
Energy Consumption Estimation in Parallel Applications: an
Analysis in Real and Theoretical Models

Dieison S. Silveira1, Gabriel B. Moro2, Eduardo H. M. da Cruz2
Philippe O. A. Navaux2, Lucas Mello Schnorr2, and Sergio Bampi1,2

1Graduate Program in Microelectronics (PGMicro)
2 Graduate Program in Computing (PPGC)

Federal University of Rio Grande do Sul (UFRGS) – Porto Alegre – RS – Brazil

{dssilveira, gbmoro, ehmcruz, navaux, schnorr, bampi}@inf.ufrgs.br

Abstract. This paper presents a detailed energy consumption analysis,
considering the energy consumption related to CPU, cache memory and main
memory of parallel applications on HPC systems. Furthermore, this paper also
presents the correlation between energy consumption, Speedup, and execution
time. Experiments are conducted with the NAS parallel benchmarks using three
different measurement tools: 1) Intel PCM, 2) Perf Linux, and 3) HP CACTI.
The results show a comparison between two approaches to obtain energy
consumption results. One using PCM and other using Perf and CACTI. The
DRAM results show an average variation between these approaches of 47% for
sequential applications, and 19% for parallel applications. The system results
show that the lowest energy consumption occurs only when all physical cores are
used, showing that the hyper-threading system did not bring benefits in energy
consumption to the system. Moreover, the cache memories results show that the
cache miss rate (regardless of the level) increases with the number of threads.
However, a parallel application has lower cache memory energy consumption
when compared to its sequential version.

1. Introduction

Power and energy are primary concerns in High-Performance Computing (HPC) systems
design [1] [2]. Energy efficiency of HPC systems is a critical issue, and to improve that
it is necessary to profile power consumption of real systems at a fine granularity [3].
Many factors influence power and energy consumption in high-performance systems,
including each component’s electrical specification, the system usage characteristics of
the applications, and system software [3]. In parallel programming interfaces that use
shared memory to communicate during execution (e.g. OpenMP), the communication
represents an important part of the total energy consumed by the system [4]. Furthermore,
the performance will increase as a result of the system parallelization, promoting energy
reductions in the system [4]. However, the increase in performance is not linear
and may not scale with the number of threads, due to external bandwidth and the
data-synchronization [5].

Power consumption and application performance are coupled and often conflicting
and complex [3]. Improving energy efficiency without negatively affecting the
performance is challenging [3]. Although there has been several research conducted on



performance and scalability of HPC applications, there is a lack of work that perform a
detailed analysis of the energy consumption of the memory hierarchy.

In this paper, we propose a technique that allows us to have a deep understanding
of how the energy is consumed by the memory hierarchy. Our technique is based on a
mathematical model that is fed by hardware counters from the architecture. The NAS
Parallel Benchmarks (NPB) [6] are used for the tests and three profiler tools are used
to gather results: Intel PCM [7], Perf Linux [8], and HP CACTI [9]. The Intel PCM
provides the energy consumption results for main memory and CPU. The Perf profiler
gathers the CPU statistics, monitoring hardware counters. CACTI estimates the memory
energy consumption per access.

This paper is organized as follows. Section 2 analyzes the related work. Section 3
describes the analysis methodology. Section 4 presents the results and their evaluation.
Finally, Section 5 concludes the paper.

2. Related Work
There has been many research conducted on Speedup and scalability of parallel
applications in HPC. The fixed-time speedup model [10] and memory-bounded Speedup
model [11] extend the Speedup in one way. However, these metrics focus on
performance and ignore both energy consumption and the performance effects on power
consumption [12].

Few works investigated the energy consumption impact in shared memory
multiprocessing applications. The authors in [13] present the impact of parallel
programming models and CPU clock frequency on energy consumption of HPC systems.
In this study, the authors evaluated the energy consumption of a parallel system using
OpenMP with MPI, using the NAS benchmarks for the experiments. This work showed
the influence of different parallel programming models on the energy efficiency and
execution performance. The authors in [4] analyzed performance, energy consumption
and energy delay product on three embedded processors, using four PPI (Pthreads,
OpenMP, MPI-1 and MPI-2). Their experiments showed that OpenMP PPI is more energy
efficient than others for the embedded processors and programming environments studied.

The authors in [14] evaluated OpenMP applications on HPC systems and they
examined two compilers, along with a variety of algorithm and optimization levels. The
experiments in [14] were conducted on a Sandybridge node and they show that the energy
consumption varies due to several factors. Jacobson et al. perform in [15] a comparison
between a power model widely used in industry with specified types in MCPat tool [16],
obtain energy consumed by the computer system.

The aforementioned studies contain relevant and insightful information. However,
these solutions lack a detailed memory energy consumption analysis for parallel
applications. Besides, they do not provide a relation between energy consumption and
Speedup of applications. Thus, our work presents a detailed energy consumption analysis,
considering the energy consumption related to CPU, cache memory, and main memory.

3. Methodology
This section presents the employed methodology, which includes some basic concepts
about the benchmark and the profiler tools, description of the experimental setup, and the



model used to energy consumption measurement.

3.1. Benchmark Description
The NAS Parallel Benchmarks (NPB) are a set of programs designed to help evaluate
the performance of parallel supercomputers [6]. The benchmarks are derived from
computational fluid dynamics applications and consist of four kernels and three
pseudo-applications specifications. The four kernels are: 1) EP - Embarrassingly Parallel;
2) CG - Conjugate Gradient; 3) MG - Multi-Grid on a sequence of meshes; and 4) FT
- discrete 3D fast Fourier Transform. And the three pseudo-applications are: 1) BT -
Block Tri-diagonal solver; 2) SP - Scalar Penta-diagonal solver; and 3) LU - Lower-Upper
Gauss-Seidel solver.

3.2. Experimental Setup
The workstation used in the experiments is a Sandybridge-based node that has two Xeon
E5-2670 processors, each with eight cores. Each processor is clocked at 2.6 GHz, with a
peak performance of 166.4 Gflop/s. Each core has 64 KB of L1 cache (32 KB data and 32
KB instruction) and 256 KB of L2 cache. All eight cores share 20 MB of last level cache
(LLC), also called L3 cache. The off-chip memory system is composed by two 16GB
DDR3 running at 1600 MHz.

In the experiments, 32 threads are used to fill all logical cores of the system (the
threads are fixed in each core), with 30 random executions for each configuration of the
experiment. These executions were done to get more reliable results since real energy
consumption varies with the operating system and other process running concurrently on
the machine. Among the benchmark classes, the class B was chosen for the experiments,
since it defines applications with larger input size than others. The OpenMP NPB with
default configuration for shared memory architectures was used herein.

3.3. Energy Profiler Tools
In this work it is used three tools to obtain the energy measurements: 1) Intel Performance
Counter Monitor (PCM) [7], 2) Perf Linux [8], and 3) HP CACTI [9].

The PCM was developed by Intel to study the energy consumption of any
application that is executed in recent architectures, such as Intel Xeon, Sandybridge, Ivy
Bridge, Haswell, Broadwell, or Skylake processors [7]. If a parallel HPC application
is executed in various sockets, PCM will output CPU energy, Dynamic Random Access
Memory (DRAM) energy, NUMA details, performance flaws, and so forth in various
formats to end users. The tool considers Machine Specific Registers (MSR) using RAPL
counters to disclose the energy consumption details of the application [7].

Perf is a profiler tool for Linux-based systems that abstracts away CPU hardware
differences in Linux performance measurements [8]. Perf is based on the perf events
interface exported by recent versions of the Linux kernel.

CACTI is an integrated cache and memory access time, cycle time, area, leakage,
and dynamic power model [9]. The CACTI cache access model takes in the following
major parameters as input: cache capacity, cache block size (also known as cache line
size), cache associativity, technology generation, the number of ports, and the number of
independent banks (not sharing address and data lines). As output, it produces the cache



Table 1. Memory specification for CACTI simulation

Parameters Cache L1 Cache L2 Cache L3 DDR3
Capacity 32KB 256KB 20MB 1GB
Block size 64B 64B 64B 64B
Associativity 8 8 16 1
Technology 32nm 32nm 32nm 90nm
Banks 1 1 1 8
Type cache cache cache main memory
Model UCA UCA NUCA UCA

configuration that minimizes delay (with a few exceptions), along with its power and area
characteristics.

Table 1 presents the main input for CACTI simulation, this specification follows
the hardware description presented in the previous subsection. However, it can be
observed in Table 1 that the main memory capacity is just 1GB, whereas the Xeon server
has 16GB. This happens because CACTI simulator has a memory size limitation of the
1GB. Due to this fact, it is expected that the estimated DRAM results may be inaccurate,
but it is expected that they follow the trend.

3.4. Energy Consumption Measurement

The amount of cache loads, stores, load misses, and store misses are generated by Perf
tool. This tool provides a list of events to measure micro-architectural events such as
the number of cycles, L1 or LLC cache misses and so on. However, this tool does not
provide events for intermediate levels of cache, such as L2. To estimate the L2 events it
was used the results obtained from L1 and LLC, where L1 misses represents the L2 total
accesses and L3 total accesses represents the L2 misses. The energy per access used in
the next equations was obtained with CACTI and the specifications presented in Table 1.
The energy results per cache access reported by CACTI can be found in Table 2.

Equation 1 presents the formula to estimate the energy consumption for read
operations, where the #hit rd cl are the amount of read hit accesses to cache level (i.e. L1,
L2 or L3), the #miss rd cl are the amount of read miss accesses to cache level, E ac rd cl
are the energy consumption per read access to certain cache level, and E ac wr cl are the
energy consumption per write access to certain cache level.

Equation 2 presents the formula to estimate the energy consumption for write
operations and follows the same idea aforementioned to calculate the energy for read
operations. Both equations 1 and 2 are used to estimate the cache energy consumption for
the three cache levels, L1, L2, and L3.

EL1read = (HitreadL1×E acreadL1) + (MissreadL1× (E acreadL1 +E acwriteL1)) (1)

EL1write = (HitwriteL1×E acwriteL1)+(MisswriteL1×(E acreadL1+E acwriteL1)) (2)

The total cache energy consumption, representing the sum of the energy consumed
in the three levels of cache memory, is summarized in Equation 3. The CPU and DRAM



Table 2. CACTI estimated energy consumption per access

Cache
L1 L2 L3 DRAM

Energy Access 0.0164nJ 0.0731nJ 0.567nJ 5.603nJ
Static Power 0.011W 0.085W 0.86W 1.45W

Table 3. Execution time and energy consumption results for NPB
NPB Time (s) CPU Energy (J) DIMM Energy (J)

1 16 24 32 1 16 24 32 1 16 24 32

BT.A 61.4 5.4 6.9 5.5 3184.6 756.0 926.3 838.8 322.6 40.6 49.5 45.2
CG.A 1.7 0.4 0.5 0.5 126.9 69.7 74.9 71.4 14.8 7.3 7.6 7.5
FT.A 6.2 0.7 0.8 0.8 356.8 131.9 139.7 139.0 38.1 12.3 13.0 12.9
LU.A 49.1 5.0 5.8 4.8 2535.4 673.4 789.2 691.4 261.1 44.8 50.5 47.9
MG.A 3.6 1.1 1.2 1.3 225.2 154.7 167.1 179.6 27.0 15.9 17.7 18.9
SP.A 43.9 4.9 5.9 5.2 2273.8 652.2 785.7 749.0 253.1 46.1 53.2 54.2

BT.B 264.3 32.7 37.5 34.1 13530.7 4029.4 4467.6 4320.5 1380.7 287.0 314.9 305.1
CG.B 117.0 28.8 28.9 29.4 5954.2 2974.3 2946.0 3077.7 673.6 254.8 266.1 276.5
FT.B 74.0 8.3 9.3 8.4 3835.2 1101.2 1153.9 1152.8 400.0 84.5 91.6 90.4
LU.B 211.6 27.3 30.3 28.2 10764.5 3411.1 3876.2 3716.5 1132.7 257.5 280.7 274.2
MG.B 12.3 3.6 3.9 4.1 675.6 432.7 474.5 514.6 79.7 41.1 46.6 51.0
SP.B 210.0 50.5 53.3 51.5 10704.2 5751.8 6115.9 6152.4 1251.7 524.3 544.3 559.7

energy results were obtained by Intel PCM tool.

CacheTotalEnergy = EL1read+EL1write+EL2read+EL2write+EL3read+EL3write

+ PowerStatic × Time (3)

4. Results and Discussions
In this section, the results of the experiments are discussed. Subsection 4.1 presents and
discuss the DRAM and CPU energy consumption for the benchmarks. Subsection 4.2
shows the Speedup and energy-efficiency results. Subsection 4.3 presents a comparison
of the DRAM energy consumption results obtained by two energy estimation tools.
Subsection 4.4 presents the detailed results of the cache memory energy consumption.

4.1. System Energy Consumption

Table 3 presents the energy consumption results obtained with the PCM tool for all
applications. These results were obtained from the sequential version and three parallel
versions with 16, 24, and 32 threads. The DIMM Energy is the main memory’s energy, the
CPU Energy is the total energy consumption of the processors (32 cores) with different
cache levels: L1 (inside the core), L2 (outside the core and inside the chip) and L3 (socket
level).

It can be seen in Table 3 that the execution time is directly related with the energy
consumption. For the same applications such as “CG.A” and “CG.B” (different input
size) there is a considerable increase in the execution time (67 times more), as well
as in the energy consumption (46 times more). It is possible to see this characteristic
in all applications presented in Table 3. Furthermore, it can be seen in this table that



(a) Class A (b) Class B

Figure 1. CPU and DRAM energy consumption results of the benchmarks

(a) Class A (b) Class B

Figure 2. Speedup results for all benchmarks

approximately 90%, on average, of the total energy consumption corresponds to the CPU,
including caches memories, and the remaining to DRAM. This occurs for all applications,
showing that the energy spent in processing is a major bottleneck for these benchmarks.

Figure 1 presents the energy consumption results for CPU and DRAM obtained
with the PCM tool for all applications. It is possible to observe that the applications BT,
LU and SP present higher energy consumption than others applications. This happens
because these applications present the higher problem sizes, i.e. number of iterations,
grid size, and time step.

The results presented in Figure 1 and Table 3 show that when the parallel versions
of the applications are used the energy consumption is reduced significantly, from 30%
to 70% of reduction. This happens because the parallel version, even using more
computational resources, has a much smaller execution time that sequential version. This
only happens because these benchmarks present a high level of parallelism.

It can also be seen in Figure 1 that the lowest energy consumption occurs when
the 16 physical cores are used, showing that the hyper-threading system did not bring any
benefits in energy consumption. This becomes more evident when Figure 2 is observed;
this figure presents the Speedup results for all benchmarks and it is explained in details in
the Subsection 4.2.



(a) Class A (b) Class B

Figure 3. Power-Cost results for all benchmarks

4.2. Speedup and Performance

Figure 2 presents the Speedup results for all benchmarks. In this figure, it can be seen
that the best Speedup for all benchmarks occurs when the 16 physical cores are used. The
Class A best Speedup occurred in the BT (Block-Tridiagonal) application, this application
has a maximum Speedup 11.3× faster than sequential version, using 16 threads. However,
the BT application did not have a good scalability, since it reached a Speedup of 8× in
Class B.

Meanwhile, the FT (Fourier Transform) application presented a Speedup of the
8.3× in Class A and 8.9× in Class B, reaching a good scalability. Furthermore,
this application presented the highest Speedup among all benchmarks in Class B. This
occurs because this application contains the computational kernel of a 3-D fast Fourier
Transform, performing three one-dimensional (1-D) FFT’s, which presents high degree
of parallelism.

Nonetheless, the MG (Multi-Grid) application did not scale as well as the others,
since it applies a multi-grid on a sequence of meshes, performing memory intensive
accesses. Besides, this application represents a small problem and presented the lowest
energy consumption among applications, as show Figure 1.

A correlation between energy consumption, Speedup, and execution time is
presented in Figure 3. In this figure the power-cost results are presented, which are
obtained by Equation 4. With these results it is possible to check if an application is
energy efficient regardless of the input size.

PowerCost =
Power

Speedup
(4)

As can be seen in Figure 3, applications BT, SP, and LU presented the best
power-cost results for benchmarks Class A, while MG had the worst result. In the Class
B benchmarks, the applications FT, BT, and LU presented the best power-cost results and
MG presented the worst result again, even being the application that had the lowest energy
consumption, showing that this application does not present a good level of parallelism.

Moreover, it is possible to see in Figure 3 that BT and LU applications presented
low variation in power cost for both classes. BT varies from 13W to 16W and LU varies



(a) Class A (b) Class B

Figure 4. Results of the DRAM energy consumption estimation for the
benchmarks

from 14.6W to 17.3W . However, the FT and SP applications showed a high variance
while the FT reduced the power cost from 23.3W to 16W the application SP increased
the power cost from 16W to 30W . These facts are strongly related to the scalability
presented by these applications and previously discussed.

4.3. Comparison of the DRAM Energy Consumption Results
Figure 4 presents the DRAM energy consumption results obtained by CACTI tool
(estimated) and the real energy consumption obtained by PCM tool for different
applications, using 1, 16, 24 and 32 threads.

The CACTI tool provides the average energy consumption per access for both
caches and DRAM memories, in accordance to the specified platform. The calculation of
the estimated energy consumption was performed using the Equation 5.

DRAMTotalEnergy = TotalReadWriteAccesses × EnergyAccess

+ PowerStatic × Time (5)

The applications that consumed more energy from DRAM memory are those that
have a high rate of cache misses when the miss occurs on the last level of the cache,
which implies in accesses to the DRAM memory. The applications that presented high
energy consumption of the DRAM memory, also presented high energy consumption in
the last level cache. Another interesting point is that applications that had a high energy
consumption in the last level cache exhibit the same behavior in the energy consumption
of DRAM, as an example of this behavior we have BT applications and CG.

The applications, when executed in parallel, presented lower DRAM energy
consumption when compared to the sequential version. For example, the estimation of
the theoretical energy consumption for applications sequential benchmark is on average
4-fold lower than the actually estimated. As for the parallel application, the approximation
of the theoretical estimate to the actual increases, being about 2 times lower than the
actually estimated on average. This behavior can be explained by considering only the
dynamic energy to the calculation, which could approximate the theoretical and the actual
estimate for sequential applications when evaluating this behavior for DRAM.

Considering the dynamic and static energy for DRAM, both estimated by CACTI,
we can see that for sequential applications the theoretical estimate is closer to the real,



Figure 5. L1, L2 and L3 cache hit results for benchmarks class A

Figure 6. L1, L2 and L3 cache hit results for benchmarks class B

averaging 2× lower, increasing accuracy (4 times less considering only dynamic energy).
As for the parallel application also occurs an improvement in theoretical estimation, being
about 1.6× lower than the actually estimated (2 times less considering only the dynamic
energy). From these results, we can see the efficiency of the CACTI tool for DRAM
estimation of power consumption.

4.4. Cache Memory Energy Consumption

Profiler tools could not report the energy consumption results for cache memory
individually, since the CPU is a closed architecture and the data tend to be confidential.
Thus, the only information that can be extracted with these tools is the number of accesses
to the hardware counters and the total energy consumption of the CPU. However, in this
paper we present an estimated energy consumption for the cache memories, and these
results are presented and discussed in this subsection.

Figures 5 and 6 present the hit rate results for the three levels of the cache
memory. These results were obtained from the hardware counters using the Perf tool.
It can be seen in these figures that the hit rate decreases when class B is used, thus
the miss rate increases, increasing the amount of access to the DRAM. The CG and
MG applications presented very different results from the others applications. The CG
application presented L3 hit rate results higher than other levels in both classes. This
is due to irregular accesses performed to the memory, despite the irregular accesses,
the accesses are in nearby regions. This behavior did not occurs on MG application,
which also performs irregular accesses to the memory, but the accesses are not performed
on neighboring regions, since this application has the lowest L3 hit rate, which is



(a) Class A (b) Class B

Figure 7. Energy consumption results of the cache memories for all benchmarks

approximately 45%.

Figure 7 presents the estimated energy consumption of the cache memories. These
results were obtained following the Equations 1, 2 and 3 presented in Section 3.4 with
Perf Linux and HP CACTI tools. The Perf tool uses the hardware counters to generate the
amount of accesses and the CACTI generates the energy consumption per access.

Similar to what happens with the DRAM and CPU energy consumption results,
the cache energy consumption reduced as more the number of threads increase. This
fact is mainly due to reducing in static energy, for example in class A the BT sequential
application consumed 4.3J of dynamic energy and 59J of the static energy, i.e. the static
energy is 13.8× higher than the dynamic energy in this case. This same application
running with 16 threads has a dynamic energy consumption of 4.2J and 5.2J of the static
energy, reducing 11× the static energy consumption while the dynamic consumption is
almost the same. This behavior is maintained for the Class B benchmarks.

It can be also observed in Figure 7 that the L3 total energy consumption is greater
than the L1 and L2 energy consumption. This is due to the higher cost per access in level
L3, the highest miss rate and the high static energy consumption presented in this level.
Considering only the dynamic energy consumption, the applications BT, LU and MG
presented higher L1 energy consumption results, showing that these applications have
better reuse of data and have a good locality to get the best performance.

Figure 8 shows the estimated energy consumption results for the three levels of
cache memory and DRAM memory. It can be seen in Figure 8 that the benchmarks from
class B have higher energy consumption, this is due to the fact that class B has larger
inputs which generates high computation time, leading to greater energy consumption.

Figure 8 also shows that in all applications the energy consumed by DRAM is
greater than the energy consumed by the cache memories. In Class A applications,
the biggest difference is found in sequential MG application, which has an energy
consumption of DRAM 9.4× greater than the energy consumption of the cache; DRAM
consumed 16.1J and the caches consumed 1.7J . The smallest difference in Class A is
found in CG application with 16 threads. In this application the difference is only 1.7×,
where the DRAM consumed 1.06J and the caches consumed 0.63J .

In class B, the biggest difference is found in the MG application with 32 threads,



(a) Class A (b) Class B

Figure 8. Comparison between DRAM and cache energy consumption results to
the benchmarks

this application presented a DRAM energy consumption 10× greater than the cache
energy consumption; in this application the DRAM consumed 58J and the cache
consumed 5.8J . The smallest difference, 2.2×, is found in the BT application. In this
application, the DRAM consumed 609J and the cache 272J . It is observed that with
the increase in the applications input; the difference between DRAM and cache energy
consumption have a significant increase, since there is an increase in the miss rate in the
last level cache, generating more accesses to the DRAM.

5. Conclusion

This work presented and analyzed the energy consumption results of the CPU
and memory system for shared memory parallel applications on High-Performance
computers. The NAS Parallel Benchmarks was used for the tests and three tools were used
to generate the results: PCM, Perf, and CACTI. The results showed that the benchmarks
achieved good results for parallelization on a shared memory system. Furthermore,
the energy consumption estimation for the cache memories and the power-cost metric
contributes to a detailed analysis of the application. The results also showed that the
lowest energy consumption occurs only when all physical cores were used, showing that
the hyper-threading system did not bring benefits in energy consumption to the system.
Moreover, the cache memories results showed that the parallel applications presented
lower energy consumption in the cache memory when compared to its sequential version,
despite the increase in cache miss rate generated by the threads.

As future work we will investigate the memory energy consumption for others
applications, such as video encoders. Such work will consider multithreaded embedded
architectures, as battery-powered devices have stringent energy restrictions.

Acknowledgment

This work was partially financed by the National Council for Scientific and Technological
Development (CNPq), Coordination of Improvement of Superior Education Staff
(CAPES), Research Support Foundation of Rio Grande do Sul (FAPERGS), and
MCTI/RNPBrazil under the HPC4E Project, grant agreement n◦ 689772.



References
[1] J. Mair, Z. Huang, D. Eyers and Y. Chen, ”Quantifying the Energy Efficiency Challenges

of Achieving Exascale Computing”, IEEE International Symposium on Cluster,
Cloud and Grid Computing, pp. 943-950, 2015.

[2] R. Gioiosa, D. Kerbyson, and A. Hoisie, ”Evaluating performance and power efficiency
of scientific applications on multi-threaded systems”, International Workshop on
Energy Efficient Supercomputing, pp. 11-20, 2014.

[3] R. Ge, X. Feng, S. Song, H. C. Chang, D. Li and K. W. Cameron, ”PowerPack: Energy
Profiling and Analysis of High-Performance Systems and Applications”, IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 5, pp. 658-671, 2010.

[4] A. F. Lorenzon, A. L. Sartor, M. C. Cera and A. C. S. Beck, ”Optimized Use of
Parallel Programming Interfaces in Multithreaded Embedded Architectures”, IEEE
Computer Society Annual Symposium on VLSI, pp. 410-415, 2015.

[5] M. A. Suleman, M. K. Qureshi and Y. N. Patt, ”Feedback-driven threading:
power-efficient and high-performance execution of multi-threaded workloads on
CMPs”, International Conference on Architectural Support for Programming Lang.
and Oper., pp. 277-286, 2008.

[6] ”NAS Parallel Benchmarks”, http://www.nas.nasa.gov/publications/npb. html, June 2016.

[7] ”Intel Performance Counter Monitor - A better way to measure CPU utilization”,
http://www.intel.com/software/pcm, June 2016.

[8] ”Linux Perf tool”, https://perf.wiki.kernel.org/, June 2016.

[9] ”CACTI 6.5”, http://www.hpl.hp.com/research/cacti, June 2016.

[10] J. L. Gustafson, ”Fixed Time, Tiered Memory, and Superlinear Speedup”, Distributed
Memory Computing Conference, pp. 1255-1260, 1990.

[11] X.-H. Sun and L. M. Ni, ”Scalable problems and memory-bounded speedup”, Journal of
Parallel and Distributed Computing, vol. 19, pp. 27-37, 1993.

[12] S. Song, C. Y. Su, R. Ge, A. Vishnu and K. W. Cameron, ”Iso-Energy-Efficiency: An
Approach to Power-Constrained Parallel Computation”, IEEE International Parallel
& Distributed Processing Symposium, pp. 128-139, 2011.

[13] J. Balladini, R. Suppi, D. Rexachs and E. Luque, ”Impact of parallel programming models
and CPUs clock frequency on energy consumption of HPC systems”, International
Conference on Computer Systems and Applications, pp. 16-21, 2011.

[14] A. K. Porterfield, S. L. Olivier, S. Bhalachandra and J. F. Prins, ”Power Measurement and
Concurrency Throttling for Energy Reduction in OpenMP Programs”, International
Parallel and Distributed Processing Symposium Workshops, pp. 884-891, 2013.

[15] H. Jacobson, P. Bose, G. Wei, and D. Brooks, ”Quantifying Sources of Error in McPAT
and Potential Impacts on Architectural Studies”, in 21st International Symposium
on High Performance Computer Architecture (HPCA), 21st. IEEE, 2015.

[16] ”McPAT”, http://www.hpl.hp.com/research/mcpat, June 2016.


