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Abstract. In this paper we implement an autotuner for the compilation flags of
GPU algorithms using the OpenTuner framework. An autotuner is a program
that finds a combination of algorithms, or a configuration of an algorithm, that
optimizes the solution of a given problem instance or set of instances. We anal-
yse the performance gained after autotuning compilation flags for parallel al-
gorithms in three GPU devices, and show that it is possible to improve upon
the high-level optimizations of the CUDA compiler. One of the experimental
settings achieved a 30% speedup.

1. Introduction

The popularity of heterogeneous parallel computing platforms has been raising since par-
allel computing emerged in the last decade. Consequently, the need for optimized al-
gorithms for these platforms has also raised. The increasing diversity and availability
of parallel computing hardware complicates the task of hand-optimizing programs, and
justifies automated strategies to tune and configure parallel programs.

The most widely used GPUs are those produced by NVIDIA. They are built with
a set of Streaming Multiprocessors (SMs), each containing several cores called Scalar
Processors (SPs). They also contain a set of Special Function Units (SFUs) and a number
of load/store units. The multiprocessors execute asynchronously and in parallel. The SM
schedules parallel threads in groups of 32, called warps, which can use load/store units
concurrently, enabling simultaneous reads from memory for these threads.

The Compute Unified Device Architecture (CUDA) is a high-level platform for
developing GPU applications. It extends the C language and provides a compiler that
translates it into pseudo-assembly Parallel Thread Execution code (PTX), which is exe-
cuted by NVIDA GPUs. CUDA applications are organized in functions executed on the
GPUs, called kernels. Kernels are composed of thread blocks, each containing hundreds
of threads.

The performance of a kernel execution in a GPU depends largely on the optimiza-
tion of the accesses to data in the memory hierarchy. Threads within a block can cooperate
by sharing data through shared memory. This kind of memory is on-chip in each multi-
processor and has a very small latency. The global memory bandwidth of a GPU can be
largely improved by combining the load/store requests from different threads of a single
warp in a single memory request, in a process called coalescing [1]. Coalescing occurs
when the threads access contiguous global memory addresses, which enables the usage
of multiple load/store units available per SM.



The program autotuning problem fits in the framework of the Algorithm Selection
Problem, introduced by Rice in 1976 [2]. The objective of an autotuner is to select the
best algorithm, or algorithm configuration, for each instance of a problem. Algorithms
or configurations are selected by their performance, which is measured by the time to
solve the problem instance, the accuracy of the solution or the energy consumed. The set
of all possible algorithms and configurations that solve a problem define a search space.
Guided by the performance metrics, various optimization techniques search this space for
the algorithm or configuration that best solves the problem.

Autotuners can specialize in domains such as matrix multiplication [3], dense [4]
or sparse [5] matrix linear algebra, and parallel programming [6]. Other autotuning frame-
works provide more general tools for the representation and search of program configura-
tions, enabling the implementation of autotuners for different problem domains [7, 8].

In this paper we use the OpenTuner framework [7] to implement an autotuner for
the parameters of the CUDA ! compiler. We use the autotuner to search for the compiler
parameter sets that optimize the performance of five different GPU applications. Our
main contribution is to show that it is possible to optimize GPU code by autotuning the
parameters of the CUDA compiler. The compilation parameters generated by the auto-
tuner often beat the compiler high-level optimization options, such as ~01, -02 and —-03.
For a certain program, a set of compilation parameters achieved a 30% speedup. The ex-
periments’ data also confirms that the compilation parameters that optimize an algorithm
for a given GPU architecture will not always achieve the same performance in different
hardware.

The rest of this paper is organized as follows. Section 2 presents related work in
autotuning and optimization of GPU programs. Section 3 describes the GPU testbed, the
algorithm benchmark, the compilation parameters used for tuning and the implementa-
tion of the autotuner. Section 4 presents the results of the autotuning experiments, and
discusses these results. Section 5 concludes.

2. Related Work

Rice’s conceptual framework [2] formed the foundation of autotuners in various problem
domains. In 1997, the PHiPAC system [3] used code generators and search scripts to
automatically generate high performance code for matrix multiplication. Since then, sys-
tems tackled different domains with a diversity of strategies. Whaley et al. [4] introduced
the ATLAS project, that optimizes dense matrix multiply routines. The OSKI [5] library
provides automatically tuned kernels for sparse matrices. The FFTW [9] library provides
tuned C subroutines for computing the Discrete Fourier Transform. In an effort to provide
a common representation of multiple parallel programming models, the INSIEME com-
piler project [6] implements abstractions for OpenMP, MPI and OpenCL, and generates
optimized parallel code for heterogeneous multi-core architectures.

Some autotuning systems provide generic tools that enable the implementation of
autotuners in various domains. PetaBricks [10] is a language, compiler and autotuner that
introduces abstractions, such as the “either...or” construct, that enable programmers to
define multiple algorithms for the same problem. The ParamILS framework [8] applies
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stochastic local search methods for algorithm configuration and parameter tuning. The
OpenTuner framework [7] provides ensembles of techniques that search spaces of pro-
gram configurations. Bosboom et al. and Eliahu use OpenTuner to implement a domain
specific language for data-flow programming [11] and a framework for recursive parallel
algorithm optimization [12].

GPU applications hide pipeline computation and communication latency by ex-
ecuting interleaved parallel threads. When the instruction pipeline is saturated, the per-
formance of the application run close to the peak. When the pipeline is under-utilized
the performance can be very unpredictable and harder to model [13, 14]. It is critical to
model GPU caches [15] and consider the effects of memory access divergence [16, 17].

The availability of GPU hardware, tools and frameworks enable beginner and ex-
pert developers to take advantage of GPU architectures. However, knowledge about the
architecture of specific GPUs is required to achieve optimal performance for particular
algorithms [18, 19]. Some of the work on GPU autotuning [20, 21, 22] aim to tune param-
eters such as block sizes, tiling techniques, transfers between single and double precision,
loop permutations and unrolling.

To the best of our knowledge, this is the first work that tackles the autotuning
problem in GPUs by tuning the parameters of the CUDA compiler, using the OpenTuner
framework. This approach has the potential to improve the performance of legacy code in
a variety of parallel computing platforms, across heterogeneous applications.

3. Experiments

This section discusses the experiments with OpenTuner, the GPU algorithms implemented,
and the GPU architectures used as testbed.

Testbed

We performed experiments in three Kepler architecture GPUs, with compute capability
(c.c.) 3.x: the GeForce GTX-680; the Tesla-K20; and the Tesla-K40. Note that the GTX-
680 has the fastest clock, the least amount of L2 cache and global memory, and also the
smallest bandwidth and bus. Table 1 summarizes their specifications.

Model c.c. Global Memory Bus Bandwidth L2 SM/Cores Clock

GTX-680 3.0 2GB 256-bit 1922 GB/s 512 KB 8/1536 1006 Mhz
Tesla-K20 3.5 4 GB 320-bit 208 GB/s 1280 KB 13/2496 706 Mhz
Tesla-K40 3.5 12 GB 384-bit  276.5 GB/s 1536 KB 15/2880 745 Mhz

Table 1. Hardware specifications of the GPUs of the testbed

GPU Algorithms

The benchmark used in the experiments comprises four optimization strategies for matrix
multiplication and one solution for the maximum sub-array problem. The remaining of
this section discusses the implementation of these algorithms.



Matrix Multiplication We used four memory optimization techniques for the matrix
multiplication application: global memory with non-coalesced accesses (#1); global mem-
ory with coalesced accesses (#2); shared memory with non-coalesced accesses to global
memory (#3); and shared memory with coalesced accesses to global memory (#4). Note
that the running time of a matrix multiplication for two matrices of size N x N is O(N?)
in the sequential algorithm and O(N) in a CUDA application that uses N? threads.

Non-coalesced accesses happen when global memory contains irregular refer-
ences to data. The optimizations affect only the performance of the communication be-
tween threads. In optimization (#2), the data access pattern is modified, enabling coa-
lesced accesses to data in the global memory. Optimization (#3) uses shared memory to
load data from global memory, processing them with a lower latency. Similarly to opti-
mization (#2), optimization (#4) changes the coalesced memory accesses from the source
code of optimization (#3). All performance measurements for these optimizations used
square matrices, with N = 1024.

Maximum Sub-array Problem Let X be a sequence of N integer numbers (1, ..., y).
The maximum sub-array problem consists of finding the contiguous sub-array within X
which has the largest sum of elements. The solution for this problem is frequently used
in computational biology for gene identification, analysis of sequences of protein and
DNA, and identification of hydrophobic regions. The maximum sub-array problem can
be solved sequentially in O(/N) comparisons [23], and in O(N/t) with a parallel solu-
tion [24], where t is the number of threads.

The implementation [25] used in this paper creates a kernel with 4096 threads,
divided in 32 blocks with 128 threads. The N elements are divided in intervals of N/t,
and each block receives a portion of the array. The blocks use the shared memory for
storing segments, which are read from the global memory using coalesced accesses. Each
interval is reduced to a set of 5 integer variables, which are stored in vector of size 5 X ¢ in
global memory. This vector is then transferred to the CPU memory for later processing.
All performance measurements for the Maximum Sub-array Problem used arrays with
N = 134217728.

Compilation Parameters

Table 2 shows the subset of the CUDA configuration parameters used in the experi-
ments. These options target different compilation steps: the PTX optimizing assembler;
the NVLINK linker; and the NVCC compiler. We compared the performance of pro-
grams generated by tuned parameters with the standard compiler optimizations, namely
-—opt-level=0,1, 2, 3. The ——opt—-1level parameter was also among the param-
eters that could be selected by the tuner. We did not use compiler options that target the
host linker or the library manager, since they do not affect performance.

Autotuning GPU Applications

OpenTuner search spaces are defined by Configurations, composed of different Parameter
types. Each type has restricted bounds, and implements its own manipulation functions,
enabling the exploration of the search space. OpenTuner implements ensembles of opti-
mization techniques that perform well in different problem domains.



Results found during the search process are shared between techniques through a
common database. OpenTuner uses meta-techniques for coordinating the distribution of
resources between techniques. An OpenTuner application can implement its own search
techniques and meta-techniques.

Step Options

prec—-sqgrt, relocatable-device-code,
NVCC no-align-double, use-fast-math,
gpu—-architecture, ftz, prec-div

def-load-cache, opt-level, fmad,

PTX allow-expensive-optimizations,
maxrregcount
NVLINK preserve-relocs
Options gpu-architecture opt-level def-load-cache maxrregcount
sm_20, sm_21,
Values sm_30, sm_32, 0 -1 ca, cg, Ccv, Ccs 16 - 64
sm_35

Table 2. The set of compiler parameters used by the autotuner and their allowed
values, grouped by CUDA compilation step. Parameters whose values are not
listed are boolean.

The autotuner we implemented uses OpenTuner’s parameter types to represent
CUDA compilation options. Compiler flags and multi-valued parameters are represented
by EnumParameters, and numerical parameters by IntegerParameters. The same encod-
ing is used to implement a GCC autotuner [7].

The unrestricted search in the space of all compilation options generates many
invalid combinations due to incompatible flags or architecture restrictions. Since the au-
totuner has no knowledge about the search space or the programs being tuned, it could
accept the very fast results produced when there are compilation or execution errors. Our
implementation always checks for errors during the compilation phase and verifies pro-
gram results, considering only the performance of correct programs.

The incorrect programs generated during autotuning can be used to better under-
stand and prune the search space, enabling search techniques to test only valid combina-
tions and achieve better results faster.

The code for the autotuner and all the results for the experiments are available?
under the GNU General Public License. The core functions of the autotuner are run and
manipulator. The manipulator function builds the representation of the compiler
parameters using OpenTuner’s types. The run function compiles and runs programs,
checking for errors in both steps.

We did not allow the autotuner to produce invalid compilation options. Thus, if
the tuner finds errors during the compilation phase it halts with an error value. Next, if it
finds errors during execution of the program the autotuner saves the compilation options
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to a file and assigns a penalty value to the configuration. Otherwise, it returns the runtime
of the program as the fitness measure of the configuration. All tuning runs were arbitrarily
1 hour long.

4. Results

This section comprises two parts. The first part presents the performance improvement
achieved by the autotuned compilation options in the five algorithms of the benchmark.
The second part discusses the performance and accuracy of the autotuner.

4.1. Performance Gains

The boxplots® in Figures 1, 2, 3 and 4 present the performance distributions, over 20
measurements, of the high-level optimizations and the autotuned options. The results for
the high-level options ——opt-level=0,1, 2, 3 were denoted by -00, -O1, -O2 and
-03. The results for the autotuned configurations were denoted by the keyword Tuned.

The black band inside the boxes represent the median of the measurements. The
lower and upper bounds of the box represent, respectively, the first and third quartiles
of the data. The whiskers represent the third and first quartile plus and minus the inner
quartile range times 1.5. Finally, circles represent the outliers.

The autotuned options achieved gains in performance of up to 30% in compari-
son with the high-level CUDA options for the matrix multiplication algorithm with non-
coalesced accesses to global memory. The performance improvement was up to 9.22% for
the algorithm with coalesced accesses to global memory. Both results were achieved in
the GTX-680 GPU, and are summarized in Figures 1 and 2. The autotuner also achieved
a 2.7% speedup for the algorithm with shared memory and coalesced accesses to global
memory in the GTX-680 GPU.
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Figure 1. Boxplots for the GTX- Figure 2. Boxplots for the GTX-

680 GPU, comparing autotuned re-
sults and high-level compiler op-
timization options for the matrix
multiplication algorithm with non-
coalesced global memory accesses
(optimization #1).

680 GPU, comparing autotuned re-
sults and high-level compiler opti-
mization options for the matrix mul-
tiplication algorithm with coalesced
global memory accesses (optimiza-
tion #2).

3The boxplots were made with standard implementations available in the R language.



Figure 3 presents a speedup of the autotuned solution of up to 1.40% in the Tesla
K-40 GPU for the maximum sub-array problem. Finally, Figure 4 shows a speedup of
1.31% of the autotuned solution in the Tesla-K20 GPU for the same problem. Still on
the maximum sub-array problem, the autotuned solution achieved a 1.91% speedup in
comparison with the compiler high-level optimizations, in the GTX-680 GPU.
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Figure 3. Boxplots for the Tesla-
K40 GPU, comparing autotuned re-
sults and high-level compiler opti-
mization options for the maximum
sub-array problem.

Figure 4. Boxplots for the Tesla-
K20 GPU, comparing autotuned re-
sults and high-level compiler opti-
mization options for the maximum
sub-array problem.

A summarization of the tuning results is presented in Figure 6. The autotuned
solutions did not achieve improvements for optimization #3 in any of the GPUs of the
testbed. The autotuner achieved speedups for the GTX-680 in the algorithms #1, #2, #4
and Sub-Array. Experiments in the Tesla-K20 had the worst improvement results, the
autotuner produced configurations worse than the high-level optimizations in algorithms
#1, #2 and #4. The autotuner improved upon high-level options in all GPUs for the Sub-
Array algorithm.
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Autotuning in the GTX-680 presented the best results. Table 1 shows that this
GPU has the fastest clock, the least amount of L2 cache and global memory, and also
the smallest bandwidth and bus in the testbed. We believe that the GTX-680 hardware
limitations relative to the other GPUs in the testbed left more cache and memory opti-
mization opportunities for the compiler. The GTX-680 was also the only GPU in which
applications compiled with a compute capability 3.2, specified by the sm_32 parameter,
did produce correct results.

The autotuner logged the configurations that passed the compilation phase and
generated binaries that did not crash but still produced incorrect results. Assertions in
the programs exposed these cases, considered to be failed configurations. Figure 5 sum-
marizes the failed configurations. The Tesla-K20 had the highest percentage of such
configurations, for all algorithms.

All failed configurations in the Tesla-K20 and K40 for the #1 algorithm specify the
sm_32 compute capability. This exposes a bug in NVCC where a program fails silently,
that is, it runs but produces incorrect results when compiled successfully with an unsup-
ported compute capability. The failed configurations for the Sub-Array algorithm in the
GTX-680 exposed conflicts between the simultaneous specification of ——fmad=true
and ——ftz=false.

4.2. Autotuner Performance

This section presents an assessment of the performance of the autotuner. Figures 7 and
8 present the performance of the best solutions versus the time when they were found,
measured in seconds of tuning.
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Figure 8. Best solutions found

The fitness value in the final version of the autotuner was calculated as the mean
of the performance over 20 executions of a configuration. This enabled the tuner to filter
out the system fluctuations that usually interfere with the performance of a program, such



as task scheduling and GPU load. Figure 7 is representative of the majority of tuning
runs, which did not benefit from the entire hour of the run since the best solutions were
found at the beginning.

To ensure the configurations produced were measured correctly we obtained the
median of 20 executions of the solutions. Figure 2 shows that this median is very close to
the best value reported by the autotuner, presented in Figure 7. Figure 8 shows a fitness
value for the final best solution that is very distant from the median of 20 executions,
which is shown in Figure 4. This happened because the tuning run presented in Figures 8
and 4 was made with a previous version of the autotuner, that returned a single value as
the fitness measure.

In that case the tuner found a single execution of a configuration that had a lower
value than the current best. This value did not reflect the configuration’s quality because
its performance was privileged by system fluctuations. Therefore, the tuner was mislead
and kept finding “good” solutions that benefited from fluctuations. This could also ex-
plain why the best solution in Figure 8 took longer to be found. The implementation of
autotuners should always consider the mean of multiple executions, or some other repre-
sentative metric, as the fitness value for configurations or algorithms.

5. Conclusion

We used the OpenTuner framework to implement an autotuner for the search space de-
fined by the parameters of the CUDA compiler. We composed a benchmark of five ap-
plications, and compared their performance in three Kepler architecture GPUs. Although
most experimental settings were not able to improve upon high-level optimizations, the
autotuner was able to achieve a speedup of 30% in one of them. We consider these to be
good results, since no domain-specific search techniques were implemented.

This paper showed that it is possible to improve the performance of legacy GPU
code by applying empirical and automatic tuning techniques. We present results that
confirm that different compilation options can be selected to achieve performance im-
provements in different GPUs. We expose a compiler option that causes programs to fail
silently, that is, the program is compiled successfully and does not present runtime errors,
but produces incorrect results.

Future work will include application parameters, and options for the GCC com-
piler, that also composes the CUDA compilation chain. We would also like to apply the
Programming by Optimization [26] design paradigm for GPU and parallel programming.
We will extend the analysis of the interactions between compilation parameters, aiming
to explain the improvements introduced by their usage.

To the best of our knowledge, this is the first work that applies autotuning tech-
niques to CUDA compiler parameters for GPU applications using the OpenTuner frame-
work, comparing the speedup achieved in different GPU architectures for heterogeneous
applications.
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