWMPI is available at: https://github.com/nanvix/libmpi

https://github.com/nanvix/libmpi


Figure 2. Architectural overview of LWMPI.

and implements the backend functions over the MPUtil tier. At this level, we focus on
filtering the input parameters given by the user, performing the runtime management and
correctly choosing the protocols employed by each MPI call in the underlying layer. In
the current version, our library implements: functions for runtime management, such as
MPI Init and MPI Finalize; support for communicators and information retriev-
ing, such as MPI Comm rank and MPI Comm size; support for groups of communica-
tion with functions that are similar to those related with communicators; error handlers;
and point-to-point communication via MPI Send and MPI Recv using the synchronous
mode and carrying any of the predefined data types for the C language.

The MPUtil tier is the middle layer between the overlying library and the base
OS. Precisely, it is responsible for translating the requests from LibMPI to the Nanvix
interface. MPUtil exposes elementary abstractions that support the top-level implemen-
tation of the MPI standard, aiming at keeping the library implementation decoupled from
the OS interface. Some of these abstractions are: (i) basic objects applied in all MPI
structures, (ii) processes for establishing communication groups, and (iii) communication
contexts that define universes of communication. This layer also implements the MPI
communication protocols, e.g., synchronous point-to-point sends and receives. To per-
form these protocols, MPUtil relies on the named Inter-Process Communication (IPC)
abstractions exposed by the Name Service of the Nanvix runtime system, where processes
names are translated into logical cluster identifiers. IPC abstractions of Nanvix include
primitives for fine-grain fixed-size transfers (mailbox), coarse-grain fixed-size transfers
(portal), and synchronization points (sync) [Souto et al. 2020].

3.3. Point-to-Point Communication in LWMPI
Currently, LWMPI uses the synchronous mode to carry out communications in MPI Send
and MPI Recv functions to avoid extra memory usage and keep the library thin (i.e., mes-
sages are not buffered). Figure 3a illustrates how the layers interact, showing MPI Send
(on the left) and MPI Recv (on the right), while Figure 3b shows the inter-process inter-
action from the perspective of message exchanges.

As shown in Figure 3a, LibMPI is responsible for checking the input parame-
ters and creating the communication requests (steps 1.1 and 2.1) that will be used by
MPUtil. The requests include the information to be matched between MPI Send and
MPI Recv (communicator, tag, and source/destination) and the user buffer employed to
place/retrieve data by the IPC call, removing any intermediary buffering needs. After that,
the sender submits its request to the receiver (step 1.2) via mailbox, sending a request-to-
send message (Figure 3b), and blocks (step 1.3) until a matching MPI Recv is posted and
the receiver grants permission for data transfer. At the receiver side, MPUtil searches in



(a) Interactions between LWMPI and Nanvix. (b) Communication protocol.

Figure 3. Implementation details of MPI Send and MPI Recv by LWMPI.

an internal queue (step 2.2) for a send request that matches its receive request built in step
2.1. If the queue is empty or no match occurred, the client waits for a matching request to
arrive. Any other requests that arrive in the meantime are placed at the end of the queue.

When a matching request is found, the receiver consumes and attends it (step 2.3).
At this point, the receiver issues permission to the portal of the sender, who wakes up
and transfers the data to the user buffer. When the receiver starts to receive data, it sends
an ack message to the sender via mailbox (step 2.4), indicating to the sender that it can
successfully return. Finally, the sender returns from MPI Send when it has sent all of
its data and has received the ack from the receiver (step 3.1). The receiver returns from
MPI Recv when it has read all the data from the channel, or have read the amount of data
equivalent to the local buffer size (step 2.5).

4. Evaluation Methodology
To deliver a comprehensive assessment of LWMPI, we relied on a subset of the CAP
Bench suite [Souza et al. 2017], which is used to assess the performance of lightweight
manycores. Applications in CAP Bench feature different parallel patterns, task types,
communication intensity, and task loads, and they are developed in the C language, using
one out of two environments: (i) OpenMP (for shared-memory manycores); and (ii) a
vendor-specific baremetal API for the Kalray MPPA-256 processor. In this work, we
employed the following applications in our analysis to exercise different characteristics.

Friendly Numbers (FN) is an application that finds all subsets of numbers in a range
[n,m] that share the same abundance. The abundance of n is the ratio between the
sum of divisors of n by n itself. FN implements the MapReduce parallel pattern
and has tasks with regular loads. The problem is predominantly CPU-bound.

Gaussian Filter (GF) is a filter that reduces the noise of an image by applying a matrix
convolution operation with a special two-dimensional Gaussian mask to the image
pixels. GF performs the Stencil parallel pattern to equal-sized parts of the image,
thus being CPU-intensive and having a medium communication intensity.

K-Means (KM) is a clustering technique employed in data analysis. KM gets a set of
n points in real d-dimensional space and randomly split them into k partitions.
Then, it applies the Map parallel pattern to distribute points and replicate data
centroids between the Compute Clusters. The irregular workload is both CPU-
and memory-bound. Since each iteration must update data centroids, this kernel
operates with high communication intensity.



 0
 2
 4
 6
 8
10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Workers

S
pe

ed
up

API Solution
Kalray Runtime
Nanvix LWMPI

(a) FN Kernel

 0
 2
 4
 6
 8
10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Workers

S
pe

ed
up

API Solution
Kalray Runtime
Nanvix LWMPI

(b) GF Kernel

 0
 2
 4
 6
 8
10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Workers

S
pe

ed
up

API Solution
Kalray Runtime
Nanvix LWMPI

(c) KM Kernel

Figure 4. Experimental results.

We implemented these applications with MPI2 and contrasted them with the orig-
inal implementation of the benchmark for Kalray MPPA-256. Noteworthy, a direct per-
formance comparison between these two solutions is unfair, since the original implemen-
tation relies on a vendor-specific baremetal runtime system that is narrowed for Kalray
MPPA-256 but does not provide any means of software portability across architectures.

Applications in CAP Bench have a single leader process, which coordinates the
execution, and may have several workers, which perform the computations. However,
due to some current limitations in Nanvix, we could only deploy one process per Compute
Cluster on Kalray MPPA-256, thus reaching a maximum of 16 processes in total. Overall,
we carried out strong scaling experiments, where we varied the number of workers from 1
to 15 and we fixed the problem sizes of applications as follows: (i) numbers ranging from
1000001 to 1000129 for FN; (ii) 512 × 512 image and 7× mask for GF; and (iii) 30720
points and 64 centroids for KM. We ran 30 trials of each configuration to ensure minimum
variance in our results. The maximum coefficient of variance observed was below 1%.

5. Experimental Results
Figure 4a presents the speedup for the FN application, in which a leader process dis-
tributes equal-sized ranges of numbers to worker processes that compute the abundance
values. Since FN is CPU-bound, communication has little interference and the results
show a similar behavior in both solutions. We noticed an increase in speedup up to 8
workers. Thereafter, FN presents scalability issues, being the only exception with 14
workers. This general behavior is due to the problem design itself and the input work-
load. The leader process performs an integer division to compute the minimum amount
of work to be sent to each worker. Then, the reminder is added to the last worker, which
may result in load imbalance. This imbalance is very small up to 8 workers, but becomes
substantial with more workers. With 14 workers, however, the workload is well balanced
and the overall performance is improved. In general, these results show that our solution
scaled well and was able to provide an easy adaptation of the kernel without introducing
an overhead as the parallelism is increased.

Figure 4b pictures the speedup for the GF kernel, in which the leader process
splits an image into equal-sized chunks and distributes them to worker processes that per-
form matrix computations using the Gaussian mask. As it can be noticed, LWMPI pre-
sented suboptimal scalability whereas the default runtime library did not scale at all. The
small problem sizes may have resulted in insufficient workloads for the original bench-
mark implementation using the Kalray runtime, causing its performance to deteriorate.
At the same time, for LWMPI this problem seems to be attenuated as the parallelism in-

2Publicly available at: https://github.com/nanvix/benchmarks.

https://github.com/nanvix/benchmarks


creases, proving its scalability also in these situations. However, we believe that using
asynchronous communications for both solutions would significantly reduce the bottle-
neck on the leader process and improve the overall performance.

Figure 4c shows the speedup for the KM kernel, in which the leader process it-
eratively orchestrates computing by gathering and broadcasting centroids to worker pro-
cesses. As an immediate consequence, this application has a higher communication de-
mand than the previous ones. This characteristic impacted the results, where LWMPI
achieves lower speedups when compared to the Kalray runtime. This occurred because
the baremetal runtime can fitly handle the irregular workload, while LWMPI is limited
by the coarse-grained fixed-size messages of the portal abstraction in Nanvix, which is
used to handle the data transfers in MPUtil. Thus, small problem sizes do not overcome
the overhead imposed by this abstraction that is designed to fit dense data transfers. Nev-
ertheless, this situation can be settled by a mechanism that dynamically chooses which
communication abstraction fits better the data granularity to be sent. For instance, it
would be possible to use the mailbox abstraction to send fine-grained messages and the
portal abstraction for coarse-grained ones. As a result, we could transfer small messages
with low latency and large messages with high bandwidth. We intend this to be an opti-
mization in the future. Even so, both solutions had similar linear behaviors, showing that
LWMPI was able to keep up with the speedup scalability presented by the Kalray runtime.

In general, LWMPI delivered a lightweight and richer programming interface, pre-
senting good scalability for parallel and distributed problems. Consequently, we improve
programmability and deliver implicit portability for lightweight manycores, which are our
main contributions. However, the results lighted significant improvement cases, such as
combining fine-grain and coarse-grain communications to deal with irregular communi-
cations and the use of asynchronous calls to overlap communication with computation.

6. Related Work
Software development for lightweight manycores is challenging because it strives in find-
ing the balance between performance and programmability. In this context and specifi-
cally concerning communication, there are two approaches currently employed: (i) ven-
dor-specific communication libraries, which expose a performance-oriented interface for
the underlying architecture; and (ii) industry-standard communication libraries, which
provide a richer communication interface, in exchange for some performance penalty.

Vendor-specific solutions mostly rely on specific features of the
underlying hardware to achieve high performance. For instance, syn-
chronous [van der Wijngaart et al. 2011] and asynchronous [Clauss et al. 2011] in-
terfaces are provided on top of Message Passing Buffer (MPB) for the Intel Single-Cloud
Computer. On the other hand, Kalray MPPA-256 features both a communication
library that shares some similarity with POSIX [de Dinechin et al. 2013b] and a specific
interface for one-sided communications [Hascoët et al. 2017]. A high-level message-
oriented parallel programming model is provided for the IMAPCAR2 [Kelly et al. 2013].
Finally, a specific communication API is provided for the Adapteva Epiphany proces-
sor [Varghese et al. 2014].

In contrast, standard communication interfaces benefit from extensive improve-
ments and optimizations, making them a solid choice for programming lightweight many-
cores. However, to the best of our knowledge, all standard communication interfaces ports
are built on top of low-level primitives and libraries provided by the vendors of these pro-



cessors, making it difficult to adapt them to other manycore processors. Examples of such
solutions are those based on the PGAS programming model, such as the Berkeley Uni-
fied Parallel C (UPC) port for the Intel Single-Cloud Computer [Gamell et al. 2012] and
Tilera TILE64 [Serres et al. 2011] processors as well as the OpenSHMEM implementa-
tion [Ross and Richie 2016] for the Adapteva Epiphany processor. Moreover, there have
been some efforts on providing an MPI port for Kalray MPPA-256 [Ho et al. 2015] and
Adapteva Epiphany [Richie et al. 2017]. The former is the closest work to the present one,
also presenting an implementation from scratch to cope with the restrictions of lightweight
manycores, even having similar concepts to those adopted in the present work. The main
difference, however, is the fact that it is implemented on top of a vendor-specific IPC li-
brary, and so, being not portable to other processors/architectures. The latter, in addition,
does not conform with the MPI standard.

Overall, both of the aforementioned approaches lack application portability. On
the one hand, there are very efficient solutions (i.e., vendor-specific libraries) that per-
fectly adhere to the design purposes of lightweight manycores, but require a greater ef-
fort in learning and software design time. On the other hand, there are well-known and
widely used standards that alleviate portability problems and improve project develop-
ment. However, implementations of these interfaces use baremetal facilities, making the
entire standard stack architecture-dependent.

For this reason, this work takes a step further on providing a flexible and extend-
able implementation of a well-known parallel programming standard (MPI) on top of an
open-source OS for lightweight manycores (Nanvix). We believe that the proposed so-
lution brings the best of the aforementioned approaches, since it offers a standard high
performance solution that can be used in a broad range of lightweight manycores.

7. Conclusion
Lightweight manycores brought together concepts of parallel and distributed systems into
a single die to deliver high-performance and energy efficiency. Nevertheless, architec-
tural intricacies and the absence of APIs that embrace programmability and portability
make software development an arduous task, specifically because current solutions are
hardware-dependent and/or vendor-specific APIs.

To unite programmability and portability for lightweight manycores, we proposed
LWMPI, a lightweight and portable MPI implementation on top of a POSIX-compliant
distributed OS that targets this class of processors. LWMPI is designed from scratch
and follow a two-tier approach to separate and self-contain the MPI interface from the
OS-dependent layer. Our experiments with applications from CAP Bench on the Kalray
MPPA-256 processor unveil that LWMPI exposes a richer programming interface and
achieves similar scalability in comparison with the low-level vendor-specific API nar-
rowed for the Kalray MPPA-256 processor.

This work is part of the Nanvix research project, a collaborative project between
Universidade Federal de Santa Catarina (UFSC), Pontifı́cia Universidade Católica de
Minas Gerais (PUC Minas) and Université Grenoble Alpes (UGA), that aims at the de-
sign and implementation of a POSIX-compliant OS for lightweight manycore processors.
As future work, we intend to (i) improve the design and implementation of LWMPI;
(ii) carry out experiments with other applications from CAP Bench; (iii) extend LWMPI
to support a bigger subset of the MPI specification, e.g., collective communications and
better protocols; and (iv) research and design a PGAS solution on top of Nanvix.



Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Cientı́fico
e Tecnológico – Brasil (CNPq) and by Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior – Brasil (CAPES) under the Capes-PrInt Program (grant number
88881.310783/2018-01).

References

Asmussen, N. et al. (2016). M3: A Hardware/Operating-System Co-Design to Tame
Heterogeneous Manycores. In International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ‘16, pages 189–203, At-
lanta, Georgia. ACM.

Baumann, A. et al. (2009). The Multikernel: A New OS Architecture for Scalable Mul-
ticore Systems. In ACM SIGOPS Symposium on Operating Systems Principles, SOSP
‘09, pages 29–44, Big Sky, Montana. ACM.

Boyd-Wickizer, S. et al. (2010). An analysis of linux scalability to many cores. In USENIX
Conference on Operating Systems Design and Implementation, OSDI ‘10, pages 1–16,
Vancouver, Canada.

Clauss, C. et al. (2011). Evaluation and improvements of programming models for the
Intel SCC many-core processor. In International Conference on High Performance
Computing & Simulation (HPCS), pages 525–532. IEEE.

de Dinechin, B. D. et al. (2013a). A Clustered Manycore Processor Architecture for Em-
bedded and Accelerated Applications. In IEEE High Performance Extreme Computing
Conference, HPEC ‘13, pages 1–6, Waltham, USA. IEEE.

de Dinechin, B. D. et al. (2013b). A distributed run-time environment for the kalray
mppa-256 integrated manycore processor. Procedia Computer Science, 18(Interna-
tional Conference on Computational Science):1654–1663.

Francesquini, E. et al. (2015). On the Energy Efficiency and Performance of Irregular
Application Executions on Multicore, NUMA and Manycore Platforms. Journal of
Parallel and Distributed Computing (JPDC), 76(C):32–48.

Fu, H. et al. (2016). The Sunway TaihuLight Supercomputer: System and Applications.
Science China Information Sciences, 59(7):072001–0720016.

Gamell, M. et al. (2012). Exploring cross-layer power management for PGAS applica-
tions on the SCC platform. In International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), page 235, New York, USA. ACM Press.

Haghbayan, M.-H. et al. (2017). Performance/reliability-aware resource management for
many-cores in dark silicon era. IEEE Transactions on Computers (TC), 66(9):1599–
1612.

Hascoët, J. et al. (2017). Asynchronous One-Sided Communications and Synchroniza-
tions for a Clustered Manycore Processor. In Symposium on Embedded Systems for
Real-Time Multimedia, ESTIMedia ‘17, pages 51–60, Seoul. ACM Press.

Ho, M. Q. et al. (2015). MPI communication on MPPA many-core NoC: Design, mod-
eling and performance issues. In International Conference on Parallel Computing,
volume 27 of ParCo ‘2015, pages 113–122, Edinburgh, UK. IOS Press.



Kelly, B. et al. (2013). Autopilot: Message passing parallel programming for a cache
incoherent embedded manycore processor. In International Workshop on Many-Core
Embedded Systems, MES ’13, page 62–65, New York, NY, USA. Association for Com-
puting Machinery.

Kluge, F. et al. (2014). An Operating System for Safety-Critical Applications on Many-
core Processors. In International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing, ISORC ‘14, pages 238–245, Reno, Nevada. IEEE.

MPICH (2020). Mpich: High-performance portable mpi.

Nightingale, E. B. et al. (2009). Helios: Heterogeneous Multiprocessing with Satellite
Kernels. In ACM SIGOPS Symposium on Operating Systems Principles, SOSP ‘09,
pages 221–234, Big Sky, Montana. ACM Press.

Olofsson, A. (2016). Epiphany-v: A 1024 processor 64-bit risc system-on-chip. ArXiv,
1610.01832:1–15.

Penna, P. H. et al. (2019). On the Performance and Isolation of Asymmetric Microkernel
Design for Lightweight Manycores. In Brazilian Symposium on Computing Systems
Engineering, SBESC ‘19, pages 1–8, Natal, Brazil.

Richie, D. et al. (2017). A Distributed Shared Memory Model and C++ Templated Meta-
Programming Interface for the Epiphany RISC Array Processor. Procedia Computer
Science, 108:1093–1102.

Ross, J. and Richie, D. (2016). Implementing openshmem for the adapteva epiphany risc
array processor. Procedia Computer Science, 80(C):2353–2356.

Serres, O. et al. (2011). Experiences with UPC on TILE-64 processor. In Aerospace
Conference, pages 1–9. IEEE.

Souto, J. V. et al. (2020). Mecanismos de comunicação entre clusters para lightweight
manycores no nanvix os. In Escola Regional de Alto Desempenho da Região Sul,
ERAD/RS ‘20, pages 1–4, Porto Alegre, RS, Brasil. SBC.

Souza, M. et al. (2017). Cap bench: A benchmark suite for performance and energy eval-
uation of low-power many-core processors. Concurrency and Computation: Practice
and Experience (CCPE), 29(4):1–18.

SPI (2020). Open mpi: Open source high performance computing.

van der Wijngaart, R. F. et al. (2011). Light-weight communications on intel’s single-chip
cloud computer processor. SIGOPS Operating Systems Review (OSR), 45(1):73–83.

Varghese, A. et al. (2014). Programming the adapteva epiphany 64-core network-on-
chip coprocessor. In International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), IPDPSW ‘14, pages 984–992, Phoenix, USA. IEEE.

Wallentowitz, S. et al. (2012). A Framework for Open Tiled Manycore System-On-
Chip. In International Conference on Field Programmable Logic and Applications,
FPL ‘2012, pages 535–538, Oslo. IEEE.

Wentzlaff, D. and Agarwal, A. (2009). Factored operating systems (fos): The case for a
scalable operating system for multicores. ACM SIGOPS Operating Systems Review,
43(2):76–85.


	Introduction
	Lightweight Manycore Processors
	Architectural Blueprints
	Software Development Support

	LWMPI: A MPI Library for Lightweight Manycores
	Design Goals
	LWMPI Architecture
	Point-to-Point Communication in LWMPI

	Evaluation Methodology
	Experimental Results
	Related Work
	Conclusion

