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Abstract. The huge growth of image collections have demanded methods ca-
pable of conducting effective and efficient image searches. Among the most
promising approaches, the Content-Based Image Retrieval (CBIR) systems have
established as an alternative for automatically taking into account the visual
information. Despite the important results achieved, retrieving relevant images
(effectiveness) in minimal time (efficiency) remains a challenge task. Recently,
unsupervised learning algorithms have been proposed to improve the effective-
ness of CBIR systems by exploiting similarity and ranking information. Such
algorithms does not require any user information, but often demand high com-
putational efforts. On the other hand, parallel and heterogeneous approaches
constitute a feasible solution for high performance computing. In this paper,
we discuss a parallel and accelerated solution for computing the RL-Sim∗ Al-
gorithm, a recently proposed unsupervised image re-ranking approach. The
proposed algorithm uses the OpenCL standard, exploiting both CPU and GPU
devives in an Accelerated Processing Unit (APU). The experimental evaluation
demonstrated that significant speedups were achieved when compared with the
original approach.

1. Introduction

Advances in social media and image acquisition devices have been triggering, every day,
a huge growth of images available in a unstructured way. Considering this scenario,
Content-Based Image Retrieval (CBIR) systems have been establishing as a consistent
solution for conducting image searches. The main objective of CBIR systems is to orga-
nize an image collection taking into account their visual content [Datta et al. 2008]. In
general, given a query image, a CBIR system ranks the collection images in decreasing
order of similarity according to the query.

However, despite of significant advances of CBIR systems in last decades, effec-
tively measuring the similarity among images remains a challenging problem in image
retrieval tasks. In this way, various research efforts have been put in methods for im-
proving the accuracy of retrieval results without the need of user interventions. Actually,
various unsupervised learning methods [Yang et al. 2009, Pedronette and da S. Torres
2013] have been achieved significant effectiveness gains. In general, such methods re-
places pairwise measures by more global measures which consider underlying contextual
information of dataset. A relevant advantage of such methods consists in its capability of
improving the effectiveness of retrieval task without requiring any user intervention.



Although effective, these approaches are often computationally expensive and de-
signed to run off-line, since they analyze the relationships among all collection images.
Graph approaches based on diffusion process [Yang et al. 2009], for example, presents
high complexity, what can turn unfeasible its use in some scenarios. More recently, rank-
based unsupervised learning approaches [Pedronette and da S. Torres 2013] have been
attracted a lot of research attention due to the smaller computational efforts required.

In addition, heterogeneous and parallel architectures have presented consistent
advances. With the evolution of Central Processing Units (CPUs), which currently have
various cores, and the Graphics Processing Units (GPUs) used as general-purpose pro-
cessors (GPGPUs), multi tasks architectures are able to execute hundreds of operations
per cycle. Parallel standards, as OpenCL, have also been proposed mainly for exploiting
parallel resources available in different devices. Such heterogeneous and parallel archi-
tecture advances can be exploited to accelerate unsupervised learning methods, becoming
it suitable to on-line applications.

In this paper, we discuss the acceleration of a recent effective distance learning
algorithm for image retrieval. The RL-Sim∗ [Okada et al. 2015] algorithm exploits the
similarity between ranked lists through rank correlation measures for improving the image
retrieval accuracy. The objective is to accelerated the algorithm in order to allow its use
in real time applications. The contributions of this paper are threefold: (i) an accelerated
RL-Sim∗ algorithm is proposed, including optimizations for efficient serial execution; (ii)
a parallel solution is discussed for computing the algorithm using the OpenCL standard;
(iii) the algorithm is evaluated in heterogeneous environments, considering an Accelerated
Processing Unit (APU). Experiments were conducted in three public image datasets. The
experimental results demonstrated that the proposed approach improves the efficiency of
the algorithm without significant losses of effectiveness.

This paper is organized as follow: Section 2 briefly describes the original RL-
Sim∗ algorithm [Okada et al. 2015]. Section 3 presents the proposed accelerated RL-
Sim∗ algorithm. Section 4 discuss the experimental results. Finally, Section 5 draws the
conclusions.

2. RL-Sim* Algorithm
The RL-Sim [Pedronette and da S. Torres 2013] algorithm was proposed based on the
conjecture that ranked lists encode useful contextual information for improving the effec-
tiveness of image retrieval tasks. Ranked lists represent a relevant source of contextual
information, since users do not consider pairs of images, but the ranked list as a whole. In
addition, if two images are similar, their ranked lists should be similar as well.

In this way, the RL-Sim algorithm computes a new distance/similarity score be-
tween images by analyzing the similarity between their respectively ranked lists consid-
ering the top-k positions. Formally, given two images imgi, imgj , a rank correlation
measure d(τi, τj, k) is computed between their respective ranked lists τi, τj . Based on
the rank correlation measure, a new ranked lists can be computed and the process can be
iteratively repeated. Figure 1 [Pedronette and da S. Torres 2013] illustrates the evolution
of ranked lists along the iterations. The query image is illustrated in green borders and
the wrong results in red borders.

The most significant effectiveness gains are obtained at initial positions of ranked



Figure 1. Iterative evolution of ranked lists - RL-Sim Algorithm.

lists. It occurs since is very unlikely to found similar images at the end of ranked lists.
Therefore, the distances are redefined considering the rank correlation measure d(τi, τj, k)
for the first L positions of the each ranked list, such that L ∈ N and k ≤ L � N . For
images in the remaining positions of the ranked lists, the new distance is redefined based
on the current distances (or rank positions). As a result, this step of the algorithm depends
only on a constant L, and not on the collection size N .

Although this approach allows for decreasing the demanded computational costs,
it still presents a limitation. Since the rank correlation measures are computed consider-
ing the top-k positions their accuracy tends to be low when there is no overlap between
the ranked lists being compared at top positions. For measures based on intersection anal-
ysis, it is still more critical, producing the same distance values for all pairs of images
without overlap at top-k positions. In theses situations, the effectiveness of distance can
be worsened.

Based on this observation, the RL-Sim* Algorithm [Okada et al. 2015] was pro-
posed. The RL-Sim* Algorithm [Okada et al. 2015] computes a different distance when
there is no overlap between top-k positions. In this way, considering a query image imgi
the ranked list τi is divided in three segments. Let N (i) be the set of k most similar im-
ages to imgi and let τi(j) denotes the position of imgj in the ranked list τi, the segments
are defined as follows:

(i) First segment: this segment contains an image imgj if (τi(j) < L) ∧ (N (i) ∩
N (j) 6= ∅). For these cases the new distance between imgi and imgj is computed by the
rank correlation measure.

(ii) Second Segment: if the imgj appears at top-L positions of τi, but there is no
overlap between top-k positions (N (i) ∩N (j) 6= ∅), the new distance should segmented
from that computed by the rank correlation measures. It is done by incrementing 1 to the
current distance.

(iii) Remaining Images: the remaining images, i.e., images after top-L positions
are also segmented adding a constant value (defined as 2) to current distance.

As a result, the distance computed based on the segmented rank list presents a
higher retrieval accuracy. Other relevant contribution of the RL-Sim∗ Algorithm [Okada
et al. 2015] consists in the use and evaluation of several rank correlation measures.

3. Accelerated RL-Sim∗

In this work, we aim at exploiting some characteristics of the RL-Sim∗ Algorithm [Okada
et al. 2015] for proposing an accelerated and parallel re-ranking algorithm. While studies
were conducted about the efficiency of the RL-Sim Algorihtm [Pedronette et al. 2013],



the RL-Sim∗ Algorithm still lacks such analysis. The objective is to analyse the trade-off
between effectiveness and efficiency, discussing optimizations which present high impact
on efficiency, without significant loss in effectiveness.

This section is organized as follows: Section 3.1 discusses rank correlation mea-
sures and its impact on efficiency aspects. Section 3.2 presents the parallel model and
Section 3.3 discusses the proposed optimizations.

3.1. Rank Correlation Measures

The computing of rank correlation measure represents the most costly step of the algo-
rithm. Therefore, it impacts severely the execution time and efficiency aspects. Accel-
eration strategies of the RL-Sim Algorihtm [Pedronette et al. 2013] considered only the
intersection measure. In this work, we use the Jaccard measure, which presents a sig-
nificant lower computational cost. Both rank correlation measures are discussed in the
following.

3.1.1. Intersection Measure

The intersection measure [Fagin et al. 2003] captures the extent of overlap between τi and
τj . This measure considers not only the overlap at depth k, but also the cumulative overlap
at increasing depth. For each depth d ∈ {1 . . . k}, it is computed the overlap at d, and then
those overlaps are averaged to derive a similarity measure. The measure assigns higher
weights to the first positions of top k lists, which are considered many times. Equation 1
formally defines the intersection similarity measure ψ.

ψ(τi, τj, k) =

∑k
d=1 | N (i, d) ∩N (j, d) |

k
(1)

3.1.2. Jaccard

The Jaccard coefficient is a well-known distance between sets. Given two non-empty sets,
it measures the probability that an element of at least one of two sets is an element of both,
and thus is a reasonable measure of similarity or overlap between the two. The Jaccard
Coefficient is defined as follows:

J(τi, τj, k) =
|N (i, k) ∩N (j, k)|
|N (i, k) ∪N (j, k)|

, (2)

3.2. Parallel RL-Sim∗ Algorithm

The RL-Sim∗ Re-Ranking [Okada et al. 2015] Algorithm presents great potential for
parallelism. A large number of comparisons between ranked lists are executed at each
iteration and they do not depend on each other for processing. The re-ranking step, which
is given by the re-sort of ranked lists, is also completely independent and can also be
computed in parallel. Next sections discusses the parallel solution proposed.



3.2.1. OpenCL

The OpenCL [Stone et al. 2010] (Open Computing Language) is a language for task-
parallel and data-parallel programs on heterogeneous platforms, like CPUs, GPUs and
others architectures. The OpenCL can be used to improve the performance of several
applications in different areas, such as games, medical or academic research.

A program is divided into kernels, which are functions declared in OpenCL lan-
guage. Parallel executions of a kernel are invoked by a command and can be executed
different devices. Each instance of a kernel running on a device is called work-item. The
work-items are organized in dimension spaces and execute the same kernel on different
data independently.

3.2.2. Parallel Model

The proposed parallel model divides the original RL-Sim∗ Re-Ranking Algorithm [Okada
et al. 2015] in OpenCL kernels. The organization in kernels are also relevant for a correct
execution order, ensuring the correctness of data dependences between different steps.
For example, the re-sort of ranked lists can only be computed when the distance among
images are re-computed based on rank correlation measures. The kernels which composes
the proposed parallel model are:

(i) Update of Distances (Up. Dists): this kernel computes new distances among
images, based on a rank correlation measure (Jaccard measure). The kernel is executed
in 2 dimensions of N × L work-items. Each work-item computes the distance between a
pair of images. Only the top-L images of each dataset have their distances updated. This
kernel presents the more costly step of the algorithm.

(ii) Sorting Ranked Lists (Sort RkLists): once the update of distances among
images are complete, a new set of ranked lists can be computed. The ranked lists need to
be re-sorted based on the new distance. This kernel is execute by N work-items (one for
each ranked list)

(iii) Initializing/Normalizing Distances (Init/Norm. Dists): this step is needed
to initialize the data structures and normalize distances among images. In previous accel-
eration strategies of the RL-Sim Algorihtm [Pedronette et al. 2013], this step is serially
executed, requiring several OpenCL memory transfers. In this work, aiming at avoiding
the intermediary memory transfers, the normalization is not executed and the initializing
of structures are made in parallel way, using N work-items.

Figure 2 illustrates a comparison between previous acceleration strategies [Pe-
dronette et al. 2013] and the proposed parallel model. In Figure 2(a), both the initial-
ization and normalization steps serially executed. In Figure 2(b), we can observe that
the initialization is executed in parallel requiring no memory transfers between iterations.
The normalization step is discarded in the proposed model, which can affects the effec-
tiveness of the algorithm. However, as discussed in experimental evaluation (Section 4),
the losses in effectiveness are very small.
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Figure 2. Parallel Model proposed for the RL-Sim∗ Algorthm.

3.3. Algorithm Optimizations
In addition to the parallel model, other optimizations were also proposed for the accel-
eration of RL-Sim∗ Algorithm. Such optimizations aims at minimizing the computa-
tional cost of the algorithm, without significant losses in effectiveness. The next sections
presents the proposed optimizations.

3.3.1. Re-Ranking and Storage of Ranked Lists until top-L positions

The input of the RL-Sim∗ Algorithm is a set of ranked lists, which are processed through
a ranking correlation measure for computing new distances among images. Previous ac-
celerations strategies [Pedronette et al. 2013] compute and storage a new distance among
all images in the dataset, resulting in a squared N ×N distance matrix.

The first optimization proposed for acceleration of RL-Sim∗ algorithm consists in
the storage and computing of only the top-L positions of ranked lists. Instead of N × N
storage requirements, it becomes only N × L. Therefore, not only the use of memory is
reduced but also the time required for memory transfers.

After the update distances among images, the ranked lists need to be re-sorted.
Once only the top-L positions of ranked lists are stored, the ranked lists are also re-sorted
only until the top-L positions. In this way, the accelerated RL-Sim∗ Algorithm obtain a
significant efficiency gain, since the sorting step represents a relevant workload. Figure 2
also illustrated the proposed accelerated strategy in comparison with previous approaches.

3.3.2. Removing Normalization Step and Memory Transfers

The distances computed by the RL-Sim and RL-Sim∗ algorithms are not symmetric, im-
plying that the distance from imgi to imgj can be different from imgj to imgi. An initial



solution for this drawback is a normalization step, which defines both distances equal to
the smaller distance. This process was serially computed, requiring intermediary OpenCL
memory transfers [Pedronette et al. 2013].

We proposed a different accelerated solution to optimize this step. Once the dis-
tance between imgi and imgj is computed, the algorithm also defines the distance be-
tween imgj and imgi with the same value, dispensing the normalization process. In this
way, the intermediary OpenCL memory transfers are also avoided. Despite the gains in ef-
ficiency, it also affects effectiveness, as discussed in experimental evaluation (Section 4).

3.3.3. Initializing Distances

Before each iteration of the algorithm, it is necessary to initialize the distances among im-
ages. In the proposed algorithm, it was implemented using new kernel exclusive for this
task. In previous work [Pedronette et al. 2013], this step was performed in serial mode,
requiring the transference of the distances from the OpenCL device (parallel) to the host
(serial) and back to the parallel code. To optimize this step, it was implemented using new
kernel with N work-items. Besides the acceleration obtained by the parallelization, effi-
ciency gains are obtained since memory transfers are avoided. As illustrated in Figure 2,
notice that all steps of the algorithm are parallelized.

4. Experimental Evaluation

This section presents the experimental evaluation conducted for assessing the efficiency
and effectiveness of the proposed approach. Section 4.1 presents the experimental setup.
Section 4.2 presents the results focused in efficiency aspects and Section 4.3 discusses the
impact on effectiveness.

4.1. Experimental Setup

For the hardware environment, the experiments were conducted considering the AMD
A10-6800K APU, which combines 4 CPU cores and an AMD Radeon HD 8670D. For the
software environment, a Linux Ubuntu 14.04 with OpenCL 2.0 AMD-APP is considered.
The algorithms was compiled with g++ 4.8.4 using the flag “-O3”.

The experimental evaluation was conducted considering four datasets with differ-
ent characteristics and size ranging from 280 to 10,200 images. Diverse descriptors which
consider shape, color and texture were used. Table 1 presents details about the datasets
and descriptors. For the effectiveness evaluation, all images of each dataset are consid-
ered as query images. For most of datasets, the Mean Average Precision (MAP) is used
as effectiveness measure. Only for the N-S dataset uses the N-S score [van de Weijer and
Schmid 2006].

The efficiency evaluation of the proposed algorithm considers the execution time
of serial and OpenCL parallel implementation, considering CPU and GPU devices. The
experiments considered the execution time of different kernels and memory transfers.
The comparison with previous acceleration strategies [Pedronette et al. 2013] are also
reported. Regarding parameters, we used T =3 and K =15 for all datasets, except for



UKBench [Nistér and Stewénius 2006] dataset which used T =1 and K =5. Each exper-
iment was executed 10 times and the average results are reported besides the confidence
intervals at 95%.

Table 1. Datasets and images descriptors used in the experimental evaluation.

Size Type Description Descriptors Effectiv.
Measure

Soccer [van de Weijer and Schmid 2006]
280 Color

Scenes
Dataset composed of im-
ages from 7 soccer teams,
containing 40 images per
class

Border/Interior Pixel Classification (BIC) [Stehling et al.
2002], Auto Color Correlograms (ACC) [Huang et al.
1997], and Global Color Histogram (GCH) [Swain and
Ballard 1991]

MAP

MPEG-7 [Latecki et al. 2000]
1,400 Shape A well-known dataset

composed of 1400 shapes
divided in 70 classes.
Commonly used for
evaluation of unsuper-
vised distance learning
approaches

Segment Saliences (SS) [da S. Torres and Falcão 2007],
Beam Angle Statistics (BAS) [Arica and Vural 2003],
Inner Distance Shape Context (IDSC) [Ling and Ja-
cobs 2007], Contour Features Descriptor (CFD) [Pe-
dronette and da S. Torres 2010], Aspect Shape Con-
text (ASC) [Ling et al. 2010], and Articulation-Invariant
Representation (AIR) [Gopalan et al. 2010]

MAP

UKBench [Nistér and Stewénius 2006]
10,200 Objects/

Scenes
Composed of 2,550 ob-
jects or scenes. Each ob-
ject/scene is captured 4
times from different view-
points, distances and illu-
mination conditions

ACC [Huang et al. 1997], BIC [Stehling et al.
2002], Color and Edge Directivity Descriptor
(CEED) [Chatzichristofis and Boutalis 2008a], Fuzzy
Color and Texture Histogram (FCTH) [Chatzichristofis
and Boutalis 2008b], Joint Composite Descriptor
(JCD) [Zagoris et al. 2010], Scale-Invariant Feature
Transform (SIFT) [Lowe 1999]

N-S
score

4.2. Efficiency of Accelerated RL-Sim ∗

Experiments were conducted in different datasets aiming at evaluating the efficiency of
the accelerated RL-Sim∗ Algorithm. Table 2 presents the results obtained by the ac-
celerated algorithm considering CFD [Pedronette and da S. Torres 2010] descriptor on
MPEG-7 [Latecki et al. 2000] dataset. The results obtained by previous accelerations
initiatives [Pedronette et al. 2013] of the RL-Sim algorithm are reported for compari-
son purposes. We can observe that the optimizations implemented on original algorithm
results in a significant gain in efficiency for all kernels executed in parallel or serial mode.

The update distances kernel, which consists in the major computational effort of
the algorithm, obtained a significant efficiency gain and the smaller execution time re-
quired only 0.4339s (OpenCL CPU). The speedup of this kernel is 1.66× when compared
with the original RL-Sim algorithm (0.7186s) and 1.93× when compared with the accel-
erated serial implementation (0.8376s). The best speedup is 5.99×, which occurs consid-
ering the sort of ranked lists for original (0.0575s) and accelerated (0.0096s) algorithm on
CPU.

Table 3 presents the results considering ACC [Huang et al. 1997] descriptor on
Soccer [van de Weijer and Schmid 2006] dataset. We can observe that the accelerated
algorithm obtained a speedup of 2.68× in serial mode and 1.63× in CPU, when compared
with the original algorithm. In addition, the update of distances kernel of the accelerated
algorithm obatined a speedup of 2.89× considering the time execution on GPU (0.0198s)
and on serial (0.0573s).



Table 2. Efficiency Evaluation on MPEG-7 dataset (CFD descriptor).
Serial OpenCL-CPU OpenCL-GPU

Kernel Exec.Time Exec.Time Mem. Transf Total Exec.Time Mem. Transf Total
Up. Dists 2.0582 ±0.0033 0.6739 ±0.0017 0.0430 ±0.0011 0.7186 ±0.0017 0.6537 ±0.0009 0.0458 ±0.0016 0.7002 ±0.0019

RL-Sim∗ Sort. RkLists 0.0820 ±0.0003 0.0254 ±0.0008 0.0288 ±0.0003 0.0575 ±0.0009 1.1690 ±0.0009 0.03478 ±0.001377 1.2080 ±0.0019
Init./Norm. Dists. 0.0182 ±0.0003 0.0187 ±0.0003 0.0000 ±0.0000 0.0187 ±0.0003 0.0269 ±0.0015 0.0000 ±0.0000 0.0269 ±0.0015

Total Time 2.1585 ±0.0032 0.7181 ±0.0023 0.0718 ±0.0011 0.7949 ±0.0021 1.8500 ±0.0017 0.0806 ±0.0008 1.9350 ±0.0026
Accel. Up. Dists 0.8376 ±0.0003 0.4338 ±0.00104 0.0000 ±0.0000 0.4339 ±0.0010 0.5977 ±0.0024 0.0000 ±0.0000 0.5981 ±0.0024

RL-Sim∗ Sort. RkLists 0.0240 ±0.0001 0.0074 ±0.0000 0.0001 ±0.0000 0.0096 ±0.0001 0.6236 ±0.0007 0.0028 ±0.0013 0.6305 ±0.0018
Init./Norm. Dists. 0.0183 ±0.0001 0.0115 ±0.0002 0.0001 ±0.0000 0.0117 ±0.0002 0.1105 ±0.0001 0.0014 ±0.0003 0.1122 ±0.0002

Total Time 0.8802 ±0.0004 0.4527 ±0.0011 0.0001 ±0.0000 0.4553 ± 0.0012 1.3320 ±0.0027 0.0042 ±0.0013 1.3410 ±0.0039

Table 3. Efficiency Evaluation on Soccer dataset (ACC descriptor).
Serial OpenCL-CPU OpenCL-GPU

Kernel Exec.Time Exec.Time Mem. Transf Total Exec.Time Mem. Transf Total
Up. Dists 0.1627 ±0.0002 0.0414 ±0.0008 0.0017 ±0.0001 0.0436 ±0.0009 0.0687 ±0.0004 0.0037 ±0.0009 0.0730 ±0.0001

RL-Sim∗ Sort. RkLists 0.0046 ±0.0001 0.0017 ±0.0004 0.0013 ±0.0001 0.0038 ±0.0001 0.1837 ±0.0001 0.0030 ±0.0008 0.1879 ±0.0002
Init./Norm. Dists. 0.0007 ±0.0002 0.0007 ±0.0003 0.0000 ±0.0000 0.0007 ±0.0003 0.0011 ±0.0005 0.0000 ±0.0000 0.0011 ±0.0005

Total Time 0.1682 ±0.0002 0.0438 ±0.0009 0.00297 ±0.0002 0.04815 ±0.0008 0.2536 ±0.0001 0.0067 ±0.0001 0.2620 ±0.0002
Accel. Up. Dists 0.0573 ±0.0005 0.0258 ±0.0017 0.0000 ±0.0000 0.0259 ±0.0017 0.0195 ±0.0001 0.0000 ±0.0000 0.0198 ±0.0001

RL-Sim∗ Sort. RkLists 0.0043 ±0.0002 0.0017 ±0.0002 0.0008 ±0.0002 0.0024 ±0.0003 0.1903 ±0.0002 0.0004 ±0.0003 0.1916 ±0.0002
Init./Norm. Dists. 0.0000 ±0.0000 0.0009 ±0.0005 0.0001 ±0.0000 0.0011 ±0.0006 0.0054 ±0.0006 0.0002 ±0.0000 0.0059 ±0.0007

Total Time 0.0626 ±0.0006 0.0285 ±0.0019 0.0001 ±0.0000 0.0295 ± 0.0020 0.2153 ±0.0003 0.0006 ±0.0003 0.2173 ±0.0003

Table 4. Efficiency Evaluation on UKBench dataset (ACC descriptor).
Serial OpenCL-CPU OpenCL-GPU

Kernel Exec.Time Exec.Time Mem. Transf Total Exec.Time Mem. Transf Total
Up. Dists 0.3116 ±0.0006 0.0634 ±0.0022 0.0085 ±0.0004 0.0740 ±0.0019 0.0611 ±0.0005 0.0082 ±0.0009 0.0738 ±0.0010

RL-Sim∗ Sort. RkLists 0.0105 ±0.0007 0.0046 ±0.0004 0.0018 ±0.0008 0.0145 ±0.0005 0.1212 ±0.0005 0.0037 ±0.0001 0.1332 ±0.0002
Init./Norm. Dists. 0.0027 ±0.0003 0.0044 ±0.0001 0.0000 ±0.0000 0.0044 ±0.0001 0.0032 ±0.0007 0.0000 ±0.0000 0.0032 ±0.0007

Total Time 0.3250 ±0.0007 0.0724 ±0.0023 0.01973 ±0.000 0.0929 ±0.0020 0.1855 ±0.0007 0.0242 ±0.0010 0.2102 ±0.0009
Accel. Up. Dists 0.0900 ±0.0004 0.0453 ±0.0047 0.0001 ±0.0002 0.0454 ±0.0047 0.3398 ±0.0093 0.0019 ±0.0007 0.3420 ±0.0093

RL-Sim∗ Sort. RkLists 0.0100 ±0.0001 0.0039 ±0.0001 0.0003 ±0.0005 0.0040 ±0.0001 0.2884 ±0.0002 0.0007 ±0.0001 0.2920 ±0.0018
Init./Norm. Dists. 0.0028 ±0.0000 0.0043 ±0.0008 0.0000 ±0.0000 0.0043 ±0.0008 0.0030 ±0.0007 0.0000 ±0.0000 0.0030 ±0.0007

Total Time 0.1028 ±0.0004 0.0535 ±0.0047 0.0004 ±0.0000 0.05383 ± 0.005 0.6312 ±0.0098 0.0026 ±0.0006 0.6370 ±0.0102

The proposed algorithm was also evaluated considering ACC [Huang et al. 1997]
descriptor on the UKBench dataset [Nistér and Stewénius 2006]. The superiority of accel-
erated algorithm, when compared with original algorithm can be observed if we consider
the best total time execution between the proposed (0.0538s) and original (0.0929s) al-
gorithm. The most efficient execution occurs in CPU, presenting a speedup of 1.91× in
relation of serial code (0.1028s). The efficiency of the proposed algorithm is evident in
this experiment because the time execution presented is very low considering the size of
the dataset (10,200 images).

4.3. Effectiveness of Accelerated RL-Sim ∗

In this section, we evaluate the effectiveness of the accelerated RL-Sim∗ and the impacts
caused by efficiency optimizations. The main variations in effectiveness scores occurs
mainly because of the removal the normalization step. The effectiveness experiment was
conducted considering different datasets and features (shape, color, texture). In the ex-
periments, the RL-Sim∗ Algorithm was evaluated with Intersection and Jaccard measure
and the accelerated RL-Sim∗ with Jaccard measure. The choose of Jaccard to acceler-
ated algorithm is due to the low computational efforts and little effectiveness loss when
compared with Intersection measure.

Table 5 presents the effectiveness of the original algorithm and the accelerated
algorithm. The proposed algorithm presents a very significant gains in most of descriptors
when compared with the original MAP of each descriptor. We can also observe that the
proposed method obtained similar results when compared with de original method.

Table 6 presents the score obtained by the accelerated and original algorithms con-



sidering the UKBench dataset and N-S score as effectiveness measure. Each image is used
as query and the N-S score [Nistér and Stewénius 2006] between 1 and 4 is computed.
The score corresponds to the number of relevant images among the first four image re-
turned (the highest achievable score is 4). The proposed algorithm a significant gain when
compared with the original score and obtained similar scores to original algorithm.

Table 5. Effectiveness evaluation on Soccer and MPEG-7 datasets (MAP score).
RL-Sim∗ Accelerated RL-Sim∗

Descriptor Type Initial MAP Intersection Jaccard Jaccard Relative Gain (%)
SS Shape 37.67 44.10 45.49 44.12 + 17.12

BAS Shape 71.52 76.05 74.87 74.51 + 4.18
IDSC Shape 81.70 87.38 87.03 87.10 + 6.61
CFD Shape 80.71 90.15 89.51 89.03 +10.31
ASC Shape 85.28 89.96 89.54 89.46 + 4.90
AIR Shape 89.39 96.17 97.72 97.59 + 9.83
GCH Color 32.24 33.99 33.43 33.06 + 2.54
ACC Color 37.23 45.19 45.63 46.20 + 24.09
BIC Color 39.26 45.42 44.56 44.99 + 14.60

Table 6. Effectiveness evaluation on UKBench dataset (N-S score).
RL-Sim∗ Accelerated RL-Sim∗

Descriptor Initial Intersec. Jaccard Relative
Score Gain (%)

ACC 3.36 3.54 3.47 + 3.27
BIC 3.04 3.20 3.13 + 2.96

CEED 2.61 2.75 2.68 + 2.68
FCTH 2.73 2.84 2.77 + 1.46
JCD 2.79 2.92 2.85 + 2.15
SIFT 2.54 2.81 2.77 + 9.05

Average 2.84 3.01 2.94 -

Figure 3 presents a joined analysis of effectiveness and efficiency, comparing the
RL-Sim and the accelerated RL-Sim∗ algorithms. The analysis consider the MPEG-7 and
CFD shape descriptor. The position of algorithms in the graph is given by the effective-
ness score and the run time, such that an algorithm with high effectiveness and low run
time is positioned at the top-left corner of the graph. Notice that the proposed approach
(in red) occupies very good positions.

5. Conclusions

In this paper, we present a parallel and accelerated model for the RL-Sim∗ Algorithm,
a recently re-ranking approach for CBIR applications. The proposed parallel solution
uses the OpenCL standard, GPUs and multi-core CPUs to accelerate the computation of
the RL-Sim∗. The proposed algorithm was evaluated considering both effectiveness and
efficiency aspects.

The accelerated algorithm obtained a similar efficiency performance when com-
pared with the original algorithm. Considering the original retrieval performance of dif-
ferent image features, the proposed approach presents significant gains in MAP and N-S
score. On other hand, the proposed accelerated algorithm achieved a speedup of 1.66×
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Figure 3. Effectiveness and Efficiency evaluation on MPEG-7 dataset.

in update distance and 5.66× in re-sort ranked lists. The experiment conducted in N-
S dataset demonstrated that the proposed approach yields significant effectiveness gains
requiring very a small time execution, even for 10,200 images.

Future work includes extending the proposed algorithm to divide the workload
simultaneously on CPU and GPU. We also intend to further evaluate the proposed ap-
proach, including comparisons with other parallel APIs as OpenMP and executing it in
larger datasets to analyze the scalability and other compromises between effectiveness
and efficiency.
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