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Abstract. Parametric computational modeling of galaxies is a process with a
high computational cost. The statistical component of modeling, which may
involve model refinements in relation to the source brightness distribution,
achieves more satisfactory results when the Bayesian approach is employed.
In our research, we use GALaxy PHotometric ATtributes (GALPHAT) as our
primary tool for data processing. In the current scenario of cosmology, to be
scientifically relevant, this type of modeling must be performed on thousands
of galaxies. In this article, we present the study and optimization of solutions
based on modern HPC platforms, including a many-core processor, that enable
effective processing of that amount of galaxies obtained from Sloan Digital Sky
Survey.

1. Introduction

The parametric computational modeling of galaxies is a process with a high computational
cost that may last years of CPU time when several thousands of galaxies have to be pro-
cessed and especially when the Bayesian approach is used. In a typical scenario currently,
this type of modeling can be performed only on a limited set of galaxies, hampering more
ambitious and complete astrophysical data analysis. In recent years, the characterization
of galactic components such as bulge, disk, central point sources, and others of smaller
mass contribution has been shown an essential diagnosis of physical processes that de-
termine their evolution. In particular, they depend on the environment where the galaxy
resides.

Many relevant questions still remain open. How does a galaxy form its stars?
What determines the total star content of a galaxy? Astronomers have devoted consider-
able effort to answer such questions in recent decades. Stellar formation starting from a
cold gas cloud is an extremely complex problem and one of the most difficult of modern
astrophysics. The problem becomes more complicated by the fact that many galaxies re-
side in larger structures, such as groups and clusters of galaxies, where they interact with
neighboring systems. Thus, it becomes imperative to understand separately how internal
processes are distinguished from external processes that determine the stellar content of a
given galaxy in a certain environment and for a specific redshift. In summary, the results
of this research will improve our understanding of these effects by bringing an analysis
done with Bayesian inference tools, whereas previously only frequentist tools were used.



This research aims to contribute to the understanding of this matter by process-
ing a Spheroids Panchromatic Investigation in Different Environmental Regions (SPI-
DER) [La Barbera et al. 2010] data sample with a Bayesian-based tool. This article
presents initial steps of an ongoing, long-term research, which can be divided in three
parts: (1) test and optimization of environment; (2) data processing using the Sérsic
model [Sérsic 1963]; (3) data processing using the Sérsic+Exponential model (S+E)
[Andredakis and Sanders 1994] and consequential analysis. The main contribution of this
article is to discuss the first and second parts, i.e., available hardware and software solu-
tions, its usage and the results of processing a portion of our data. This processing is done
with GALPHAT' [Weinberg et al. 2013], which is a front-end application of the Bayesian
Inference Engine (BIE), a parallel Markov Chain Monte Carlo (MCMC) package.

The BIE package uses standard MPI and POSIX threads and, therefore, it can
run in a broad spectrum of parallel or scalar environments and can be easily ported to
high-performance hardware for production analysis. The basic functioning of GALPHAT
consists of spawning a given number of MCMC'’s instances using a Metropolis—Hastings
algorithm [Chib and Greenberg 1995], which will generate and check the values of each
parameter and store them in a file at the end. The number of MCMC'’s instances can vary
depending on the number of available threads and used models [Yoon et al. 2011]. After
a set of tests, we concluded that 20 MCMC'’s would be optimal for the Sersic model and
72 MCMC’s for the Sersic+Exponential. Exceeding the maximum limits, it is possible
to cause the appearance of varied errors due to the saturation of the active chains. From
experimental findings, we saw that one cannot keep increasing MCMC’s to theoretically
increase the performance, because there is an upper limit after which performance deteri-
orates or processing stalls. This is the main reason why GALPHAT needs another layer
of submission and distribution of galaxies, as discussed here.

The remainder of this article is organized as follows. In Section 2, we discuss our
main goal and challenges, along with the dataset used in this research. Section 3 describes
tests to understand the differences in available hardware and software options, following
the methods that were applied to improve performance. In Section 4, we summarize the
results and experimental achievements of the work. Section 5 lists examples of related
work and how they compare to our research. Finally, Section 6 concludes the work by
responding to the initial questions and pointing to future planned developments.

2. Main Goal and Challenges

In this research, our focus is to vastly extend a previous preliminary study
[Stalder et al. 2017], processing over 40 times more data. Our first goal is to process
the data with the Sérsic model and then, at a later stage, apply the much more complex
and sophisticated (and more costly in a computational sense) Sersic+Exponential model
to the same data. Our sample consists of 39,993 Early-Type Galaxies (ETG) taken from
the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) [Abazajian et al. 2009]. The
total number of galaxies in this catalog is approximately 1.12 million. Given the Big Data
context of large databases like SDSS, used in this work, or LSST, to be potentially used
in future research, it is necessary to explore software and hardware solutions to increase
the effectiveness of GALPHAT.

Thttps://bitbucket.org/mdweinberg/bie.git



The key objective of processing the data with two models (namely, Sérsic
and Sérsic+Exponential) is the fact that, with GALPHAT, we can distinguish which
one is the most cost-effective modeling method through the Bayes Factor analysis
[Kass and Raftery 1995]. Following the completion of processing, we will study the main
scaling relationships of these systems. On one hand, Sérsic (employed in this article) pro-
duces acceptable results, while, on the other hand, Sérsic+Exponential (to be employed in
the near future) provides more refined results but demands significantly longer processing
times. Thus, the final product, consisting of a compilation and analysis of the massive
amount of galaxies to be processed using the Bayesian Inference tool, with corresponding
processing resources required, is of considerable impact. This kind of study can bring a
good amount of new information and insights that were unavailable to researchers who
previously used frequentist approaches on the same data.

3. Tests for Configuration Exploration

Here we present initial explorations that we conducted to search for the most appropriate
tools and platforms that should be used for the processing of GALPHAT. We summa-
rize our findings and point to the final configuration in the next section. Here, we use
previously obtained results [Stalder et al. 2017] as a basis for comparison. Like in that
previous work, most of our tests use 20 threads to process each galaxy in GALPHAT.

3.1. Hardware Platforms

At our disposal for the processing of the data, we have a local machine (hostname Pollux)
based on the Intel Xeon Phi processor, model 7250, with 68 cores (272 threads), at a
clock speed of 1.4 GHz (1.6 GHz in TurboBoost), and 192 GB of RAM. This machine
is full-time dedicated to this research activity and is used mainly for tests and processing
of the Sérsic model. Also, we have access to a dedicated partition on the Santos Dumont
supercomputer consisting of 33 Thin nodes? (each with two processors Intel Xeon E5-
2695v2 Ivy Bridge, 2.4 GHZ and 64 GB of RAM). That machine is fully dedicated to the
processing of the Sersic+Exponential model and related tests. We also used two Linux
systems, based on the Intel 15 and AMD Ryzen processors, for pre/post-processing tests.

3.2. Compiler Comparison

Compiler choice was the first factor we addressed with the preliminary tests, to verify two
things: (1) influence of compilers on GALPHAT performance and (ii) scaling efficiency if
engaging maximum number of threads on our local machine. The compilers available on
the machine based on the Intel Xeon Phi were GNU’s GCC and Intel’s ICC. For an initial
evaluation, we used the NAS benchmark® with the EP (Embarrassingly Parallel) kernel
and C class, obtaining the results in Table 1.

The first important result observed is that ICC is superior to GCC with both num-
bers of threads. In addition, with the usage of a maximum number of threads, the gain
obtained with the ICC compiler was even more prominent, meaning that when we are
using near the maximum of the machine for galaxy processing, we can obtain even more
performance with ICC. As another important detail, Table 1 shows promising capabilities

Zhttps://sdumont.Incc.br/machine.php?pg=machine
3https://www.nas.nasa.gov/publications/npb.html



of the Xeon Phi processor in embarrassingly parallel tasks, as the speedup obtained from
thread parallelism with both compilers was a significant fraction of the increase in the
number of threads employed.

NAS benchmark times with 20 and 272 threads.

20 threads | 272 threads | Parallelism Speedup
GCC 58.01s 07.73 s 7.50
ICC 30.36 s 03.64 s 8.34
Compiler Gain 191 2.12

Table 1. Benchmark results using 20 and 272 threads on Xeon Phi machine to
compare the performance and efficiency of GCC and ICC compilers. As
load task we used NAS benchmark with EP (Embarrassingly Parallel) Ker-
nel and C class. The results were obtained by running each test three times
and getting mean values.

Parallelism efficiency would be 100% (ideal case) if we got speedup proportional
to the increase of active threads. In this case, we had 20 threads in the first test and 272
threads (total number of available threads) in the second. This represents an increase of
13.6 times in the number of threads. If we had obtained the same speedup, we would be
able to say that we can use all available threads without losing any performance. Never-
theless, due to the fact that the Xeon Phi has only 68 real cores, each capable of running
four simultaneous threads, that is not possible. In our case, we start to lose performance
while using ~ 55% (for the GCC compiler) and ~ 61% (for the ICC compiler) of the total
number of threads. While we do not get the ideal case of efficiency when employing all
threads, we are able to use more than half of the machine for our processing. Later in the
article, we will comment more on this matter in the context of GALPHAT.

After thoroughly preparing the environment and main packages to ensure correct-
ness of results, we selected a sample of 15 random-sized galaxies to verify the dependence
of GALPHAT’s performance on the compiler. The results of this run on the Pollux system
using GCC and ICC compilers clearly showed, again, that we obtain more performance
by using ICC, which justifies its adoption for further experiments. Using the 15 galaxies
from our list as testing input, we had a mean gain of 1.35 for ICC over GCC, which we
can convert to an economy of more than two months when processing our full collection
of galaxies.

3.3. Processor Comparison

Our next task was to compare the performance between our local machine’s Xeon Phi
processor and the processor employed in previous studies [Stalder et al. 2017], which was
an Intel Xeon E5-2660 processor. According to our preliminary tests [Kolesnikov 2020],
we estimated that the difference between the two processors (Xeon Phi and Xeon ES 2660)
would be a factor of about ~2.39 times (namely, 71 minutes vs. 30 minutes in a random
galaxy of size 132 pixels) in favor of the Xeon E5-2660, all this while using GCC on
both machines with the same galaxy. On the other hand, using the same setups and input
galaxy, but changing the compiler to ICC on the Xeon Phi, we obtained the results where
we can see a significant decrease in the processing time for the Xeon Phi and consequent
change of the Xeon E5-2660 gain, from 2.39 to only 1.69. This shows, once more, a clear



argument for the importance of using the Intel C compiler on the Xeon Phi processor
when running GALPHAT.

To obtain a more comprehensive comparison between the two processors, we con-
sidered a subset of the SPIDER sample containing 1,200 galaxies, the same subset that
had been used in a previous study [Stalder et al. 2017]. We processed each of those galax-
ies with the Xeon Phi processor, and obtained the data in Figure 1, which also shows the
previous results with the Xeon E5-2660 processor. In both cases, 20 threads were used
to process each galaxy with GALPHAT. Extrapolating these results, we would get bleak
predictions on how long it would take to process our entire SPIDER data collection, con-
taining 39,993 galaxies, with the Xeon Phi processor.
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Figure 1. Comparison between Xeon (GCC) and Xeon Phi (ICC) running each
galaxy (in a subset of 1,200 galaxies) with the Sérsic model. The data was
cleaned from outliers greater than 2 * Standard Deviation(STD) on both
X and Y axis. The chart presents the binned results of processing 1200
galaxies (this is better for visual analysis). The X variable was divided into
discrete bins and then we estimated the central tendency and a confidence
interval.

The critical point in this comparison is that the Xeon Phi has a much weaker
single-core performance. Nevertheless, when we switched to the Intel ICC compiler,
we were able to decrease the performance difference between the two types of proces-
sors. This considerable boost of single-core performance due to the compiler, along with
the much higher number of available threads, opened a path to improvements with the
Xeon Phi, which we will discuss in the next section.

3.4. Method of Performance Improvement

Besides raw performance, we also addressed scalability effects. GALPHAT, as we have
mentioned earlier, is already parallelized with MPI and is scalable inside a single pro-
cessing node of conventional server CPUs. However, it lacks scalability on many-core
systems like Xeon Phi or clusters of several nodes containing hundreds or thousands of
cores. The reason for it is that each model has its optimal range of MCMC’s that one



can allocate for a galaxy processing. While allocating more chains in that range, the per-
formance growth is noticeable, but not overwhelming. The problem is when one tries to
allocate more MCMC'’s then GALPHAT can manage for a given model. It can result in
stack processing and completely unreliable results. According to [Kolesnikov 2020] and
[Stalder Diaz 2017], one will not benefit greatly from having a machine with more than
72 cores for the processing of a single galaxy. While there is cases (especially with S+E
model) that require more that this, its rare and speedup gained is not significant. To over-
come this limitation, we developed a submission system to distribute galaxies through
available cores, such that multiple galaxies can be processed simultaneously. This is
the benefit of submission system - being able to schedule and distribute several galaxies
instead of just one. After completing this new submission system development, we ob-
served a performance improvement for the Xeon Phi machine, enabling easier use of the
resources available, and bringing the Xeon Phi’s performance on par and even surpassing
the results obtained by previous research. This benchmark comparison can be seen in Fig-
ure 2. The only caveat of this new scheme is much higher usage of RAM on the Xeon Phi
machine, because processing of each galaxy by Sérsic roughly consumes 20 GB of RAM.
Thus, processing six galaxies at the same time will require 120 GB of available RAM.
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Figure 2. This figure shows the results of processing several galaxies si-
multaneously on the Xeon Phi using the developed submission sys-
tem. These results are compared to the performance of previous studies
[Stalder et al. 2017], where a machine (Helios) with a Xeon E5-2660 proces-
sor had been used. Each line corresponds to a number of galaxies that are
executed simultaneously (submitted at once) on Xeon Phi (Pollux), using
20, 40, 80 and 120 GB of RAM and 20, 40, 80 and 120 threads, respectively,
under the Sérsic model. The data was cleaned from outliers greater than 2
* 8TD. This shows that when running four simultaneous galaxies, we were
able to surpass the results from Stalder’s research.

While one could view as a good idea to run, for example, ten galaxies at the same
time, using 200 threads and 200 GB of memory, we cannot forget that the Xeon Phi has 68
real cores, each supporting up to four threads, resulting in 272 threads that could run si-
multaneously. However, it does not mean that these threads have the same performance as



the real cores. It is merely due to CPU co-scheduling, which enables us to schedule more
than one task on the same core. Intel calls this technology HyperThreding [Stokes 2002].
During the tests, we saw that when one uses more than 120 active threads, performance
starts to suffer penalties. The time of processing starts to grow, which is detrimental to the
gains. This result corroborates our previous findings during testing with the NAS bench-
mark, in section 3.2. We empirically found that an optimal number of galaxies to be run
simultaneously on this machine is six, using 120 active threads throughout the testing.

3.5. Sérsic+Exponential Performance Remarks

Our initial tests with S+E on Xeon Phi have shown that it is entirely unfeasible to use this
machine to process this sophisticated model [Kolesnikov 2020]. Due to the relatively poor
single-core performance, in some cases the difference in time reached tenfold or more to
process the same galaxy with S+E model compared to the Xeon E5-2695v2 processor.
This sometimes led to nearly one day of processing time for a single galaxy.

As a consequence, we moved the processing of the S+E model to the Santos Du-
mont system, where, at the time, we received access to a dedicated queue, which helped
and continues to help greatly our research. Although we are at a fairly early stages of
processing the S+E model, we expect that the better single-core performance of the Xeon
processors on Santos Dumont will provide better throughput to our production runs.

3.6. Optimization of Workflow Pipeline

Another problem linked with performance is the time consumed for the preparation of
executions and analysis of results. The entire workflow pipeline of our cosmological
framework [Kolesnikov 2020, Stalder Diaz 2017] roughly consists of three main steps:
pre-processing, model processing, and post-processing. To improve performance of steps
that were not parallelized, our choice of parallelization tool was the joblib* library. By
default joblib.Parallel uses the loky back-end module to start separating Python worker
processes to execute tasks concurrently on separate CPU cores. This is a reasonable de-
fault for generic Python programs but can induce a significant overhead as the input and
output data need to be serialized in a queue for communication with the worker pro-
cesses [Varoquaux and Grisel 2009]. This library enables simple and logical paralleliza-
tion of embarrassingly parallel tasks. We have also rewritten our implementations of the
converter routine that processes output data, including the plot generator of produced files.

The clock speed of 1.4 GHz (1.6 GHz in Intel TurboBoost) is the weakness
of single-core performance on the Xeon Phi, even in comparison with the 8" gener-
ation of energy-efficient U line of processors for notebooks (Intel 15-8350u, 4 cores/8
threads@1.8GHz; 3.6GHz in Turbo-Boost) or AMD’s 2" generation desktop processor
Ryzen 2700X (8 cores/16 threads@3.7GHz; 4.3GHz in AMD TurboCore). However,
when we switch to parallel versions of the script and run it with a high enough core count,
the Xeon Phi still comes out as a clear winner in regard to speedup. The results of our
testing of the updated routines can be seen on Figures 3 and 4. Here, again, we need to
note that, during this operation, the Xeon Phi was consuming considerably more RAM
(proportional to the increase of threads used), at a much higher level than its counterparts.

“https://joblib.readthedocs.io/en/latest/
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Figure 3. Performance gains of compression routine parallelization on various
platforms. The comparison is between usage of one thread and the opti-
mal amount on each processor. Even though the gains are observed for
all platforms, the speedup on the Xeon Phi machine is the most prominent,
showing the importance of using as many threads as possible on this pro-
cessor family, to make it comparable to the other processors.

In summary, parallelizing these two phases decreased the times of pre- and post-
processing steps significantly. As a pleasant bonus, the new codebase of post-processing
is highly scalable, so if it becomes necessary to integrate new functionality (such as a new
type of chart), it could be done effortlessly and already in a parallel manner.

4. Environment for Production Experiments

With the work described above, we were able to improve performance and usability of
GALPHAT’s pipeline significantly, making it more automated and faster on the Xeon Phi
processor. We used this improved pipeline to analyze the entire SPIDER sample with the
Sérsic model, processing nearly 40,000 galaxies in about a year. Also, we extended the
pipeline with support for the S+E model and modularized it to facilitate future extensions.

To obtain good performance with GALPHAT, it is possible to use either a small
number of high-frequency, powerful cores, or many low-frequency, less powerful cores
like in the Xeon Phi. In this second case, it is necessary to have higher amounts of RAM to
compensate the low frequency, and run several galaxies at the same time. For the amount
of RAM, it is easy to follow a rule of one Monte Carlo Chain (1 thread) with 1 GB of
RAM. This means that the processing of a galaxy by the Sérsic model, which uses 20
chains, would require 20 threads and 20 GB of available RAM.

5. Related Work

The galaxy modeling field is dominated by solutions based on the frequentist approach.
These solutions tend to be faster in processing the data, but this speed comes with a cost.
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Figure 4. Performance gains on various platforms when comparing sequential
and parallel versions of the code for generation of the posterior plot. We
can see from the chart that, once again, the Xeon Phi machine had a
more significant improvement than any other. This data was generated
with the following equation: factor = sequentialTime/parallelTime. Where
sequentialTime is the best sequential result and parallelTime is the best
parallel time.

Commonly, the multi-modal signature is weak when analyzed by maximum likelihood
methods (ML) such as GALFIT [Peng et al. 2002]. Meanwhile, Bayesian inferences with
elicited priors, such as used by GALPHAT, were found to be less biased, especially for
high-concentration profiles: GALPHAT s Sérsic index n, re, and MAG deviate from their
actual values by 6%, 7.6%, and -0.03 mag, respectively, while GALFIT deviates by 15%,
22%, and -0.09 mag, respectively [Stalder et al. 2017].

The key to testing galaxy formation theories and evolution is to make full use
of the information in galaxy image data. Algorithmic approaches for describing two-
dimensional surface photometry profiles - e.g., SExtractor [Bertin and Arnouts 1996],
GIM2D [Simard 1998], GALFIT [Peng et al. 2002], 2DPHOT [La Barbera et al. 2008],
GALAPAGOS [Barden et al. 2012] - are based on maximum likelihood estimation
(MLE), or more generally, optimizing an objective function that differentiates between
two distributions.

The approach above, however, has significant limitations. Firstly, the esti-
mated structural parameters are affected by random and systematic errors. For ex-
ample, pixel integration, rotation, and convolution techniques used to generate model
predictions, as well as the background noise, contamination by nearby objects, initial
guesses, the form of the objective function and the models themselves, minimization
algorithms, and image sizes [Hiussler et al. 2007, Vikram et al. 2010, Guo et al. 2009,
Simard et al. 2011, Mendel et al. 2013, Bernardi et al. 2017] all may cause deviations



from the correct model. Secondly, a simple change in the parameterization for the data
values can change the likelihood function’s shape and affect the inferred confidence re-
gions, as can be seen by applying the derivative chain rule on the likelihood function.
Therefore, inferred galaxy properties using ML fitting tools can be affected significantly
[Bernardi et al. 2003, Hyde and Bernardi 2009] by seemingly innocuous changes in the
problem definition. Thirdly, the ML approach cannot easily select between various mod-
els for spheroids, bulges, discs, and/or point sources given a particular galaxy image. In
other words, ML provides no relative measure of how well the model explains the data
except in the special case of nested models. This is one of the crucial points for the
achievement of our goal, in the long run, and justification for the attempts to optimize and
improve performance in order to make GALPHAT a more useful tool.

6. Conclusion

In conclusion, we have shown in this article that it is indeed possible/viable to process
a large amount of data locally with a Bayesian Inference tool. We achieved this with
the Sérsic model processing the SPIDER sample, containing thousands of galaxies. The
execution time for the entire sample was on the order of about a year on a system with a
many-core processor (Intel Xeon Phi). However, for an increased number of galaxies, or
for a more complex model (such as Sérsic+Exponential), we would need a more powerful
system to complete the task in a similar time range.

The work conducted so far in this research resulted in the updating and optimiza-
tion of the submission pipeline and its automation to facilitate the usage on multi-core
systems. This pipeline is built upon the refactored, optimized, and extended code-base
that was inherited from previous research. At the same time, the large volume of the
resulting data requires organization and a tool for its visualization, so we implemented
the first version of diagnostic and monitoring systems that evolved into visualization and
analysis tools for our data [Kolesnikov 2020]. In the long run, we aim to integrate and
unify related tools to facilitate and optimize the process of galactic modeling and analysis.

6.1. Future Work

As future work, we have the goal of finishing the processing of the Sérsic+Exponential
model, possibly using GPGPU technology to speedup even more the processing routine.
The next step would be gathering and organizing all the data, and starting the analysis
of the results, focusing on the comparison of Bayes Factor of the two models. However,
at the same time, one ought to continue implementing improvements of the processing
pipeline. We hope that with data produced by the pipeline we will be able to get key
insights on galaxy formation and evolution inside the clusters. The tools that were devel-
oped during this research should greatly facilitate the process of analysis. The next phase
will consist in a detailed analysis of cosmological data and extension of our astronomical
knowledge with results from that analysis.
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