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Abstract. In face of the high number of different hardware platforms that we

need to program in the Internet-of-Things (IoT), Virtual Machines (VMs) pose

as a promising technology to allow a program once, deploy everywhere strat-

egy. Unfortunately, many existing VMs are very heavy to work on resource-

constrained IoT devices. We present COISA, a compact virtual platform that

relies on OpenISA, an Instruction Set Architecture (ISA) that strives for easy

emulation, to allow a single program to be deployed on many platforms, in-

cluding tiny microcontrollers. Our experimental results indicate that COISA

is easily portable and is capable of running unmodified guest applications in

highly heterogeneous host platforms, including one with only 2 kB of RAM.

1. Introduction

Current computer science trends suggest a future where platform heterogeneity is grace-
fully embraced: with Internet-of-Things (IoT) [17, 32], we will need an increased capac-
ity of programming wildly different devices, each exploring distinct energy-performance
trade-offs, yet still remain productive enough to make this industry viable from the soft-
ware engineering standpoint.

There are two distinct development models engineers can explore: (1) the software
is custom designed to each device, and all software development is tied to the hardware
platform, or (2), software is written once for a virtual platform, but it runs on all devices
in a hardware-independent fashion due to the use of virtual machine technology.

The solution (1) may not be a cost-effective choice in face of the high number
of different hardware platforms that may support IoT devices (such as different versions
of Arduino [16], ARM [23] and Quark [24]). For example, the Android Dalvik virtual
machine powered a large slice of the mobile phone revolution because it is not attrac-
tive for programmers to learn how to program a single device if they can learn how to
program a myriad of Java-running devices. Likewise, for companies, it is not advanta-
geous to spend resources developing software locked to a single device if they can target
a wider audience with virtual machine technology. If virtual machines already proved to
be an effective technology in this realm, we can expect the IoT to be an important tar-
get for virtual machines because it will feature an even deeper degree of heterogeneity in
comparison with the mobile industry.

However, a virtual platform has inherent overheads associated with interpretation
and, in the case of Java, garbage collection, which contrasts with the scant resources
typically available in IoT devices. Thus, special virtual machines must be implemented to
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allow its feasibility. We performed a survey of virtual machines available for constrained
hardware platforms, which includes very low memory devices and microcontrollers, and
out of the 10 systems we were able to find, 8 of them are focused on Java.

Instead of relying on the complex and more abstract Java ISA, virtual machines
can also work with low-level (machine) code and can have an uniform binary (and bug)
compatibility across all targets. The attractiveness of low-level virtual machines for
resource-constrained devices comes from the higher platform simplicity of such systems:
we do not need the Java Runtime Environment to support the Java ecosystem, but only
a simple interpreter because the guest program is already compiled and optimized. The
VM now only has to focus on how to bridge the differences between host and guest hard-
ware platforms. Therefore, it is important that the guest ISA be as easy to be emulated as
possible.

In this paper, we use MIPS-I as a guest ISA for IoT devices and present a
lightweight process virtual machine that is capable of emulating MIPS binaries on several
distinct platforms, including Arduino Uno [13], which features only 2 kB of RAM. Our
contributions are the following:

• We show that the memory footprint of a simple interpreter can be as low as 348
bytes of RAM, and yet implement a complete, general purpose virtual machine;

• We argue that this virtual machine can be easily ported to different host systems
and we successfully port it to 6 distinct platforms;

• We analyze how the simple, interpreted virtual machine varies its performance
when running on hosts ranging from microcontrollers to high-end processors.

This paper is organized as follows. Section 2 presents related work in literature,
Section 3 gives an overview of the COISA virtual platform, Section 4 discusses our ex-
perimental results and Section 5, our conclusions and future work.

2. Related Work

Nowadays, in consequence of the wide range of micro-controllers configurations and
specifications, it is difficult to achieve a complete software portability and hardware ab-
straction in this realm. One way to achieve software portability is through the use of
virtual machine technologies. A virtual machine is a computer program that emulates an
interface to another application. This technology is present in many computer systems
and has been used from the support of high-level programming languages, such as the
Java virtual machine, to the implementation of processors with integrated hardware and
software design, such as the Transmeta’s Efficeon processor [26].

There are several virtual machines that were developed to run on resource-
constrained devices [1, 8, 9, 10, 11, 19, 25]. For instance, Darjeeling [19], Simplen
RTJ [9], uJ [11] and NanoVM [10] are bare metal High-Level Language (HLL) VMs that
are capable of running on a limited hardware environment, such as the ones powered by
8 or 16-bit microcontrollers with 2 to 10 kB of RAM and 32 kB of flash memory. Even
though these implementations focus on running Java applications, they are very simple
and only capable of executing a subset of java-bytecode.

Because of the Java complexity and limited resources, some projects, like
TakaTuka [12], use a compact file format to reduce the memory overhead instead of the
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traditional .class file. These files contain only essential information about the runtime.
TakaTuka also employs a byte-code compression and optimization that improves the load
performance and execution.

One disadvantage of HLL virtual machines is that most implementations are
bound to a single high-level programming language. A solution with more freedom is
the IBM Mote runner [20]. The IBM Mote runner is a virtual machine designed to run on
embedded systems and can be a target to all strictly-typed programming languages, such
as Java and C#. This virtual machine runs a specialized bytecode, called Mote Runner
intermediate language (SIL), and uses a stack-based approach to achieve a more compact
implementation.

An important difference of our work against others that use a specialized byte-
code for restricted platforms is that we are in favor of using a single binary format across
all machines. In this sense, working with a different intermediary file specially crafted
for restricted platforms defeats the purpose of using VM technology, which is to have an
architecture-neutral format. In our work, we stick with a register-based approach instead
of the Mote runner choice because we believe that a register-based intermediate represen-
tation is more suitable for optimizations for higher-end hosts [28].

CILIX [31] is an HLL VM for the Common Intermediate Language (CIL) that
runs on resource-constrained devices, requiring 8 or 16-bit CPUs, 4 kB RAM, and 32 kB
of flash memory. Thanks to the CIL, the CILIX is compatible with many programming
languages, such as J++, C#, Visual Basic, C++ and F#.

Table 1 presents a summary of virtual machines that are compatible with devices
with low RAM availability.

Project CPU (bits) RAM (kB) Flash (kB) ISA Language

SimpleRTJ [9] 8/16/32 2-24 32-128 Java Bytecode Java
Darjeeling [19] 8/16 2-10 32-128 Java Bytecode Java
NanoVM [10] 8 1 8 Java Bytecode Java
uJ [11] 8/16/32/64 4 80-60 Java Bytecode Java
TakaTuka [12] 8/16 4 48 Java Bytecode Java
Squawk [29] 32 512K 4000 Squawk Bytecode Java
IBM Mote Runner [20] 8/16/32 4K 32 SIL C#, Java
CILIX [31] 8/16 4K 32 CIL C#
PyMite [1] 8/16/32 5K 64 Python Bytecode Python

Table 1. Virtual Machines comparison

HLL virtual machines typically execute an intermediate language representation
that reflects important features of a specific class of languages. On one hand, this approach
includes more semantic information from the source program, allowing the system to
perform more aggressive runtime optimizations to improve the system performance. On
the other hand, this approach also makes the virtual machine more dependent on source
languages.

Different from HLL virtual machines, ISA virtual machines are capable of running
low-level binary programs that were compiled for a given instruction set architecture, or
ISA. This solution is typically employed to grant intrinsic compatibility with real pro-
cessor implementations, allowing full binary compatibility when running the binary on
systems with different ISAs.

Since processor ISAs are language agnostic, using an ISA VM instead of an HLL
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VM allow us to leverage any language that has a compiler compatible with the ISA to
produce portable binary code. The GCC [6], for instance, has front ends for C, C++,
Objective C, Fortran, Java, Ada, and Go and can be used to produce x86, ARM or MIPS-
1 compatible binaries, among others. Therefore, it is possible to create an emulator for
one target of GCC and emulate it with a virtual machine.

In our research, we could find several projects that implements real ISA virtual
machines [3, 4, 5, 2]. Most of them are native system machines that emulate other com-
puter hardware, including the entire instruction set. However, we could not find a pro-
cess virtual machine that implements a user-level instruction set and is able to run on
a resource-constrained device such as the ATmega328 microcontroller. To this end, we
propose COISA, a Constrained OpenISA process virtual machine that emulates a MIPS-
1 compatible user-level instruction set and can be executed by a microcontroller with
less than 2 kB of RAM. Our solution stands out from other work by providing a total
independence of the language and by providing intrinsic compatibility with a processor
implementation. Moreover, we show that COISA is portable by executing it on different
architectures, including micro-controllers and general purpose CPUs. The next section
presents the architecture of COISA.

3. The COISA Virtual Platform

COISA is a virtual platform that is composed of three main components: a Virtual Ma-
chine (VM), a Hardware Abstraction Layer (HAL) and a Thing Monitor (TM). Figure 1
illustrates the COISA virtual platform running on an ATmega328 microcontroller.

Emulation 
engineHAL

guest app

Thing 
Monitor

ATMega 328

SW
H

W

VM

GPIO, UART, etc...

I/O interface Host ISA

Guest ISA

RAM (2 kB)

Flash (32 kB)

Figure 1. Overview of the COISA virtual platform

The VM is a process virtual machine [30] that is responsible for emulating guest
programs, compiled for the guest ISA. It emulates user-level instructions, allowing the
guest program to access guest architectural registers and the guest memory. I/O operations
are performed via syscall instructions, which are handled by the Virtual Machine instead
of a guest operating system. This organization allows us to build a very compact software
stack, which in turns consumes very little memory. In fact, our experiments indicate that
COISA takes only 6 kB of Flash memory and 348 bytes of RAM when executing on an
ATmega328 microcontroller, leaving almost 1.7 kB out of the 2 kB RAM to the guest
program.

The HAL module abstracts the underlying hardware, enabling the other modules
to probe and control the hardware peripherals in a portable way. As an example, it allows
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other modules to probe for existing sensors and to read data produced by them. The guest
program may probe and read sensor values by performing system calls, which in turn are
redirected by the VM and serviced by the HAL.

The Thing Monitor, or TM, allows remote users or devices to inspect and control
the system. It is also responsible for loading the guest app into the VM memory and con-
trolling the VM execution flow, including starting, stopping and stepping through guest
instructions.

All the modules require memory resources to store their respective code, constants
and variables. Since their code and constants are immutable, it is possible to store them on
Flash memory, when available. This approach reduces the pressure on the main memory
(typically RAM), enabling the virtual machine to dedicate most of the main memory to
the guest application.

The goal with this modular infrastructure it to improve portability, allowing the
virtual platform to be easily adapted to multiple environments, even to ones with scarce
resources, such as a microcontrollers. Moreover, the modules of the platform are written
in C and make no use of C library functions, which allows it to be compact and easily
compilable to a wide variety of hardware platforms. In fact, as we discuss in Section 4.3,
only fractions of the Thing Monitor and the HAL had to be changed to adapt COISA to
different host platforms. For instance, the TM was the same for the three platforms with
an operating system and only about ten lines of code were changed for each other one.

The VM emulation engine, which is responsible for executing the guest applica-
tions via guest ISA emulation, relies on a compact interpreter that fetches, decodes and
executes guest instructions one by one. Interpreters provide lower performance than dy-
namic binary translators, however, they allow us to build compact and portable virtual
machines [30]. Moreover, for systems that require high performance, it is possible to
replace the current emulation engine by one that employs a high performing dynamic
binary translator, which may be capable of achieving near native performance, as dis-
cussed by Auler and Borin [14]. In this sense, we envision an IoT with different flavors
of the COISA virtual platform, ranging from very compact to high performing systems,
each one requiring different amounts of hardware resources, but providing transparent
software compatibility across a wide variety of hardware platforms.

3.1. Guest ISA

The guest ISA is the main interface between the virtual platform and the guest applica-
tions. This interface may affect the system in several aspects, such as:

• guest code size: very simple instruction set architectures may require less bits
to encode instructions but may also require more instructions to code programs.
Therefore, the set and the encoding of instructions may cause a big impact on the
guest code size. Since we are targeting highly constrained hardware devices, such
as the ATmega328 microcontroller, the guest code size must be compact.

• emulation performance: the emulation performance depends on the emulation
technique and the guest ISA [14]. Since performance is important for certain
applications, it is important to select a guest ISA that allows high performance
emulation.

• emulation complexity: complex guest instruction set architectures may require
complex and larger software engines to emulate the guest apps. In this sense, the
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guest ISA must be clean, allowing the design and implementation of compact and
simple emulation engines for resourced-constrained hardware platforms.

Our previous experience with ISA emulation and design [27, 14, 18] have shown
us that a clean ISA, similar to MIPS-1, allows us to build a high performance emulator
capable of emulating guest applications on ARM and x86 host processors at near native
performance. As a result, we are designing OpenISA, an ISA that aims to be emulation
friendly, empowering most of the devices in the world to execute the same set of appli-
cations. In this sense, we envision an IoT powered by platforms that execute OpenISA
applications.

Since the OpenISA instructions encoding is not fully defined yet, we employ the
MIPS-1 ISA as the guest ISA in our experiments and show that it is possible to build
compact guest applications and a compact emulation engine for this ISA. Since MIPS-1
and OpenISA are similar in functionality and number of instructions we conjecture that
OpenISA would also enable the construction of compact guest applications and a compact
emulation engine, satisfying all the desired characteristics for a guest ISA.

4. Experimental Results

We evaluate the COISA virtual platform in several aspects. First, we evaluate the guest
applications memory footprint. Then, we discuss the amount of memory required by
the COISA virtual platform. After this, we discuss the COISA portability. Finally, we
evaluate its emulation performance.

4.1. Guest code memory footprint

The guest application, including the code, is stored at the virtual machine guest memory,
which may be a very scarce resource in some devices (e.g. 2 kB at the Arduino develop-
ment board). Thus, the guest ISA must allow guest application to be coded in a compact
way.

To evaluate the size of guest applications, we used the following subset of the
programs from the Great Computer Language Shootout benchmark [15]: Ackermann,
which computes the Ackermann’s Function; Array, which computes the sum of two ar-
rays; Fibonacci, which recursively computes the 12th number of the Finonacci sequence
– we used a low input number to avoid overflowing the guest stack on the Arduino de-
velopment board; Heapsort, which sorts a random set of integers; Lists, which performs
assorted operations on linked lists; Matrix, which multiplies two 3x3 matrices – again,
the input quite small to fit in RAM; Random, a random number generation function using
the same seed; and Sieve, which computes the Sieve of Eratosthenes to find all primes
from 1 to 768. These programs exercise a CPU-intensive workload, presenting a perfect
fit to make initial tests on our general-purpose virtual machine because they stress the
interpreter implementation instead of other, unrelated subsystems.

Since the benchmark applications are written in C, we utilized the GNU GCC and
the GNU Binutils [7] toolchains to compile guest applications and evaluate their size.
First, we compile and assemble the guest source code into object files. Then, we link
these files with the crt0.o file, which contains code to initialize the stack, call the guest
main function and, at the return of the guest main function, call the exit syscall. This
file also contains a small function to allow guest programs to make system calls. After
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everything is linked together, we use the objcpy utility to strip out all extra semantic
information from the ELF file, reducing its final size. Figure 2 illustrates the flow used to
compile the guest code in our experiments.

App.elfApp.c compiler assembler linker

crt0.o

guest 
appobjcpy

compiler assemblercrt0.s

Figure 2. Guest code compilation flow

In our experiments, we did not link the guest code with the C library, since it
would enlarge the guest application with functions and data that would not be required.
Instead, we replaced the calls to the printf function by calls to two different functions:
one responsible for printing strings and other responsible for outputting numbers. Those
two functions invokes a syscall that interacts with the available hardware on the platform
and prints what was ordered. This way we could check the output of the benchmarks.

For some of the applications, we also changed the benchmark input to reduce the
amount of stack space required during execution. This is the case for Fibonacci and Ack-
ermann, which can execute a deep recursion depending on the input value. Table 2 shows
the size of the benchmark applications before and after stripping out the extra semantic
information from the ELF file and the amount of memory required by the application
stack during execution.

Ackermann Array Fibonacci Heapsort Lists Matrix Random Sieve
Original binary size 5164 5204 5132 5692 7724 6880 5344 5236
Stripped binary size 321 364 297 696 1996 1596 408 394

Minimum stack size required 696 824 376 104 80 72 24 800

Table 2. Benchmarks footprint in Bytes (Os optimization flag)

As we can see from Table 2, it was possible to encode all the applications with
less than 2 kB. IoT systems that run on resource-constrained platforms are expected to
implement simple control logic that reads sensors, provides data to other components
and control peripherals. Based on the aforementioned results, we conjecture that the
MIPS or an equivalent ISA is compact enough to enable coding of simple control logic
with less than two kilobytes. Moreover, specialized routines designed to read or control
certain peripheral can be embedded into the HAL module and made available to the guest
application as a service through system calls, reducing even more the guest application
size.

4.2. COISA memory footprint

We also evaluate the amount of memory resources required by COISA on six different
platforms, listed in Table 3.

The AVR ATmega328 and Native x86 platforms run the COISA virtual platform
without any support from host operating systems. For the AVR ATmega328 platform, we
use the avr-g++ 4.8.1 cross compiler and the Arduino tool chain to compile and write the
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OSX AMD64 Linux AMD64 Linux x86
Processor Frequency 2.8 GHz 2.8 GHz 2.8 GHz

Processor Model Intel Core i5 Intel Core 2 Duo E7400 Intel Core 2 Duo E7400
Memory 8 GB 2 GB 2 GB

Linux ARM v7 AVR ATmega328 Native x86
Processor Frequency 1.4 GHz 16 MHz 2.8 GHz

Processor Model ARM Cortex-A9 ATmega328-PU Intel Core 2 Duo E7400
Memory 1 GB 2 kB RAM + 32 kB Flash 2 GB

Table 3. Platforms used in our experiments

COISA virtual platform at the ATmega328 flash memory. For the Native x86 platform,
we use the Native Kit [21] to produce a bootable flash drive that automatically loads the
COISA virtual platform into the main memory, sets up the x86 processor and starts the
system. The other platforms contain host operating systems that enable COISA to be
compiled and executed as any other ordinary host application.

The VM guest memory was adjusted based on the amount of memory available on
the host platform and in the most limited environment, powered by an ATmega328, it took
only 6 kB of flash memory and 348 bytes of RAM (141 bytes for data and 207 bytes for
the stack), leaving 1700 out of the 2048 bytes of RAM to the guest application. Table 4
shows the memory footprint of the COISA virtual platform on all platforms tested.

OSX AMD64 Linux AMD64 Linux x86 Linux ARM v7 AVR ATmega328 Native x86
VM Memory 5120 5120 5120 5120 1700 5120
.data Section 4 612 308 324 4 2488
.bss Section 64 276 276 136 141 388
.text Section 2939 5232 4516 6739 5784 91401

Stack 8192 8192 8192 8192 207 8192

Table 4. COISA footprint on different devices (Os optimization flag)

4.3. COISA portability and validation

Our prototype was carefully coded so that the amount of code that needs to be changed
in order to port it to a completely new environment is small. Even through the amount
of changes required to port the COISA virtual platform to new platforms may vary, in
our experiments, we only had to rewrite about ten lines of code of the TM module and
around 20 lines of code of the HAL module in order to port COISA to run on the AVR
ATmega328 platform and the same amount to execute it on the Native x86 platform.

We used different compilers to build the COISA virtual platform in each host plat-
form. Since our platforms rely on different underlying processor architectures, we could
not use a single compiler version as a guarantee of equal code quality among them be-
cause each compiler backend may present substantial differences in maturity. However,
we tried to stick with popular compilers in each case. On the OSX AMD64 platform,
Xcode (LLVM-based) 6.1.0 was used, and for both Linux x86 and Linux AMD64 plat-
forms, GCC 4.9.2 was used. GCC 4.7.3 compiled COISA to execute on the Linux ARM
v7 platform, and G++ 4.8.1 on the AVR ATmega328. The Native Kit [21] used GCC 4.9.1
to build the COISA virtual platform for the Native x86 host platform.

Once compiled, the benchmark applications were loaded and executed properly
by the COISA virtual platform in each one of the platforms listed in Table 3. The only
exception was the application Lists on the AVR ATmega328 platform. We could not run
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this application on this platform because it requires more memory than what is available
at the virtual machine guest memory. All programs produced the same results in all
platforms and showed that our artifact worked as planned.

The platforms used in our validation are very heterogeneous. For example, the first
one contains a 64-bit 2.8 GHz Intel Core i5 running Mac OS X with 8 GB of RAM, with
plenty of memory. We also have an 32-bit ARM based platform running at 1.4GHz with
1GB of RAM, being a middle-end example. The lowest end platform in our experiments
is the AVR ATmega328, using a 8-bit microcontroller clocked at 16 MHz with only 2 kB
of RAM.

4.4. COISA emulation performance

In order to evaluate the performance of our portable interpreter on the aforementioned
host platforms, we measured the time spent to execute the guest code, the number of
guest instructions emulated per second in MIPS (millions of instructions per second) and
the number of host instructions per guest instructions (except for the OSX AMD64 and
the Native x86 platforms).

Since the runtimes of the benchmarks are quite small in our fastest platforms, we
repeated the experiments 100 times and computed the average, the standard deviation and
the 95% confidence interval for each one of the experiments. Experiments with the AVR
ATmega328 and the Native x86 platforms presented almost no variation while experi-
ments with other host platforms, which contain host operating systems, presented some
variation. The highest variation was verified on the experiments with the Lists application
on the OSX AMD64 platform, which took, on average, 18µs to run and the 95% confi-
dence interval was 1.37µs (7.6% of the average). We also inspected our data histograms
and verified that the majority of the data is concentrated near the average. As we discuss
later, this variation does not affect the conclusions derived from our analysis.

We collected results for a variety of compilation flags, but for the purposes of this
analysis we focus on the tests with the Os compiler flag, which instructs the compiler to
optimize the guest code for size. This simulates the scenario with constrained memory
resources where it is important to save as much space as possible.

Table 5 shows the number of guest instructions emulated per second in MIPS
(millions of instructions per second) when executing the benchmark applications on each
one of the host platforms.

OSX AMD64 Linux AMD64 Linux x86 Linux ARM v7 AVR ATmega328 Native x86
Ackermann 121.79 72.48 67.40 24.34 0.02328 82.65

Array 185.25 75.66 63.20 26.57 0.02334 71.79
Fibonacci 98.91 56.13 54.59 23.53 0.02206 78.31
Heapsort 84.79 44.42 43.78 20.86 0.02183 62.72

Lists 25.31 21.67 20.11 10.93 - 60.83
Matrix 51.72 36.25 35.27 17.48 0.02170 67.39

Random 85.01 45.43 46.34 20.69 0.02068 62.77
Sieve 200.99 81.10 82.44 26.45 0.02387 83.44

Table 5. Benchmark performance (in MIPS) for each one of the platforms

In order to keep our emulation engine portable and compact, we did not imple-
ment interpreter optimizations, such as decoded instructions cache and threaded interpre-
tation [30]. Even so, it was capable of emulating around tens of MIPS on modern x86
processors, which is on par with results reported by previous work [14].
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The performance of the emulation engine on the AVR ATmega328 platform is
about 2500 times worse than on the Linux x86 platform. This difference is due to three
factors: a) clock frequency, b) number of instructions executed per cycle and c) average
number of host instructions executed to emulate one guest instruction.

As we can see in Table 3, the processor of the Linux x86 run at 2.8 GHz, which
is 175 times higher than the frequency of the processor at the AVR ATmega328 platform.
Also, the processor at the Linux x86 platform is capable of executing up to 4 instructions
per cycle1 while the processor of the AVR ATmega328 platform can execute only one
instruction per cycle. These two factors are strictly dependent on the hardware platform.

Table 6 shows the number of host per guest instructions executed to emulate the
benchmark applications in each one of the platforms. Notice that the amount of host
instructions required to emulate guest instructions on the AVR ATmega328 platform is
about five times higher than the one on the Linux x86 platform.

Linux AMD64 Linux x86 Linux ARM v7 AVR ATmega328
Ackermann 98.12 93.91 51.64 547.55

Array 109.03 102.55 53.34 545.06
Fibonacci 102.48 97.13 52.11 575.77
Heapsort 103.97 100.22 57.13 587.05

Lists 113.45 107.22 69.95 -
Matrix 104.95 100.92 62.40 721.55

Random 102.41 100.41 57.71 619.11
Sieve 95.53 92.76 52.87 532.58

Table 6. Host per Guest instructions, on average

The amount of host instructions required to emulate each guest instruction may
depend on the emulation mechanism (see Dynamic Binary Translation vs Interpreta-
tion [22, 14]), the host compiler quality and the relationship between the guest ISA and
the host ISA. Since we are using GNU avr-g++ 4.8.1 to compile the interpreter for the
AVR ATmega328 platform and the GNU GCC 4.9.2 for the Linux x86 platform, we do
not expect the host compiler quality to be a major player in this difference. Hence, the
only explanation is the relationship between the guest and the host ISA. In fact, the AVR
ATmega328 platform employs an 8-bit microcontroller, which has to execute multiple in-
structions to perform 32-bit data transfers and 32-bit pointer and arithmetic operations,
the main kind of data and operations on the guest ISA.

On average, the number of host per guest instructions on the AMD64 platform
is about the same as the one on the x86 platform. This is expected, since they are very
similar ISAs. However, the curious fact comes from ARM. Even though x86 has more
complex instructions, which enables it to execute the same computation with fewer in-
structions, our ARM Cortex A9 platform used, on average, almost half the number of
host instructions to emulate a single guest instruction.

The fetch-decode loop is an important critical path in an interpreter because it is
executed for every guest instruction. By carefully analyzing the binary produced by the
x86 and ARM compilers, we found out that the x86 version uses 53 instructions in its
fetch-decode loop alone, while ARM, 35: 11 to fetch, 10 to decode, 9 to advance the
PC and 5 in the loop epilogue. In this case, the presence of the ubfx and sbfx ARMv6
instructions helped the ARM version perform fast field decoding with a single instruction,

1This number depends on several hardware and software factors and the average may be less than 4.
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while x86 needed 3 instructions (mov, and and shr) to perform the same task. Finally,
the small number of general-purpose registers also caused the fetch-decode loop of the
x86 version to spill values to the stack, further increasing the number of instructions.

The design and implementation of our current emulation engine is focused on size
and portability. However, we conjecture that it is possible to improve the COISA virtual
platform performance on high-end platforms via Dynamic Binary Translation (DBT). In
fact, our previous results [14] indicate that it is possible to implement a near-native per-
formance DBT to emulate OpenISA code on x86 and ARM platforms. Also, the large
number of host per guest instructions on the AVR ATmega328 platform suggests that
there is still room to improve the interpreter on 8-bit resource constrained platforms. In
this sense, in order to improve the performance on resource constrained platforms, we
conclude it is important to investigate techniques to improve interpretation performance
with little or no effect on the interpreter code and data footprint.

5. Conclusion

In this paper we proposed the COISA virtual platform and show that it is possible to
emulate guest applications across a wide variety of host platforms, including platforms
with severe resource constraints, such as the ATmega328 microcontroller.

Our experimental results show that a simple interpreter can be implemented using
only a few bytes of memory and that this is enough to emulate general purpose programs.
In fact, in our most restricted environment, our implementation used only 6 kB of flash
memory and 348 bytes of RAM, leaving the remaining 1700 bytes of RAM to the guest
applications. Moreover, we showed that the virtual platform can be built in a way such
that its hardware-dependent portion can be easily ported to different platforms and yield
the same results.

We also evaluate and discuss the performance of our virtual platform on 3 highly
heterogeneous platforms and show that its portable interpreter is capable of emulating
tens of millions of instructions per second on modern 32 and 64-bit x86 processors and
on a 32-bit ARM processor. Even though this performance is on par with results reported
by previous work [14], we conjecture that the system performance can be improved to
native execution performance levels via DBT on high-end host platforms.
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