
Detection, Evaluation and Mitigation of Resource Affinity
and Communication Contention Problems in a Task-Based

Runtime over Heterogeneous Clusters
Lucas Leandro Nesi, Lucas Mello Schnorr

Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{llnesi,schnorr}@inf.ufrgs.br

Abstract. The complexity of high performance computing (HPC) platforms
presents challenges in parallel application development. The Task-Based
paradigm is a candidate to reduce some of the programmer’s burden. However,
because of the platforms’ complexity, resource affinity and communication con-
tention might cause performance problems. This work presents a case study of
these problems employing the Chameleon dense algebra linear solver LU factor-
ization using the Task-Based runtime StarPU over 21 heterogeneous nodes. We
present possible configurations to mitigate performance degradation and con-
duct an extensive analysis of their interaction. The results show a performance
improvement of 16% without changing the application source code.

1. Introduction
The evolution of HPC platforms increases the development’s complexity of parallel ap-
plications [Dongarra et al. 2017]. Robust multi-core NUMA architectures, devices het-
erogeneity with accelerators like GPUs, and multiple nodes for distributed executions are
examples of such challenges. The Task-based programming paradigm aids in developing
such applications in these environments because they transfer some responsibilities to a
dynamic runtime. Task-based applications use a more declarative way of programming
that permits many dynamic decisions [Augonnet et al. 2011]. These runtimes schedule
tasks to workers associated to a processing unit. Configuring such runtimes to adapt to
such platforms is desirable and challenging due to the vast configuration space.

The complexity of such platforms, with NUMA and Heterogeneity, combined
with runtime configurations, influences application performance. Moreover, the detection
of problems and their causes is difficult. Applications’ execution traces with visualiza-
tions may help to detect and examine negative behavior in such platforms. Moreover,
even if a problem is detected, it may be challenging to find solutions. While application
changes may be inevitable to mitigate these problems, sometimes the runtime settings are
sufficient to solve these problems. The challenge is to evaluate the vast number of config-
urations possibilities and interactions among application, runtime, and platform. StarPU
[Augonnet et al. 2011] is an example of task-based runtime with multiple necessary con-
figurations to adequate itself to different types of computing platforms.

This work’s motivation comes from the execution of the LU task-based factor-
ization from the Chameleon dense algebra linear solver [Agullo et al. 2010] on top of
a heterogeneous multi-node platform. The execution traces show some evident perfor-
mance problems, idle times, and outliers on some nodes. This work uses this case study



as motivation to investigate which StarPU configurations enable problem mitigation on
these sophisticated platforms. The main contributions are as follows. (i) The presentation
of the study case and the methodology used to identify NUMA affinity and contention
problems on the Task-based Chameleon LU operation. (ii) The analysis and enumera-
tion of possible StarPU and a Linux kernel configuration that might mitigate the problem.
(iii) An extensive statistical analysis considering all configurations and their interaction
among each other, revealing a performance gain of 16%. All data of this work is publicly
available online in a reproducible companion 1.

Section 2 presents the study case using the LU factorization of the Task-Based
Chameleon dense algebra linear solver over 21 heterogeneous nodes. Section 3 enumer-
ates the possible StarPU and Linux kernel configurations to mitigate the problem, with
all the experimental methodology. Section 4 presents the experimental evaluation and
analysis of all factors and their interactions. Section 5 presents other works that evaluate
related problems both in HPC and, more specifically, in task-based runtimes. Section 6
concludes this work with the main observations and future work.

2. Study-Case: Chameleon on 21 nodes
This work’s motivation comes from a representative execution of the LU factorization
from the Chameleon Solver [Agullo et al. 2010] using two different clusters on Grid5000
platform [Bolze et al. 2006]. Chameleon is a dense linear algebra solver that uses task-
based runtimes, including StarPU, to deal with computational platforms. The execu-
tion used 21 nodes, 14 from the chetemi cluster and seven from the chifflet
one. The chetemi cluster has two Intel Xeon E5-2630 v4 with 10 cores per CPU,
while chifflet cluster has two Intel Xeon E5-2680 v4 with 14 cores per CPU and
two GPUs NVIDIA GeForce 1080Ti. The interconnection of the machines is a 10Gbps
Ethernet. The operational system of the machines is Debian 10. The StarPU version
is the April nmad optimized branch2 [Denis et al. 2020] using the NewMadeleine suite
[Aumage et al. 2007] MPI implementation. We used a modified Chameleon 0.9.2 to ac-
cept our custom data node distributions to consider node heterogeneity. This execution
uses the default configurations except for removing two CPU workers for the MPI and
main application thread, and the DMDAS scheduler. The LU factorization workload is a
matrix of size 96000x96000 divided into 100×100 blocks of size 960x960.

Figure 1 presents the visualization of the described execution using the StarVZ
Framework [Pinto et al. 2018] [Nesi et al. 2019]. The visualization is the Node Occupa-
tion panel, which depicts the aggregated node resource type (CPU/GPU) utilization per
time steps of 100ms. The height of the bar presents the utilization of the same type of
resources per timestep per task (the bar’s color). The left-side number, 48099, is the total
makespan of the execution in milliseconds. Nodes 0 to 13 are the chetemi cluster, and
only contain one line because they only have CPUs, while the nodes 14 to 20 are from
the chifflet cluster and have a line for the CPUs and one for GPUs. The main in-
terpretation is that there are idle times throughout the execution (white areas), especially
on the chifflet nodes. These idle times were caused by delayed task dependencies
executed in other nodes. To understand the reasons behind this, we select one node from
the chifflet to make an individual visualization of the node’s workers.

1https://gitlab.com/lnesi/wscad2020-companion
2Branch: nmad-coop-coll-dynamic-interface with STARPU_MPI_COOP_SENDS=1

https://gitlab.com/lnesi/wscad2020-companion


Figure 1. Aggregated node visualization for the LU factorization over 21 nodes.

We select node 20, from the chifflet cluster, to present its workers’ visualiza-
tion, which is a good example of the general idle behavior. Note that this execution with
21 nodes haves 434 workers, so a full visualization is impracticable to be shown here.
Figure 2 (Left) shows the Application workers panel, depicting a Gantt chart of tasks for
the node 20 workers (Y-axis). Each task is a state where colors represent the task type.
The visualization divides tasks into two groups, non-outliers, that have an opacity of 50%
(lighter colors), and outliers, that do not have opacity (strong colors). The Application
workers panel shows that the majority of dgemm tasks of resources CPU12 to CPU23 are
outliers. Notably, these resources are CPUs from NUMA node 1. Moreover, there are
some tasks of GPU CUDA0_0 attached to NUMA node 0 that are outliers. For these vi-
sualizations, an outlier is a task that has a duration superior to 1.5 times the inter-quartile
range from the third quartile. The duration of these outlier tasks can be very different
from the normal tasks. Figure 2 (Right) presents boxplots for the durations of dgemm
tasks (X-axis) for each worker (Y-axis) of node 20. The duration of the tasks on NUMA
node 1 is higher, as shown by the mean and quartile values, and more unstable, as the
interquartile range is larger. Also, CUDA0_0 presents slower outliers than CUDA0_1.
These observations indicate that problems of data/thread affinity and contention could be
occurring in this execution, and strategies or configurations to mitigate it are desirable.

3. Design of Experiments
This section presents the configurations and the design of experiments to mitigate the
stated problem. The decisions about thread and data mapping naturally need to consider
the machine’s architecture. Figure 3 presents the structure of one chifflet node pro-
duced by hwloc 3. We have removed from this view all unused devices connected to
NUMA 0, such as disks, unused PCIs, eno3, and eno4. The machine has two NUMA
nodes. Each NUMA node has 378GB of RAM and 14 physical cores. All network inter-
faces are in NUMA node 0. Moreover, this machine has two GPUs, one per NUMA node.

3https://www.open-mpi.org/projects/hwloc/

https://www.open-mpi.org/projects/hwloc/


Figure 2. StarVZ space-time visualization for Node 20 (Right) and Duration of
dgemms tasks per worker (Left).

This information guides our decisions about future configurations.

Figure 3. Hardware topology for the Chifflet machine generated by hwloc.

Instead of developing or using external strategies to mitigate the problem, this
work focus on using already present configurations of the software stack, mainly from
StarPU but also from the Linux kernel. The internal structure of StarPU consists of a
worker per computing resource. Each worker is a CPU thread. Accelerators also use a
dedicated CPU thread. Moreover, StarPU can dedicate a CPU thread for the MPI man-
ager, and the main application thread (that submits tasks). The binding of these CPU
threads considering the entities that they use could influence the performance of tasks.
We investigate StarPU documentation and select possible settings of interest that may im-
pact this situation. We enumerate seven experimental factors that have different objectives
for the problem mitigation and list the parameters used to achieve them. All factors have
only two levels and consider only if the configuration is enabled (assuming value 1) or
disabled (Default, assuming value -1). The list of factors is as follows.

Factor A. Objective: Split memory RAM between NUMA nodes to maximize
data affinity on CPU workers. StarPU will create a memory manager per NUMA node
and move data to the respective worker’s memory manager before running the tasks. This
communication is concurrent with other tasks’ computation. Configuration: StarPU envi-
ronment STARPU_USE_NUMA. Default: One memory management for the RAM, where
the OS will control application memory allocation, probably on NUMA node 0. Enabled
Value: One memory management per NUMA node.

Factor B. Objective: Place each CPU thread managing a GPU on the same NUMA



node of the device. Configuration: StarPU environments STARPU_WORKERS_CPUID
and STARPU_WORKERS_CUDAID. Default: StarPU places the GPU worker’s CPU
thread on the first two possible CPU workers IDs. Usually, on NUMA node 0. Enabled
Value: Place each GPU worker CPU thread on their respective NUMA node.

Factor C. Objective: Place the MPI Thread on the NUMA node of the net-
work adapter. Configuration: StarPU environment STARPU_MPI_THREAD_CPUID.
Default: If a CPU worker is reserved, StarPU will use the last CPU worker, usually in
NUMA node 1. Enabled Value: Set the MPI thread on a NUMA node 0.

Factor D. Objetive: Move application memory and main thread to NUMA
node 1. StarPU will allocate memory for the application on the first CPU worker’s
memory manager, usually NUMA node 0. The NUMA node 0 may be overloaded
with so many devices, and moving the application memory and application main
thread to a different NUMA node could help. Configuration: StarPU environments
STARPU_MAIN_THREAD_CPUID and STARPU_WORKERS_CPUID. Default: Usu-
ally, the first CPU worker will be on NUMA node 0, used as the disabled value. Enabled
Value: Place application main thread and memory on NUMA node 1.

Factor E. Objective: Some schedulers consider data transfer durations when
scheduling. StarPU computes the estimated time for transferring data by a one-time
calibration (if not already calibrated) of the bandwidth between all memory managers.
However, StarPU is optimistic because the PCI bus will be fully available for each pair’s
calibration. On the real execution, memory, GPUs, and network will use the PCI bus at the
same time. Some schedulers, the case of DMDAS, use the BETA coefficient to multiplies
the calibration time when computing this transfer time. Configuration: StarPU environ-
ment STARPU_SCHED_BETA. Default: one, the scheduler uses the original calibration
value. Enabled value: 10, make the data movement ten times slower for scheduling
purposes, biasing StarPU to avoid data transfers.

Factor F. Objective: Increase the number of asynchronous tasks submitted to
GPUs. This setting may affect the number of GPU’s outlier tasks. Configuration: StarPU
environment STARPU_CUDA_PIPELINE. Default: Two tasks. Enabled value: Four
tasks, maximum value permitted by this configuration.

Factor G. Objective: The Linux kernel has a feature to automatic balance mem-
ory between NUMA nodes by the number of page faults and how often the nodes access
it. Because StarPU should be controlling all the memory, the kernel may be impairing the
performance. This may be related to Factors A, C and D. Configuration: Kernel config-
uration kernel.numa_balancing. Default: Enable. Enabled value: Disabled.

After some preliminary tests, we observed high interaction between factors and
decided for a full factorial experimental design [Jain 1990]. It consists of these seven
factors with two levels and 30 repetitions totalizing 128 different configurations and 3840
randomized experiments. All the settings are equal to the Section 2 study case.

4. Experimental Evaluation
With the 3840 measurements, we fit a linear model (Time ∼ A ∗B ∗C ∗D ∗E ∗F ∗G),
where each factor can assume value -1 for configuration disabled and 1 for configuration
enabled [Jain 1990]. The model has a Multiple R-squared of 0.9825. Moreover, we con-



duct an analysis of variance (ANOVA). Table 1 shows the summary of results for the most
prominent terms (absolute estimations >= 0.1, P-Values < 1e−30), with the coefficients
estimations, the estimations lower (LC) and upper (UC) 95% confidence intervals, the
ANOVA Sum square, F-Value, and P-Value in conjunction with the percentage of vari-
ance explained by the term. The first line contains the intercept, and the last the residuals.

Table 1. Linear Model estimations for factors and analysis of variance.

Term Estimate LC UC Sum Sq F-value P-value % Exp

(Intercept) 45.234 45.219 45.25 100
A -3.349 -3.364 -3.334 4.3e+04 1.8e+05 0.0e+00 86.193
A:E -0.675 -0.691 -0.660 1.8e+03 7.4e+03 0.0e+00 3.505
E -0.481 -0.496 -0.465 8.9e+02 3.8e+03 0.0e+00 1.775
B:D 0.385 0.370 0.400 5.7e+02 2.4e+03 0.0e+00 1.140
A:D -0.325 -0.341 -0.310 4.1e+02 1.7e+03 3.4e-310 0.813
A:B:D 0.310 0.295 0.326 3.7e+02 1.6e+03 1.4e-286 0.739
C -0.292 -0.307 -0.277 3.3e+02 1.4e+03 1.0e-258 0.655
A:B:D:E -0.266 -0.281 -0.250 2.7e+02 1.2e+03 2.6e-220 0.543
B:D:E -0.258 -0.273 -0.243 2.6e+02 1.1e+03 3.8e-209 0.512
C:D 0.254 0.238 0.269 2.5e+02 1.0e+03 7.7e-203 0.494
A:C:D:E -0.251 -0.267 -0.236 2.4e+02 1.0e+03 1.1e-199 0.485
C:D:E 0.172 0.157 0.188 1.1e+02 4.8e+02 7.5e-101 0.228
G -0.169 -0.185 -0.154 1.1e+02 4.7e+02 9.6e-98 0.220
B 0.128 0.112 0.143 6.3e+01 2.7e+02 9.2e-58 0.125
A:B -0.119 -0.135 -0.104 5.5e+01 2.3e+02 5.0e-51 0.110
B:C 0.119 0.104 0.135 5.5e+01 2.3e+02 6.7e-51 0.109
A:C 0.119 0.103 0.134 5.4e+01 2.3e+02 2.6e-50 0.108
D 0.112 0.097 0.127 4.8e+01 2.0e+02 3.5e-45 0.096
Residuals 8.7e+02 1.749

The Table 1 data show that Factor A is the most prominent coefficient (-3.3s) and
accounts for most of the variation (86.1%), following by the interaction of A and E (-0.6s
and 3.5%) and Factor E alone (-0.4s and 1.7%). This situation clearly shows that the best
case is with Factor A enabled. However, this analysis accounts for variations of some bad
situations that are not of interest, and the objective is to minimize the makespan. It may
be the case that some factors present some variations or behaviors only when Factor A
is disabled. Instead of using this data to make all decisions, we will break the situations
(Use or not of the factors) refining the conclusions.

Figure 4 presents the main effects plot of all factors. We analyze the influence
of each factor (on the X-axis: disable as in -1, or enable as in 1) in the execution time
(the Y-axis). As already discussed, factors A and E have the greatest impact on execution
time. Moreover, Factors B and D seem to cause little negative effects. Because we suspect
that this behavior is related to cases where Factor A is disabled, the inspection of Factors
interactions is necessary. Because of the magnitude of estimations of Factors impact, we
break it into two Figures.

Figure 5 shows the interactions of Factor A with all others, while Figure 6 shows
the interactions among the rest of the factors. These interaction plots present a facet for
each pair of factors with their interaction, containing the four possible configurations.
Each factor is enabled (1) or disabled (-1) for each configuration. The vertical factor



Figure 4. Main effects plot for all factors.

(column) has its value changing from -1 to 1 in the X-axis, while the horizontal factor
(line) has its value split into two lines (red for -1 and black for 1). The Y-axis presents the
makespan for the configuration. The red-left point in each facet represents both factors
disabled while the black-right point represents both enabled.

The interactions of Factors A/E present in Figure 5 annotation 1 shows that E=1
indeed improve execution time when A=1, this was also checked in the ANOVA table.
These situations suggest that E, following A, is a strong candidate to be always enabled.
Because Factor A is predominant, the Y-axis of Figures 5 and 6 are different. Figures 6
shows that interactions of B/D and C/D can have negative impacts (execution’s makespan
increase). If B or C are enabled, and D is activated, there will be a negative impact, as
shown in annotation 2. As well, if D is enabled, and B is also enabled, the makespan will
increase (Annotation 3). Factor E was a good candidate to be always enabled, checking
interference with other factors may be interesting. The interaction of D/E on annotation
4 revels that if E is enabled, and D becomes enabled, there will be a drop in performance.
Also, if E is disabled, a very small drop in performance exist. These indicate that D has a
negative effect on performance when Factors B, C, and E are enabled.

Figure 5. Interation of Factor A with all other factors.

Figure 7 (Left) present box plots of the execution times when varying the values
for Factors A and E. It is important to state that it contains data with all possible factor
levels. It is possible to observe that times are worst when A is disabled. However, the
combination with A=1 and E=-1 still has some higher maximum values that intercept
with the minimum values of both A=-1 cases. Also, when combining A=1 with E=1,
the mean and quartiles became lower and stable. Still, there are many outliers but could
be of a specific case of other factors interaction. With these observations, A and E en-
abled presents advantages. The remaining analysis will always consider A=1 and E=1
to discover the impact of other factors. Figure 7 (Right) present the main effects of the
remaining Factors. In this case, all factors have positive impacts (makespan drops), with
B, C, and D having higher impacts. This result is different from the earlier main effects
plot, showing the harmful effects of the factors in situations where A=-1 or E=-1.



Figure 6. Interation among Factors B, C, D, E, F, and G.

Figure 7. Boxplot for different values of Factors A and E (Left) and Main Effects
with A=1 and E=1 for the remaning Factors (Right).

The analysis of the interaction between the remaining Factors could reveal the
potential candidates for enabled settings. Figure 8 presents it. First, in annotation 5, it
is possible to verify that B and C do not have almost any interaction when at least one
of them is enabled, and a huge impact from both disabled to one enabled. However,
interactions of D with B or C are prejudicial (Annotation 6) if at least one of the Factors
is enabled. Because B, C, and D are the most prominent factors, and there is this negative
interference, we believe that the choice would be enabling B and C, or enabling D.

Figure 9 (Left) presents a boxplot for the different values of B, C, and D with
A and E enabled, representing all nine possibilities. The first thing observed is that in
the case of all three disabled, the makespan is the worst situation, and the variance is
very high. Activating any of the three factors causes a very positive impact. The case
with only C has many outliers, and the case with B only has a larger mean compared to
just D. Activating both B and D causes the appearance of many outliers, and all three
enabled factors have this same problem. This situation reinforces the observations of the
interaction plot. Case B and C presents the lowest mean and very stable measurements;
however, it is very close to the only D case. Also, it is important to notice the Y-axis



Figure 8. Interation plot with A=1 and E=1 for the remaning Factors.

values. The gains are not expressive. In this case, analyzing what the factors mean could
be the answer for this case. Factor C represents that StarPU will place the MPI worker
thread at the same NUMA node as the ethernet adapter, NUMA node 0, so this seems a
pretty logical thing to do, and disabling C does not harm the execution. Factor D states
that StarPU will place application thread and main memory at NUMA node 1. If D and C
are enabled, many outliers appear, stating that the application’s main thread and memory
should be at the same NUMA node of the MPI thread. Because of this, we consider the
best case to be using C and not enabling D, thought, only enabling D would have similar
results. Because enabling B with C only causes positive results, we consider, until now,
the configuration A=1, B=1, C=1, D=-1, E=1 the best situation.

Figure 9. Boxplots for A=1 E=1 for Factors B, C, and D (Left) and with A=1, B=1,
C=1, D=-1, E=1 for Factos F and G (Right).

The last two factors (F and G) have a minimal impact on the final performance.
Figure 9 (Right) presents the boxplots of all possible values of F and G with the previously
stated configuration. It is possible to observe that F does not cause any effect. Also, while
enabling G does seem to decrease the mean, the quartile intervals, and the actual time de-
creasing are not expressive (0.1s) to consider this a good technique in this particular case.
If a factor does not make such an impact, we prefer not to bother using it. In conclusion;
the best configuration is A=1, B=1, C=1, D=-1, E=1, F=-1, and G=-1. The original mean



makespan with all disabled configurations is 48.23s, while with this best configuration is
40.48, a gain of 16% only by knowing the platform and configuring StarPU.

5. Related Work
The strategy of mapping threads and data considering the hardware topology is a well-
known method in HPC to improve application’s performance because of problems re-
lated to NUMA affinity, latency, and communication overhead [Rodrigues et al. 2009],
[Diener et al. 2016], [Cruz et al. 2018], [Serpa et al. 2018]. Moreover, the interference
of NUMA and contention effects on multi-GPUs systems could harm performance
[Spafford et al. 2011], and some strategies consider these effects for the interconnec-
tion and cache in GPU systems to improve applications [Milic et al. 2017]. Other I/O
devices’ bandwidth, like disks and networks, are influenced by NUMA and contention
[Li et al. 2013]. Moreover, considering NUMA effects and correct mapping the re-
sources to shared NIC and NUMA nodes could improve network systems using Ethernet
[González-Férez and Bilas 2016]. Also, the locality of network devices and the NUMA
nodes, because of bandwidth, latency, and possible saturation of the PCI express, could
impact applications that use high bandwidth networks [Dumitru et al. 2011].

In HPC runtimes, these effects of affinity and contention could also play a remark-
able effect, like in Charm++, where NUMA-aware load balancers [Pilla et al. 2012] and
using the hardware topology and communication information [Jeannot et al. 2013] can
improve application performance. In task-based runtimes, contention can impair the per-
formance of multi-GPU XKaapi applications [Bleuse et al. 2014]. Also, decisions about
data mapping locality or balance can impact the PARSEC benchmark in NUMA archi-
tectures [Diener et al. 2015]. Furthermore, the influence of NUMA affinity was an expla-
nation for performance problems in the StarPU runtime [Lima and Di Domenico 2017].
Our work offers an extensive configuration impact analysis for the StarPU runtime using
already existing settings that are ready and easily used.

6. Conclusion
The complexity of HPC platforms can cause resource affinity and contention related per-
formance problems. Although the task-based paradigm may present various benefits for
programming in these environments, the configuration of the runtimes and platforms is
necessary to achieve the best results and mitigate these issues. This work presents a study
case of the LU factorization of the Chameleon dense algebra linear solver using StarPU
task-based runtime. The specific study case suffered from these problems when execut-
ing over 21 heterogeneous (CPU/GPU) nodes using two different clusters. We enumerate
a set of possible StarPU configurations and a Linux kernel one to mitigate these prob-
lems and perform an extensive analysis of these factors and their interaction. Creating
memory managers for each NUMA node (Factor A) and virtually increasing inner-node
data transfer times (Factor E) were the most significant factors. Correctly binding each
GPU worker CPU thread, and MPI communication responsible thread on their physical
resource NUMA node (Factor B and C) provide stabler but less significant results. Mov-
ing the application’s main thread and memory to NUMA node one (Factor D) slightly
decreases the application makespan. However, it had a negative performance interaction
with Factors B, C, and E and as considered a bad option in favor of Factors B, C, and E.
The increase of the StarPU GPU pipeline (Factor F) did not affect. Disabling the Linux



kernel option of NUMA data balancing (Factor G) had almost no impact on performance.
In the end, enabling Factors A, B, C, and E improve application performance by 16%
without changing it’s source code. Future work considers the analysis of new workloads,
applications, and platforms using the same methodology, with the addition of hardware
counters to characterize the behavior. Also, defining the best configurations per platform
automatically and split the StarPU CPU’s performance models per NUMA node.

Acknowledgements
This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior” - Brasil (CAPES) - Finance Code 001, the National Council for Scien-
tific and Technological Development (CNPq), under grant no 141971/2020-7 to the first
author, and the projects: FAPERGS (Data Science – 19/711-6, MultiGPU 16/354-8, and
GreenCloud – 16/488-9), the CNPq project 447311/2014-0, the CAPES/Brafitec EcoSud
182/15, and the CAPES/Cofecub 899/18. Experiments presented in this paper were car-
ried out using the Grid’5000 testbed, supported by a scientific interest group hosted by
Inria and including CNRS, RENATER and several Universities as well as other organiza-
tions (see https://www.grid5000.fr).

References
[Agullo et al. 2010] Agullo, E. et al. (2010). Faster, cheaper, better – a hybridization

methodology to develop linear algebra software for GPUs. In mei W. Hwu, W., editor,
GPU Computing Gems, volume 2. Morgan Kaufmann.

[Augonnet et al. 2011] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011).
StarPU: a unified platform for task scheduling on heterogeneous multicore architec-
tures. Concurrency and Computation: Practice and Experience, 23(2).

[Aumage et al. 2007] Aumage, O., Brunet, E., Furmento, N., and Namyst, R. (2007). New
madeleine: A fast communication scheduling engine for high performance networks.
In 2007 IEEE Int’l. Parallel and Distributed Processing Symposium. IEEE.

[Bleuse et al. 2014] Bleuse, R. et al. (2014). Scheduling data flow program in XKaapi: A
new affinity based algorithm for heterogeneous architectures. In Silva, F. et al., editors,
Euro-Par 2014 Parallel Processing, Cham. Springer International Publishing.

[Bolze et al. 2006] Bolze, R. et al. (2006). Grid’5000: a large scale and highly reconfig-
urable experimental grid testbed. The International Journal of High Performance
Computing Applications, 20(4):481–494.

[Cruz et al. 2018] Cruz, E. H. et al. (2018). Improving communication and load balancing
with thread mapping in manycore systems. In 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE.

[Denis et al. 2020] Denis, A. et al. (2020). Using Dynamic Broadcasts to improve Task-
Based Runtime Performances. In Euro-Par - 26th International European Conference
on Parallel and Distributed Computing, Euro-Par 2020, Warsaw, Poland. Springer.

[Diener et al. 2015] Diener, M., Cruz, E. H. M., and Navaux, P. O. A. (2015). Locality vs.
balance: Exploring data mapping policies on numa systems. In 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing.

https://www.grid5000.fr


[Diener et al. 2016] Diener, M. et al. (2016). Affinity-based thread and data mapping in
shared memory systems. ACM Comput. Surv., 49(4).

[Dongarra et al. 2017] Dongarra, J. et al. (2017). With extreme computing, the rules have
changed. Comp. in Sci. Eng., 19(3):52.

[Dumitru et al. 2011] Dumitru, C., Koning, R., De Laat, C., et al. (2011). 40 gigabit eth-
ernet: Prototyping transparent end-to-end connectivity. In The TERENA Networking
Conference 2011 (TNC 2011).

[González-Férez and Bilas 2016] González-Férez, P. and Bilas, A. (2016). Mitigation of
NUMA and synchronization effects in high-speed network storage over raw ethernet.
The Journal of Supercomputing, 72(11).

[Jain 1990] Jain, R. (1990). The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. John Wiley & Sons.

[Jeannot et al. 2013] Jeannot, E. et al. (2013). Communication and topology-aware load
balancing in Charm++ with treematch. In 2013 IEEE Int’l Conf. on Cluster Computing.

[Li et al. 2013] Li, T., Ren, Y., Yu, D., Jin, S., and Robertazzi, T. (2013). Characterization
of input/output bandwidth performance models in numa architecture for data intensive
applications. In 2013 42nd International Conference on Parallel Processing.

[Lima and Di Domenico 2017] Lima, J. V. F. and Di Domenico, D. (2017). HPSM: a pro-
gramming framework for multi-cpu and multi-gpu systems. In 2017 Int’l Symposium
on Computer Architecture and High Performance Computing Workshops.

[Milic et al. 2017] Milic, U. et al. (2017). Beyond the socket: Numa-aware GPUs. In Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitec-
ture, New York, NY, USA. Association for Computing Machinery.

[Nesi et al. 2019] Nesi, L., Thibault, S., Stanisic, L., and Schnorr, L. (2019). Visual perfor-
mance analysis of memory behavior in a task-based runtime on hybrid platforms. In
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID). IEEE.

[Pilla et al. 2012] Pilla, L. L. et al. (2012). A hierarchical approach for load balancing on
parallel multi-core systems. In 2012 41st Int’l Conference on Parallel Processing.

[Pinto et al. 2018] Pinto, V. G. et al. (2018). A visual performance analysis framework for
task based parallel applications running on hybrid clusters. Concurrency and Compu-
tation: Practice and Experience.

[Rodrigues et al. 2009] Rodrigues, E. R. et al. (2009). Multi-core aware process mapping
and its impact on communication overhead of parallel applications. In 2009 IEEE
Symposium on Computers and Communications, pages 811–817.

[Serpa et al. 2018] Serpa, M. S., Cruz, E. H., Panetta, J., and Navaux, P. O. (2018). Op-
timizing geophysics models using thread and data mapping. In 2018 Symposium on
High Performance Computing Systems (WSCAD), pages 135–141. IEEE.

[Spafford et al. 2011] Spafford, K. et al. (2011). Quantifying NUMA and contention effects
in multi-gpu systems. In Proceedings of the Fourth Workshop on GPGPUs, GPGPU-4,
New York, NY, USA. Association for Computing Machinery.


	Introduction
	Study-Case: Chameleon on 21 nodes
	Design of Experiments
	Experimental Evaluation
	Related Work
	Conclusion

