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1Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131 – 74.001-970 – Goiânia – GO – Brazil
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Abstract. Learning to rank (L2R) works by constructing a ranking model from
training data so that, given unseen data (query), a somewhat similar ranking is
produced. Almost all work in L2R focuses on ranking accuracy leaving perfor-
mance and scalability overlooked. In this work we present a fast and scalable
manycore (GPU) implementation for an on-demand L2R technique that builds
ranking models on the fly. Our experiments show that we are able to process a
query (build a model and rank) in only a few milliseconds, achieving a speedup
of 508x over a serial baseline and 4x over a parallel baseline for the best case.
We extend the implementation to work with multiple GPUs, further increasing
the speedup over the parallel baseline to approximately x16 when using 4 GPUs.

1. Introduction
Learning to rank (L2R) is the application of machine learning in the construction of rank-
ing models for information retrieval systems [Liu 2009]. The learned ranking model is
then used with unseen items (queries) to produce a permutation that is somewhat simi-
lar to rankings in the training data. A well known application of L2R is in commercial
web search engines to compute relevance of web pages for a given query. Other ap-
plications include translation systems [Duh and Kirchhoff 2008], computational biology
[Henneges et al. 2011], and recommender systems [Lv et al. 2011].

Many machine learning algorithms have been used in L2R in order to create rank-
ing functions of great quality, such as Random Forest [Hastie et al. 2009] and Support
Vector Machines [Yue et al. 2007]. Most of these works focus on ranking accuracy, with-
out performance (processing time) and scalability concerns. However, in scenarios where
the ranking function should be often updated to fit new queries, the time spent in the
re-training can be a drawback. In [Chapelle et al. 2011] this issue is mentioned as the
flexibility to adapt to future queries that might differ from the training set. Although over-
looked in the literature, performance and scalability are important criteria in L2R task and
the main goal of this work.

Most current L2R algorithms operate on batch mode and use complex machine
learning techniques to produce a single ranking model that is then used for subsequent
queries. However, if future queries differ considerably from those used in the training
process, the learned model may potentially hurt the retrieval effectiveness. There have



been efforts to consider query differences in the L2R process [Geng et al. 2008]. Some
proposals pre-trains a finite number of models, for example using query categorization,
clustering, or nearest neighbors, and selects the most suitable when ranking a query. How-
ever, there may be a large number of possible models given the extremely large space of
queries. An elegant solution to this problem was proposed by Veloso et al. Instead of
pre-determined ranking models, their LRAR (Learning to Rank with Association Rules)
method generates a query customized model on the fly. The method uncovers patterns in
the training data by generating association rules on a demand-driven basis at query-time.
Then, the generated rules are used to estimate the relevance of documents in the test set.
The method is extremely effective but demands high computational costs, specially when
rule sizes increase.

In this paper we propose to use parallel processing to overcome some of the perfor-
mance problems of the LRAR method. Our proposal, called PROFL (Parallel Rule-based
On the Fly Learning to Rank), makes use of different techniques. First, it represents the
training dataset using bitmaps as inverted lists. This allows us to compose itemsets by
making fast bitwise AND operations like a set intersection. The support of an itemset can
also be calculated by counting the numbers of bits set as 1 in the bitmap. Second, we im-
plement a cache scheme to be able to re-use itemsets and their corresponding association
rules. A fingerprint function is used to create a unique identifier for an itemset. Thus an
itemset is easily mapped to the cache, facilitating its access and preventing its recompu-
tation. Third, we evenly distributed the work (itemsets/rules generation) to be processed
in parallel blocks by using the concept of combinadic, that calculates one element of a
lexicographical combination. Since the itemsets/rule are derived from combinations of
items (itemsets), the range of combinations can be easily divided among the processors.
Last, we extend the parallel solution to a multi-GPU environment replicating the inverted
lists (bitmaps) and equally dividing the documents among the GPUs.

We conduct our experiments on well-known benchmark datasets: MSLR-
WEB10K (from Microsoft Research1), and LETOR3 2. The experimental results show
that our parallel proposal outperforms all baselines evaluated. When processing the
LETOR3 dataset, we have achieved a speedup of up to 508x over a sequential baseline,
and up to 3.8x over a parallel baseline for the best case. We have also experimented with
a multi-GPU plataform, which further increased the performance, producing a speedup of
15.77x for WEB10K over the parallel baseline using 4 GPUs. As we describe in Section
5, the speedup behaves almost linearly to the number of GPUs when the parallel workload
is big enough.

The remainder of the paper is organized as follows. In the following section we
present the related work. Then, in section 3 we describe the LRAR (Learning to Rank
with Association Rules) method. The proposed solution, PROFL (Parallel Rule-based On
the Fly Learning to Rank), is introduced in section 4. We then discuss our experimental
results in section 5. Finally, we close the paper with conclusions and future works.

2. Related Work
Some research has been done in the area of parallel machine learning [Upadhyaya 2013],

1http://research.microsoft.com/en-us/projects/mslr/
2http://research.microsoft.com/en-us/um/people/letor/



aiming at speeding up the computation or increasing the size of the datasets being pro-
cessed. However, almost none of these studies targeted the L2R sub-field of information
retrieval. With the growing importance of the subject, some researchers have proposed
efficient L2R through the use of parallel processing [Shukla et al. 2012, Wang et al. 2015,
Jin et al. 2015, De Sousa et al. 2012]. However, the use of parallelism in L2R has focused
on accelerating the training phase of standard solutions, i.e., those based on a batch strat-
egy. The work in [De Sousa et al. 2012] is the only one, as far as we know, that supports
on demand learning to rank, similarly to our proposal.

The authors in [De Sousa et al. 2012] propose a parallel version of the LRAR al-
gorithm, denominated as PLRAR, that runs on a GPU. Although producing very compet-
itive ranking effectiveness and good speedups (x127 in relation to LRAR), their approach
of one document per thread does not scale well requiring a very large dataset to fully
occupy the GPU. On the other hand, our approach of one document per block of threads
can fully occupy a GPU for different sizes of datasets. And even when processing a sin-
gle query, we are able to generate thousands of threads, fully utilizing the GPU. This
allowed us to easily extend the solution to a multi-GPU environment, making the system
much more scalable. In addition, our proposal implements a cache system that permits
the reuse of rules, avoiding unnecessary computation.

3. Learning to Rank with Association Rules
Learning to Rank (L2R) works with a training set D composed of records in the form
〈q, d, r〉, where q is a query, d is a document and r ∈ {r0, ..., rk} is a relevance value of
d to q. A document d is represented as a list of m features f1, f2, ..., fm. The set D is
used to learn a ranking function φ, which maps the features of a document to a relevance
value r. A test set T is composed of records in the form 〈q, d, ?〉, where the relevance r is
unknown and it will be estimated by the function φ.

We give an example below, showing the records that compose the training set D
and its structure. The set is composed of |D| records, that belongs to j queries, and each
query has a disjoint subset of D. In this example, the query of id 1 has a records in total,
and the last query begins at the bth record and ends at the last record |D|.

q : 1, d1 : [PageRank(d1), c(qt, d1), idf(qt), ..., fm], r = 1
...

q : 1, da : [PageRank(da), c(qt, da), idf(qt), ..., fm], r = 0
...

q : j, db : [PageRank(db), c(qt, db), idf(qt), ..., fm], r = 0
...

q : j, d|D| : [PageRank(d|D|), c(qt, d|D|), idf(qt), ..., fm], r = 0

For each record, there is a document represented by its features and a relevance
value associated with it. The features from the document vector range from simple
formulas that use frequency of terms, to proprietary ranking functions like PageRank
[Page et al. 1999]. The PageRank function gives a ranking number to a web page based
on the number of links that point to that page. For the LETOR dataset, some features use



c(qt, d) and idf(qt) [Qin et al. 2010]. c(qt, d) denotes the number of occurrences of query
term qt in document d, and idf(qt) is the inverse document frequency (IDF) of that term.
The IDF gives a greater weight to terms that appear rarely, and smaller weight to frequent
terms. The complete definition of the features can be found at LETOR’s specification.

In [Veloso et al. 2008] the combination of Learning to Rank with Association
Rules, LRAR for short, creates a method capable of providing a flexible ranking for un-
seen samples at query time3. We mean flexible, because the rules are created from each
new document, therefore, enabling an on-demand solution that produces only the needed
association rules to create a specific ranking function.

The function φ in LRAR is created using a set of association rules of the form
X θ−→ ri, where X ( also denominated of itemset) is a combination of several features
from the training set. For example, X z

j = PageRank(dj) ∧ c(qt, dj) ∧ idf(qt) refers
to rule z, document j, and features composed by the functions PageRank, c and idf
regarding dj4. In addition, ri is the relevance value and θ is the confidence, the conditional
probability of the consequent (relevance value) to occur given the antecedent (itemset). In
other words, the confidence means the chance of X (created from an unseen document)
appear in documents in the training set which have the relevance value ri. Each rule has
also a support, which is the frequency of both X and ri in D [Agrawal et al. 1993].

In LRAR, the association rules are used to estimate the document relevance. The
support is referred as σ(X −→ ri), and the confidence is referred as θ(X −→ ri). The
rule is valid when the thresholds σmin and θmin are satisfied.

Eq.1, from [Veloso et al. 2008], is used to obtain the score of the relationship
between the document and a relevance value. The equation sums the confidence of all
rules of the projected rule set, Rd. A projected rule set has the rules obtained from the
unseen document matched against the training documents restrict to a relevance value
ri. Since a lot of rules can be generated when combining three or more features in the
antecedent, the log function is used to smooth the relationship.

s(d, ri) =

∑
(X→ri)∈Rd

θ(X → ri)

log |Rd|
(1)

The φ function of LRAR, is defined by the Eq. 2, which is a normalized linear
combination of the scores with each relevance value. After each document dj has its
relevance estimated, the final ranking is in the decreasing order of φ(dj).

φ(d) =
k∑
i=0

(ri ×
s(d, ri)∑k
j=0 s(d, rj)

) (2)

The LRAR algorithm has shown relevant ranking quality against other L2R al-
gorithms, as described in experimental results of [Veloso et al. 2008]. The good results
were also confirmed in [Silva et al. 2011], which applied an active learning method to
reduce the original training set and improve the processing time, without damaging the

3Hereafter, we refer to test samples as unseen documents, as they are obtained only in scoring phase.
4For simplicity of notation, we omit the number of the document and the rule of X when necessary.



ranking quality. The dataset reduction was over 90%. Given the importance of this dataset
reduction it has been used in [De Sousa et al. 2012] and in this work.

4. Parallel Rule-based On the Fly Learning to Rank (PROFL)
Our main contribution in this work is a fast and scalable implementation of LRAR, which
is denominated PROFL, a Parallel Rule-based On the Fly Learning to Rank. Next, we
describe the main concepts and techniques used in our proposal, as well as a detailed
description of the proposed parallel implementation.

4.1. Thread Block Approach

The thread block approach exploits the parallelism by block, that is, many threads con-
tribute to performing the job of a block, and many blocks work in parallel. Following this
strategy, each unseen document is assigned to a block, and thus, many threads process
a document in a parallel fashion. In order to provide a balanced workload between the
threads, each thread receives a similar number of rules to be created. The number of rules
depends on the number of items (features) from the unseen document (defined by m),
the number of threads in a block, and also the k value, which is a user parameter defin-
ing the maximum rule size. First, all rules are computed, each one receiving an index z,
with 0 ≤ z <

(
m
k

)
. Then the rules are assigned to the threads, with each thread getting⌈

(mk)
max threads

⌉
rules.

We have chosen the thread block approach because of its scalability in the GPU,
enforcing the full occupancy of the hardware. Since usually there are hundreds or thou-
sands of documents associated with a query, we can launch plenty of blocks, each one
containing many threads. This way, the memory latency, which is a serious issue in
GPUs, can be more efficiently hidden. An alternative approach, used in PLRAR, is to
assign a document to a thread and not to a block of threads. This has the disadvantage of
poor GPU occupancy since a relatively small number of threads will be active.

4.2. Combinadic

As we described before, the combinadic [McCaffrey 2004] provides an element from a
set of distinct combinations of integer values, when given an index. The combinadic is the
key point of our thread block proposal and its scalability. It allows each thread to obtain
the proper subset of rules to be created in a fast manner.

The Algorithm 1 [Buckles and Lybanon 1977] describes the combinadic, which
receives an index value z, the number of elements n, and the combination size k,
where 0 ≤ z <

(
n
k

)
. It provides an element of a lexicographical combination of in-

teger values, the itemset5. The algorithm maps the value z to one subset of size k
of X = {0, 1, 2, ..., (n − 1)}, by solving z =

(
c1
k

)
+
(
c2
k−1

)
+ ... +

(
ck
1

)
, restrict to

n > c1 > c2 > ... > ck. For this, the algorithm searches for the y where the current
binomial

(
y
k

)
is less or equal than the current z, in a descending order of y. Each y that

satisfies that inequality is added to a list, which is returned by the end of the algorithm.

With the combinadic algorithm each thread is assigned only an index value in
order to obtain the rules. As a result, it is not necessary to compute the previous combina-

5Recalling that a rule is formed by the itemset (the antecedent) and the relevance value (the consequent).



Algorithm 1 Combinadic – Generation of a Subset of Integer values.
Require: Index z, Number of elements n, combination size k
Ensure: A lexicographical combination

Let comb be a list
1: for y = (n− 1) to 1 do
2: if

(
y
k

)
≤ z then

3: comb.add(y)
4: z = z −

(
y
k

)
5: k = k − 1
6: Return comb

tions until it reaches the current index. That way, each thread can independently compute
its own rules as soon as the index is assigned to it.

4.3. Caching Itemsets
In PROFL, the rules are created from each unseen document. Considering the similarity
between these documents, there is a great demand for same rules. Thus, it seems almost
obvious to take advantage of a cache strategy, commonly used in data processing. How-
ever, memory accesses occurs frequently in a cache, and the GPU’s global memory has
high latency, which is its drawback. To handle this issue, we have implemented a caching
strategy that lowers the number of accesses in a hash table and allows each thread to work
in an independent parallel processing.

Before a new rule is created in PROFL, a thread searches for the itemset in the
hash table. To perform this, we have implemented a fingerprint function developed by
[Atreas and Karanikas 2007], which maps a set of integer values, an itemset, to a floating
point number. The Eq. 3 describe the fingerprint function.

fingerprint(X ) =
n∑
i=1

fi
pi

(3)

where X = {f1, f2, ..., fn} and pi is the ith prime number greater than the max index
value for a fi.

In order to map the fingerprint output function to the hash table, the floating
point number is transformed by taking its 64 bits as a 64 bits integer L. Then this long
integer can be used with a simple hash using a modulo operation with the table size,
L % HASH SIZE. The hash table stores the itemset bitmap, and also its support for
each relevance value. When the itemset is found, only the support values are returned,
which is necessary to compute the confidence value.

One important advantage of this fingerprint function is its fast processing to obtain
the index value from an itemset. Thus, if an itemset is not found, PROFL searches for the
subset with the k − 1 prefix and calculates its fingerprint to access the hash table. Hence,
a new itemset is created taking into account intersections that were already done.

We use an array to store the hash table, and the linear probing with open addressing
as the strategy for resolving the hash collisions. By applying our hashing strategy, each
thread was given an independent and parallel access pattern. Though this eventually lead
to decreasing the amount of coalesced memory access of some threads, the time saved
when creating a new itemset have improved the overall processing time, as we describe in



section 5. The fingerprint function applied in PROFL has not been studied before in this
context, showing a promising cache implementation in other data processing applications.

4.4. Data Representation

In order to improve the parallelism in GPU, the data representation is a critical issue,
because it defines the memory access pattern. Thus, we have represented the training set
using bitmaps as inverted lists. A bitmap is created for each item (feature), and the ith bit
indicates whether the item occurs or not at the ith document. This is a compact method
to implement an inverted list, allowing to execute fast intersections between bitmaps with
bitwise AND operations. Also, the itemset support can be calculated by counting the
number of bits set as 1.

The PROFL improves the bitmap operation by casting the bitmap’s elements into
a vectorized integer type (int4) , forcing the compiler to produce 128 bytes load and
store instructions. Thus, increasing the memory throughput of the GPU [Luitjens 2013].

In addition, we also have used the GPU shared memory to store the bitmap of each
relevance value and the global memory to store the cache’s hash table. Since the bitmap
of a relevance value is often used to create a rule, and the latency in shared memory is
lower than the global memory, this setting has a good impact in performance.

4.5. The PROFL Algorithm

In this section, we describe the PROFL algorithm, our parallel proposal to LRAR method,
taking into account the explanation of thread block approach, combinadic algorithm, par-
allel cache, and the bitmap representation described in the previous subsections.

The PROFL begins in CPU, receiving as input the training documents from the
reduced training set (as explained in Section 3), the unseen documents, the max rule size,
and the confidence and support thresholds. Each document is represented as a list of
m features, which are transformed in itemsets of size 1 (only one feature). The bitmap
representation of the training set is processed in CPU, afterwards, the data is allocated in
GPU memory, and each unseen document di is processed in Algorithm 2.

Algorithm 2 describes the GPU (kernel) processing of PROFL. In line 1 the size
of an itemset is defined. In lines 2-3, the disjoint index for rules is created, and the
combinadic algorithm is called in line 5 to obtain the itemset of the rule. In line 6 the
algorithm applies the fingerprint function (described in Section 4.3) to check if the itemset
was already created. If found in the hash table, the support of the itemset is requested in
line 8. If not, the algorithm searches for a smaller itemset in the hash table, the prefix
of size s of the original itemset, and inserts the smaller itemset in L, in lines 10-15.
PROFL searches for a smaller itemset in order to use some bitmaps that were already
created. Line 16 creates a new itemset by using the prefix L. Lines 18-19 check if support
and confidence values of the rules are greater than the thresholds. If it is true, then the
confidence values are summed from several rules. For this, we have applied a parallel
reduction in a shared memory array, as described in [Harris et al. 2007]. Finally, in line
21, the ranking can be computed by using the retrieved scores of each document.

Besides our proposal of PROFL using one GPU, we have also evaluated a multi-
GPU version. The Algorithm 3 shows the multi-GPU implementation of PROFL, where



Algorithm 2 Kernel Execution of PROFL – Parallel Rule-based On the Fly Learning to Rank.
Require: Training Set Bitmap, Unseen document with n items, max rule size, σmin and θmin thresholds
Ensure: The ranking score
{The following code is executed by threads identified by t.}

1: for k = 1 to max rule size do
2: #rules = d

(
m
k

)
/ max threadse

3: ruleIndexes = from t ∗#rules to min((t+ 1) ·#rules,
(
m
k

)
)

4: for all ruleIndexes z do
5: itemset = Combinadic(z, n, k)
6: h = fingerprint(itemset)
7: if Cache(h) is true then
8: p = Cache(h)
9: else

10: L = ∅
11: for s = (k − 1) to 1 do
12: h = fingerprint( prefix(itemset, s) )
13: if Cache(h) is true then
14: include Cache(h) in L
15: break
16: p = create itemset(itemset, L)
17: insert itemset into cache
18: for all relevance value rel do
19: check σ(p −→ rel) ≥ σmin and θ(p −→ rel) ≥ θmin
20: Sum the confidence value from several rules
21: compute the ranking for documenti from all generated rules

Algorithm 3 CPU Execution of Multi-GPU PROFL.
Require: Training Set Bitmap, Unseen Documents, #GPUs, max rule size, σmin and θmin threshold
Ensure: The ranking score
1: for g = 0 to #GPUs parallel do
2: set gpu device(g)
3: Copy training set bitmap to GPU g
4: #docs =

⌈
N

#GPUs

⌉
5: unseenDocumentSet = from g ·#docs to min((g + 1) ·#docs, N)
6: Call Algorithm PROFL(Training Set Bitmap, unseenDocumentSet, max rule size, σmin, θmin)

each GPU is controlled by a CPU thread. The algorithm begins by associating the CPU’s
threads with the GPUs, and copying the training set bitmap to all GPUs memories. Af-
terwards, the unseen documents are split into the available GPUs, and each GPU calls
Algorithm 2. The for iteration performs in parallel by using the API OpenMP6 in order
to manage the parallel execution of multiple GPUs.

5. Experiment Evaluation

In this section, we describe a set of experiments performed to evaluate our parallel pro-
posal. We first describe the hardware where the experiments took place, as well as the
datasets used to benchmark our implementation. We finalize this section discussing our
results against the LRAR and PLRAR, a serial and a parallel baseline, respectively.7

Our experimental results were conducted with the following CPU settings: Cen-
tOs 7.2.1511 64-bits operating system, an Intel Xeon E5-2620 2GHz and 16GB of ECC
RAM. We used a GPU setting composed of four GeForce Zotac Nvidia GTX Titan Black,
with 6GB of RAM and 2,880 CUDA cores each, totaling 11,520 cores.

6Available in http://openmp.org/wp/openmp-compilers/
7These baselines were described in sections 2 and 3.



Table 1. Average number of documents in each fold of the datasets.
Collections

TD2003 HP2003 NP2003 TD2004 HP2004 NP2004 WEB10K
Queries 10 30 30 15 15 15 2000
Test Set 9,812 29,521 29,731 14,834 14,882 14,767 240,039
Training Set 29,435 88,564 89,195 44,488 44,646 44,301 720,116
Red. Tr. Set 671 1091 995 593 859 658 7337

As for the software, the CPU code was compiled with GCC 4.8.5, while the GPU
code was compiled with CUDA Toolkit 7.58. All the codes targeted the native architecture
and had the O3 optimization flag set. All executions were performed without concurrent
process. The reported results are average of 10 independent runs. The standard deviation
and confidence values were negligible being below 1%. Each GPU block was executed
with 256 threads, because of the shared memory usage in our implementation. With 256
threads, there can be three concurrent blocks, instead of one with 512 threads. The size
used for the hash table was 4.5GB, so that 27 million free positions could be used for the
smaller datasets (LETOR3) and 4.6 million for the biggest (WEB10k). The remaining
memory was necessary for other auxiliary structures and the system. We have used the
values 1 and 0.001 for the support and confidence threshold, respectively.9

The Table 1 describes the datasets used in our work. Datasets from LETOR3
(TD2003, TD2004, HP2003, HP2004, NP2003 and NP2004) and WEB10K, which are
freely available. We have applied a 5-fold cross-validation procedure [Hastie et al. 2009],
following the Machine Learning area to ensure confident results. Cross-validation splits
the entire collection into 5 parts, and assigns three parts as a training set, one as an unseen
set and the remaining one as a validation set. The latter was used by the baselines to find
the support and confidence parameters. Each fold receives a different assignment.

As already mentioned in section 3, we have used the reduced version of the dataset
for all executions, applying the active learning method defined in [Silva et al. 2011]. This
reduction was applied to each fold. It is worth noting that this is the first time that the
WEB10K dataset was used in an association rules based ranking task.

5.1. Results

We start by confirming in Tables 2 and 3, that our parallel proposal outperforms all other
baselines. Even using only one GPU, we are able to improve the processing time over
508x and 4x, against the serial and parallel implementation, respectively. Tables 2 and
3 show the performance for our proposal PROFL, as well as LRAR and PLRAR. Both
tables demonstrate the results for rules of size 3 and 410. The time to create the training
set bitmap is not included in these tables, which are over 0.15 and 2.0 seconds for LETOR
and WEB10K, respectively.

Table 2 describes the results using only one GPU. For instance, the time to PROFL
process a query is 0.2 second, while LRAR spends up to 100 seconds in a single query,
which means a speedup of 500x for the best case. This result shows how appropriate our

8Available in https://developer.nvidia.com/cuda-toolkit-archive
9These values were also used in LRAR and PLRAR baselines.

10The maximum rule size used in our experiments is 4, since rules of size 5 do not increase the effectivity
[De Sousa et al. 2012].



Table 2. Execution time (seconds). Bold represent best results.
Execution time for rules of size 3

Time for 1 query Speedup
PROFL PLRAR LRAR PLRAR LRAR

TD2003 0.09 0.13 2.43 1.39 26.11
HP2003 0.08 0.10 2.38 1.32 31.52
NP2003 0.08 0.10 2.36 1.31 31.26
TD2004 0.09 0.12 2.83 1.31 30.28
HP2004 0.10 0.13 2.81 1.32 29.38
NP2004 0.09 0.12 2.70 1.31 28.83
WEB10K 0.02 0.15 2.60 7.72 134.52

Execution time for rules of size 4
PROFL PLRAR LRAR PLRAR LRAR

TD2003 0.18 0.61 81.66 3.35 445.28
HP2003 0.16 0.61 81.48 3.81 507.96
NP2003 0.16 0.60 80.36 3.71 498.09
TD2004 0.21 0.60 102.48 2.93 496.92
HP2004 0.21 0.67 106.27 3.20 506.31
NP2004 0.21 0.64 101.19 3.09 491.42
WEB10K 1.95 7.94 * 4.07 *

Table 3. Speedup for PROFL with multiple GPUs.
Execution time for rules of size 3

Time for 1 query Speedup-2 Speedup-4
PROFL-2 PROFL-4 PLRAR LRAR PLRAR LRAR

TD2003 0.09 0.09 1.42 26.66 1.44 26.97
HP2003 0.07 0.07 1.35 32.21 1.38 32.87
NP2003 0.07 0.07 1.34 32.00 1.37 32.58
TD2004 0.09 0.09 1.34 30.98 1.37 31.56
HP2004 0.09 0.09 1.35 30.00 1.37 30.56
NP2004 0.09 0.09 1.35 29.59 1.37 30.05
WEB10K 0.02 0.02 7.97 138.92 8.13 138.92

Execution time for rules of size 4
PROFL-2 PROFL-4 PLRAR LRAR PLRAR LRAR

TD2003 0.14 0.12 4.32 574.31 5.20 691.68
HP2003 0.12 0.10 5.20 692.27 6.37 849.18
NP2003 0.12 0.10 5.07 680.89 6.20 832.40
TD2004 0.15 0.12 4.02 681.76 4.97 842.28
HP2004 0.15 0.12 4.41 696.54 5.44 860.19
NP2004 0.15 0.12 4.25 674.76 5.23 831.63
WEB10K 0.99 0.50 8.04 * 15.77 *

proposal is to an on-demand processing. Even though PROFL obtained the best perfor-
mance against the baselines, there is only a little difference between it and PLRAR when
using rules of size 3 for LETOR3 datasets. This is because there are few combinations to
be processed. Otherwise, considering the huge WEB10K dataset and rules of size 4 for
all datasets, one can see a strong performance of PROFL, showing the advantage of our
improvements with the thread block approach, use of parallel cache, and the vectorized
bitmap representation.

In the WEB10K dataset there is a greater number of features and documents.



Thus, as shown in Table 2, LRAR suffers more with the increase of features, so it takes
longer to process a single document, making PROFL up to 134x faster. When processing
rules of size 4, the speedup over PLRAR is 4x for the best case. Since PLRAR is a GPU
implementation, our proposal shows strong evidence of a better performance. When exe-
cuting LRAR with rules of size 4, only 10% of the first fold was processed after 20 hours,
making it unable to process WEB10K.

Table 3 shows the results using our multi-GPU PROFL, where PROFL–2 and
PROFL–4 describes the number of GPUs. For multi-GPUs, the improvement is obtained
with rules of size 4, and the time decreases with more GPUs. The speedup of PROFL in
LETOR datasets against PLRAR is up to 5.2x and 6.37x for 2 and 4 GPUs respectively.
Likewise, the speedup against LRAR increases in a few more hundreds, reaching up to
696x and 860x, for 2 and 4 GPUs. The thread block approach also helps the scalability of
multiple GPUs, when there are fewer documents for each query. Taking into account the
WEB10K, where the generation of rules demands more processing, the PROFL obtained
a linear speedup, achieving 8x and 15.77x, for 2 and 4 GPUs, when using rules of size 4.
Considering rules of size 3, the multi-GPUs experiments do not show any improvements
This occurs because of the overhead of the PCIe to access many GPUs, the small number
of intersections and the input time that dominates the processing time.

6. Conclusion
In this paper we have described a new parallel implementation of LRAR, denominated as
PROFL. Our experimental evaluation shows that PROFL outperforms the baselines. For
instance, using a single GPU the speedup of PROFL reached over 500x and 4x faster than
serial and GPU baselines, respectively, for the best case.

The faster processing of PROFL are due to i) the proposal of a parallel cache with
fingerprint function, providing an independent and parallel hash accessing, ii) the thread
block approach that was made possible by using the combinadic method, that allows to
distribute the work evenly among the threads, and also iii) our vectorized bitmap represen-
tation, which increases the memory throughput of the GPU and allows fast intersections
that are done with bitwise operations. In addition, we have implemented a multi-GPU
PROFL, which shows a linear scalability when more GPUs are used.

Concerning the on-demand aspect, which needs to compute new models on the
fly, we have shown that PROFL is a good candidate to improve the processing time. This
result opens up several research possibilities as future works. For instance, we plan to
apply our itemset computation to find out people’s behavior on social-media, especially
in social events where statistical properties can change over time, without a predefined
way. In this situation, the prediction for new information are useful only if obtained in a
short time.
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